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1. Introduction 
 
A new capability, called Cartesian grid cut-cell technique has been implemented in MFIX, 
which allows the definition of curved or sloping boundaries, instead of the usual stair-step 
representation. Computational cells are truncated at the wall to conform to the shape of the 
boundaries. When a face is truncated, the velocity node is moved to the center of the face. 
The cell truncation introduces an additional face, called the cut face. Face surface areas 
and cell volumes are updated based on the shape of the cut cell. The contribution of the 
new cut face is added to the computation. The data can be saved in a vtk file for post-
processing purpose.  
 
The implementation of the Cartesian grid cut-cell technique is based on the work of 
Kirkpatrick and Armfield, and details about the cut cell treatment can be found in Reference 
[1]. Modifications have been implemented for the Eulerian/Eulerian approach, i.e., it is not 
available for Discrete Element Model. The cut-cell technique is a complement to existing 
boundary conditions. The usual specification of boundary conditions is still available. 
 
This document describes how to use the Cartesian grid cut-cell capability. The new 
keywords introduced in mfix.dat are described and some examples illustrate their utilization. 
A series of tutorial files are provided with the MFIX distribution to help users get familiar with 
the new technique. 
 
It is assumed that the reader is familiar with the general operation of MFIX. This document 
only describes the utilization of the Cartesian cut-cell technique. Details about MFIX can be 
found in Refs. [2-4]. 
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2. Geometry definition 
 
The Cartesian grid cut cell capability is activated by setting the keyword CARTESIAN_GRID 
= .TRUE. . Once this option is activated, the boundary geometry must be specified using 
one of the following methods: 
 

a) Quadric surface(s): The boundaries are defined using one or several quadric 
surfaces that can be translated, rotated, and combined. This option is activated by 
specifying a positive number of quadric surfaces (N_QUADRIC ≥ 1), and is valid for 
two and three-dimensional geometries. 

b) Polygons: The boundaries are defined using one or several polygons. The geometry 
information is read from the data file poly.dat, which must be generated prior to 
running MFIX, and must be located in the run directory. This option is activated by 
setting the keyword USE_POLYGON = .TRUE., and is limited to two-dimensional 
geometry only. 

c) User-defined function: The boundaries are specified using a user-defined function. 
The geometry is defined in the subroutine eval_usr_fct.f prior to running MFIX. 
The code must be compiled every time this subroutine is modified. This option is 
activated by setting N_USR_DEF = 1, and is valid for two and three-dimensional 
geometries. 

d) STL file: The boundaries geometry is read directly from one or several ASCII STL 
file(s). The STL file(s) describe(s) the surface of a three-dimensional geometry, and 
is typically generated by a CAD software. The STL file(s) must be located in the run 
directory. This option is activated by setting the keyword USE_STL = .TRUE., and is 
limited to three-dimensional geometry only. 

e) MSH file: The boundaries are read from a Gambit .msh file, named geometry.slt, 
which must be located in the run directory. This option is activated by setting the 
keyword USE_MSH = .TRUE., and is limited to three-dimensional geometry only. 
 

Note: In the current version, only one method can be used at a time. 
 

 
2.1. Quadric surface 

 
2.1.1. Normal form 

 
Quadric surface parameters are defined as one-dimensional arrays, which index 
corresponds to the quadric being defined. In this document, the index is referred to as the 
quadric ID (QID). Several quadrics can be defined. The total number of active quadrics is 
defined by the keyword N_QUADRIC.  
 
Quadric surfaces are written into one of their normal form: 
 

 𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝜆𝜆𝑥𝑥𝑥𝑥2 + 𝜆𝜆𝑦𝑦𝑦𝑦2 + 𝜆𝜆𝑧𝑧𝑧𝑧2 + 𝑑𝑑 = 0 (1) 
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Where 𝜆𝜆𝑥𝑥 ,𝜆𝜆𝑦𝑦, 𝜆𝜆𝑧𝑧 𝑎𝑎𝑎𝑎𝑑𝑑 𝑑𝑑 are real scalars. The boundary is located where the function 𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) 
is zero (within some tolerance defined by the parameter TOL_F). Regions where 𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧) is 
positive are excluded from the computational domain (blocked cells), and regions where 
𝑓𝑓𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧) is negative are part of the computational domain (fluid cells). This option is 
activated by the keyword QUADRIC_FORM(QID) = ‘NORMAL’, and is the default value. By 
default, all quadrics are centered about the origin (x = 0, y = 0, z = 0), and any quadric can 
be translated and rotated (see section 2.1.3). 
 
Examples:  
 
The following two examples illustrate the description of simple quadric surfaces (cylinder 
and cone). The idea is to express the shape’s surface in the form of Equation (1) such that 
the quadric’s parameters can be identified. The same procedure can be applied to other 
quadric surfaces, such as ellipsoids, hyperboloids, elliptic cylinders, etc. Note that there is 
an alternate way of defining planes, cylinders and cones, using pre-defined input (see 
section 2.1.2). 
 
Circular cylinder 
To model the flow over a circular cylinder of radius 2 in the (xy) plane (Figure 1a), the 
equation defining the boundary must be rearranged to fit the form of Equation (1), i.e., 
𝑥𝑥2 + 𝑦𝑦2 = 4 becomes    𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = −𝑥𝑥2 − 𝑦𝑦2 + 4 = 0, since we want values of 𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧) to be 
negative outside the cylinder. Therefore, the following parameters are specified as:  
 

 λx = −1.0   ;    λy = −1.0   ;    λz = 0.0   ;    d = 4.0 (2) 
 
In mfix.dat, this will be written as: 
 
CARTESIAN_GRID = .TRUE. 
N_QUADRIC = 1 
lambda_x(1) = -1.0 
lambda_y(1) = -1.0 
lambda_z(1) =  0.0 
dquadric(1) =  4.0 
 
Note that it would be equivalent to use: 
 

 λx = −0.25   ;    λy = −0.25   ;    λz = 0.0   ;    d = 1.0 (3) 
 
i.e., multiplying all coefficients by the same positive constant does not have any effect. 
However, changing the sign of all coefficients reverses blocked and fluid cells. Using the 
following parameters  
 

   λx = 1.0   ;    λy = 1.0   ;    λz = 0.0   ;    d = −4.0   (4) 
 
will mesh the interior of the cylinder (Figure 1b). 
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    ( a ) External flow     ( b ) Internal flow 

Figure 1. Meshing the exterior or interior region of a cylinder. 
 
Cone 
Assume the cone’s axis of revolution is aligned with the y-axis, it has a cylindrical cross 
section along any y-plane, and the cone’s half-angle is β. Since the radius varies linearly 

with height, we can write  𝑟𝑟 = �𝑥𝑥2 + 𝑧𝑧2 = 𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎𝑦𝑦, which can be re-arranged into 
 

 
𝑥𝑥2

(𝑦𝑦𝑎𝑎𝑎𝑎𝑦𝑦)2 − 𝑦𝑦2 +
𝑧𝑧2

(𝑦𝑦𝑎𝑎𝑎𝑎𝑦𝑦)2 = 0 (5) 

i.e., 

 λx =
1

(tanβ)2    ;    λy = −1.0   ;    λz =
1

(tanβ)2    ;    𝑑𝑑 = 0.0 (6) 

 
Notes:  

1) The cone is by default centered around the origin. It will typically need to be 
translated, and probably combined with other quadrics (for example to model a 
spouted bed). 

2) In 2D, we could leave λz = 0 since there is no z-dependence. 
 
For example, to define a cone with half-angle of β =30 degrees, the following input can be 
entered in mfix.dat (note that tan(30 𝑑𝑑𝑑𝑑𝑑𝑑) =  1 √3⁄  ): 
 
CARTESIAN_GRID = .TRUE. 
 
N_QUADRIC = 1 
 
  lambda_x(1) =  3.0D0 
  lambda_y(1) = -1.0D0 
  lambda_z(1) =  3.0D0 
  dquadric(1) =  0.0D0 
 
  t_x(1) = 2.5        ! Translation in x direction 
  t_y(1) = 0.0        ! Translation in y direction 
  t_z(1) = 2.5        ! Translation in z direction 
 

𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) ≤ 0 

𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = 0 

𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) ≥ 0 

 

 

𝜆𝜆𝑥𝑥 = 1.0 
𝜆𝜆𝑦𝑦 = 1.0 
𝜆𝜆𝑧𝑧 = 0.0 
𝑑𝑑 = −4.0 

𝜆𝜆𝑥𝑥 = −1.0 
𝜆𝜆𝑦𝑦 = −1.0 
𝜆𝜆𝑧𝑧 = 0.0 
𝑑𝑑 = 4.0 

β 

r 

x 

y 

z 
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2.1.2. Pre-defined quadrics 
 
It is anticipated that a few common quadrics, such as planes, cylinders, and cones will be 
used on a regular basis. Their definition is facilitated through user-friendly input that 
bypasses the specification of quadric parameters. The type of pre-defined quadric is set by 
the keyword QUADRIC_FORM. Current pre-defined quadrics include planes, cylinders and 
cones. 
 
Plane 
Single planes are defined by specifying the plane normal vector, and a point belonging to 
the plane. This option is activated by the keyword QUADRIC_FORM(QID) = ‘PLANE’. The 
following notation is used:  
 
𝑎𝑎�⃗ = �𝑎𝑎𝑥𝑥 ,𝑎𝑎𝑦𝑦,𝑎𝑎𝑧𝑧� is the normal vector to the plane, pointing away from fluid cells. The normal 
vector does not need to be normalized. 𝑃𝑃�⃗ = (𝑥𝑥,𝑦𝑦, 𝑧𝑧) is any point in space. 𝑦𝑦 = �𝑦𝑦𝑥𝑥 , 𝑦𝑦𝑦𝑦, 𝑦𝑦𝑧𝑧� is a 
point belonging to the plane. 
 
The equation of the plane is given by 𝑎𝑎�⃗ ⋅ �𝑃𝑃�⃗ − 𝑦𝑦� = 0 
or 

 𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝑎𝑎𝑥𝑥𝑥𝑥 + 𝑎𝑎𝑦𝑦𝑦𝑦 + 𝑎𝑎𝑧𝑧𝑧𝑧 + 𝑑𝑑 = 0 (7a) 
where 

 𝑑𝑑 = −�𝑎𝑎𝑥𝑥𝑦𝑦𝑥𝑥 + 𝑎𝑎𝑦𝑦𝑦𝑦𝑦𝑦 + 𝑎𝑎𝑧𝑧𝑦𝑦𝑧𝑧� (7b) 
 
The user needs to specify values of 𝑎𝑎�⃗ = �𝑎𝑎𝑥𝑥 ,𝑎𝑎𝑦𝑦,𝑎𝑎𝑧𝑧� and 𝑦𝑦 = �𝑦𝑦𝑥𝑥 , 𝑦𝑦𝑦𝑦, 𝑦𝑦𝑧𝑧�. The coefficient 𝑑𝑑 can 
be left undefined as it will be automatically computed based on Equation (7b). From a 
practical point of view, the plane’s orientation is defined by the vector 𝑎𝑎�⃗  , and translated by 
the amount 𝑦𝑦. 
 
Notes: 1) The vector 𝑎𝑎�⃗  points away from the fluid cells. 
 2) Planes are useful to clip other quadrics or groups of quadrics (see section 2.1.9). 
 
Example:  
The following parameters define a plane perpendicular to the (xy) plane, passing through 
(x=3, y=2), and rotated 20 degrees with respect to the y-axis (Figure 2): 
 
CARTESIAN_GRID = .TRUE. 
N_QUADRIC = 1 
QUADRIC_FORM(1) = 'PLANE' 
n_x(1) =   0.940  
n_y(1) =   0.342   
t_x(1) =   3.0   
t_y(1) =   2.0   
 

 
 
 

Figure 2. Example of plane definition.  

𝑎𝑎�⃗ = (0.940, 0.342) 

(3, 2) 

x 

y 



MFIX with Cartesian Grid Capability  Page 9 of 41 

 
 
Cylinder 
A circular cylinder is defined by specifying its radius, initial orientation, and whether we want 
to model internal or external flow. The keyword QUADRIC_FORM(QID) contains information 
regarding the initial orientation and type of flow. For example, setting 
QUADRIC_FORM(QID) = ’Y_CYL_INT’  will define a cylinder which axis of revolution is 
along the y-direction, for internal flow computation. Using QUADRIC_FORM(QID) = 
’Z_CYL_EXT’ will define a cylinder which axis of revolution is along the z-direction, for 
external flow computation. The cylinder radius is defined by setting a positive value to 
RADIUS(QID). 
For example, to model the flow over a cylinder of radius 2, in the (xy) plane (the axis of 
revolution points in the z-direction), the following parameters are defined 
 
CARTESIAN_GRID = .TRUE. 
N_QUADRIC = 1 
QUADRIC_FORM(1) = ’Z_CYL_EXT’ 
RADIUS(1) = 2.0 
 
 
The initial orientation is limited to x, y, or z axis, but the cylinder can be rotated by any 
arbitrary angle, and translated in any direction (see section 2.1.3). 
 
 
 
Cone 
A cone is defined by setting its half-angle and initial orientation. A value of 
QUADRIC_FORM(QID) = ’Y_CONE’ will define a cone which axis of revolution is aligned 
with the y-axis. The keyword HALF_ANGLE(QID) defined the cone’s half-angle (in degrees). 
 
For example, to define a cone in the y-direction with half-angle of 30 degrees: 
 
CARTESIAN_GRID = .TRUE. 
N_QUADRIC = 1 
QUADRIC_FORM(1) = ’Y_CONE’ 
HALF_ANGLE(1) = 30.0 
 
By default, the cone’s apex is located at the origin. The cone can be translated and rotated 
as any other quadric (see section 2.1.3). Currently, only internal flows can be modeled with 
the pre-defined cone.  
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Sphere 
A sphere is defined by specifying its radius, whether we want to model internal or external 
flow, and the location of the sphere center (by default, the sphere’s center is located at the 
origin). To model the flow over a sphere, use QUADRIC_FORM(QID) = ’SPHERE_EXT’, 
along with a positive value for RADIUS(QID). 
 
 
For example, to model the flow over a sphere of radius 0.1 m, located at x=2.0, y=1.0, and 
z=1.0, the following parameters are defined 
 
CARTESIAN_GRID = .TRUE. 
N_QUADRIC = 1 
QUADRIC_FORM(1) = ’SPHERE_EXT’ 
RADIUS(1) = 0.10 
t_x(1) = 2.0 
t_y(1) = 1.0 
t_z(1) = 1.0 
 
 
 
Torus 
A torus may be used to represent a sparge ring distributor. Although a torus is not 
mathematically described as a quadric surface, the keywords QUADRIC_FORM(QID) = 
’TORUS_INT’  and QUADRIC_FORM(QID) = ’TORUS_EXT’  can be used for 
convenience to define a torus shape, either for internal or external flows. Two radii are 
required to define the torus: TORUS_R1, and TORUS_R2.The center of the torus can be 
moved to any location by translating in by the amount (t_x,t_y,t_z). The torus axis of 
revolution is the y-axis. 
 
 

 
 
 
 
 
  

TORUS_R1 

TORUS_R2 

x 

z 
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U-shaped coil, round ends 
This built-in shape defines a pair of parallel cylinders (y-direction), capped at both ends by half a 
torus to create a U-shaped coil. Set QUADRIC_FORM(QID) = ‘Y_UCOIL_EXT’ to use this 
shape. The coil can be translated in the x and z direction (t_x, t_z). This shape can only be 
rotated about the y-axis. The additional parameters UCOIL_R1, UCOIL_R2, UCOIL_Y1, 
UCOIL_Y2 that control the shape are illustrated below: 

 
U-shaped coil, straight ends 
This built-in shape defines a pair of parallel cylinders (y-direction), capped at both ends by 
another cylinder at 90 degree angle to create a U-shaped coil. Set QUADRIC_FORM(QID) = 
‘Y_UCOIL2_EXT’ to use this shape. The coil can be translated in the x and z direction (t_x, 
t_z). This shape can only be rotated about the y-axis. The additional parameters 
UCOIL_R1, UCOIL_R2, UCOIL_Y1, UCOIL_Y2 that control the shape are illustrated 
below: 

 
  

UCOIL_R1 

UCOIL_R2 

UCOIL_Y2 

UCOIL_Y1 

(t_x, t_z). 

UCOIL_R1 

UCOIL_R2 

UCOIL_Y2 

UCOIL_Y1 
(t_x, t_z). 

x 

y 

x 

y 
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Bend 
This built-in shape represents a bend between two cylinders in the XY plane (interior flow). 
Set QUADRIC_FORM(QID)='XY_BEND_INT' to use this shape. BEND_R1 is the radius of 
the bend. BEND_R2 is the cylinders radius. BEND_THETA1 is the orientation of the first 
cylinder (Deg.). BEND_THETA2 is the orientation of the second cylinder (Deg.). The 
translation (t_x,t_y,t_z) defines the center of the bend. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Cylinder reduction 
This shape connects two vertical cylinders (y-direction, interior flow) by a conical section. 
Set QUADRIC_FORM(QID)='Y_C2C_INT' to use this shape. Additional parameters are 
illustrated below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

BEND_R1 

BEND_R2 
BEND_THETA1 

(t_x,t_y,t_z) 

BEND_THETA2 

C2C_R1 

C2C_R2 

C2C_Y1 

(t_x,t_z) 

C2C_Y2 

x 

y 
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Reactor 1 
This built-in shape defines a reactor (interior flow), made of two vertical cylinders, connected 
by a conical section. The axis of revolution of this shape is the y-axis. Each cylinder is 
rounded and closed by a conical cap. Set QUADRIC_FORM(Q_ID)='REACTOR1' to use 
this shape. Additional parameters are illustrated below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

REACTOR1_R1 

REACTOR1_R2 

REACTOR1_Y1 

(t x,t z) 

REACTOR1_Y2 

REACTOR1_YR1 
REACTOR1_RR1 
REACTOR1_THETA1 
 

REACTOR1_YR2 

REACTOR1_RR2 
REACTOR1_THETA2 
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2.1.3. Translating and rotating quadrics 
 
Any quadric surface defined in its normal form can be translated by the amount  𝑦𝑦 =
�𝑦𝑦𝑥𝑥 , 𝑦𝑦𝑦𝑦, 𝑦𝑦𝑧𝑧�, and rotated around the x, y, and z axes, by the amount 𝜃𝜃𝑥𝑥 , 𝜃𝜃𝑦𝑦,𝑎𝑎𝑎𝑎𝑑𝑑 𝜃𝜃𝑧𝑧 respectively 
(angles expressed in degrees). The order of rotation is currently fixed and is performed first 
around the x-axis, then the y-axis, and finally the z-axis. 
 
Example: 
 
To translate quadric 1 by the amount   𝑦𝑦 = (1,2), use: 
 
t_x(1)      =  1.0   
t_y(1)      =  2.0   
 
To rotate quadric 5 by 𝜃𝜃𝑦𝑦 =20 degrees about the y-axis, use: 
 
Theta_y(5) = 20.0 
 
 
Quadric surfaces defined in their degenerate forms (planes) are not allowed to be translated 
or rotated since all information required to define the plane is already contained in the 
normal vector 𝜆𝜆 and point 𝑦𝑦 belonging to the plane. 
 
 

2.1.4. Clipping limits 
 
By default, the function 𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) is defined over the entire original computational domain, 
i.e., 0 ≤ 𝑥𝑥 ≤ 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋, 0 ≤ 𝑦𝑦 ≤ 𝑌𝑌𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋, 𝑎𝑎𝑎𝑎𝑑𝑑 0 ≤ 𝑧𝑧 ≤ 𝑍𝑍𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋. It is possible to limit the 
definition of a given quadric surface to a rectangular region: 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑥𝑥𝑥𝑥𝑐𝑐𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑥𝑥𝑥𝑥𝑎𝑎𝑥𝑥, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑦𝑦𝑥𝑥𝑐𝑐𝑎𝑎 ≤ 𝑦𝑦 ≤ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑦𝑦𝑥𝑥𝑎𝑎𝑥𝑥, 𝑎𝑎𝑎𝑎𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑧𝑧𝑥𝑥𝑐𝑐𝑎𝑎 ≤ 𝑧𝑧 ≤ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑧𝑧𝑥𝑥𝑎𝑎𝑥𝑥. 
This has the effect of truncating the quadric. The region where the quadric is not defined 
(clipped region) can be considered either as part of the computational domain (fluid cells) or 
excluded from the computation (blocked cells). The flag FLUID_IN_CLIPPED_REGION is 
used to switch from one option to another. The default value is .TRUE.. Figure 3 illustrates 
the use of clipping limits for an internal flow. The quadric is limited to the region 5.0 ≤ 𝑥𝑥 ≤
20.0. When FLUID_IN_CLIPPED_REGION = .TRUE., the cells that are outside the 
clipping limits are retained in the computational domain, whereas when 
FLUID_IN_CLIPPED_REGION = .FALSE., the cells that are outside the clipping limits are 
removed from the computational domain. 
 
 
 
 
 
 
 
 



MFIX with Cartesian Grid Capability  Page 15 of 41 

 
 

 
( a ) FLUID_IN_CLIPPED_REGION= .TRUE.      ( b ) FLUID_IN_CLIPPED_REGION = .FALSE. 

 
Figure 3. Illustration of clipping limits. 

 
Note: Quadrics can also be clipped along arbitrary planes using group relations (sections 
2.1.5 to 2.1.9). 
 

2.1.5. Combining quadrics 
 
All quadric surfaces must belong to a group. The number of group(s) must be defined 
(default value is N_GROUP = 1), and the size of each group determines the number of 
quadric in the groups (default value is GROUP_SIZE(1) = 1). For each group, a list of 
quadric IDs is specified to populate the groups, using the matrix GROUP_Q(I,J), which 
store the quadric ID of Jth quadric assigned to group I. 
 
Example: 
 
Assuming N_QUADRIC = 5, the following would form two groups: group 1 combining 
quadrics 1, 2 and 4, and group 2 combining quadrics 3 and 5. 
 
N_GROUP = 2 
GROUP_SIZE(1) = 3 
GROUP_Q(1,1)  = 1 
GROUP_Q(1,2)  = 2 
GROUP_Q(1,3)  = 4 
GROUP_RELATION(1) = 'OR' 
 
GROUP_SIZE(1) = 2 
GROUP_Q(2,1)  = 3 
GROUP_Q(2,2)  = 5 
GROUP_RELATION(2) = 'AND' 
 

clip_xmin = 5.0       clip_xmax = 20.0 

Region where 
the quadric is 

defined 

Clipped 
region 

Clipped 
region 

clip_xmin = 5.0       clip_xmax = 20.0 

Region where 
the quadric is 

defined 

Clipped 
region 

Clipped 
region 

Quadric Quadric 
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RELATION_WITH_PREVIOUS(2) = 'AND' 
 
Quadrics belonging to the same group can be combined by setting the keyword 
GROUP_RELATION for that group. Available options are ‘OR’, ‘AND’ (logical grouping), and 
‘PIECEWISE’. 
 
 

2.1.6. Logical grouping within a group 
 
Several quadrics belonging to a common group can be combined using the ‘OR’ or ‘AND’ 
attribute. In this case, the actual intersection points between quadrics do not need to be 
known in advance. For a given group GID, if GROUP_RELATION(GID) = ‘OR’, a point 
belongs to the computational domain if at least one value of 𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)  among all quadrics is 
negative. If GROUP_RELATION(GID) = ‘AND’, a point belongs to the computational 
domain if all values of 𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) among all quadrics are negative. Each group is assigned an 
f-value, based on the group relation. With an ‘OR’ relation, the f-value is the minimum value 
of f(x, y, z) for all quadrics in the group. With an ‘AND’ relation, the f-value is the maximum 
value of f(x, y, z) for all quadrics in the group. 
 
In the previous example, quadrics in group 1 are combined with the ‘OR’ relation, and 
quadrics in group 2 are combined with the ‘AND’ relation. 
 
Note that this attribute will behave differently for internal and external flows (Figure 4). 

 
Type of flow Quadric signs OR AND 

Internal 

 

 

 
 

 
 

External 

 

 

 
 

 

 
 

 
Figure 4. Differences in the effect of GROUP_RELATION for internal and external flows.  

+    −                  −     + 

−  +                      +  − 
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2.1.7. Logical grouping among groups 
 

When quadrics are combined within a group, they generate more complex shapes than the 
individual quadrics. The resulting shapes from a group can be combined with the geometry 
obtained from all previous groups, using the keyword RELATION_WITH_PREVIOUS. 
Available options are ‘OR’, and ‘AND’, and they work similar to logical grouping of 
quadrics, except they apply to the entire groups, not individual quadric. A values of ‘OR’ 
means a point belongs to the computational domain if the f-value for the current group or the 
f-value for the combination of previous groups is negative. A value of ‘AND’ means a point 
belongs to the computational domain if the f-value for the current group and the f-value for 
the combination of previous groups is negative. 
 
 

2.1.8. Piecewise grouping 
 
When quadrics intersect along planes that are perpendicular to either the x, y, or z-axis, 
quadrics can be smoothly combined in a piecewise manner. This option is particularly suited 
to the combination of two or more surfaces of revolution that share the same axis of 
revolution, typically involving cylinders and cones. In this case, quadrics intersects along 
planes perpendicular to the axis of revolution, and can be calculated in advance. To group 
quadrics in a piecewise fashion, set the group relation to ‘PIECEWISE’, and define 
piecewise limits for each quadric, corresponding to the intersection planes between 
quadrics. For example, setting piece_ymax(1) = 10.0 and piece_ymin(2) = 10.0 
will switch from quadric 1 to 2 at along the y = 10.0 plane. Figure 5 illustrates the piecewise 
grouping of three quadrics. Figure 5 illustrates the piecewise grouping of three quadrics. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Example of a piecewise grouping.  

𝑦𝑦 ≤ 10 

Quadric 1 : cylinder of radius 
2  

Quadric 3 : cylinder of radius 
8 
 𝑦𝑦 ≥ 16 

 

Quadric 2 : cone joining quadrics 
1 and 3 
 10 ≤ 𝑦𝑦 ≤ 16 

N_QUADRIC = 3 
 
QUADRIC_FORM(1) = 'Y_CYL_INT'   'Y_CONE'    'Y_CYL_INT' 
RADIUS(1)       =     2.0          0.0          8.0 
HALF_ANGLE(2)   =                 45.0  
 
t_x(1)          =    10.0         10.0         10.0      
t_y(1)          =     0.0          8.0          0.0   
t_z(1)          =    10.0         10.0         10.0   
 
piece_ymin(2)   =                 10.0         16.0 
piece_ymax(1)   =    10.0         16.0              
 
N_GROUP = 1 
 
GROUP_SIZE(1) = 3 
GROUP_Q(1,1)  = 1 
GROUP_Q(1,2)  = 2 
GROUP_Q(1,3)  = 3 
 
GROUP_RELATION(1) = 'PIECEWISE' 

 

Axis of revolution along the y-direction,  
passing through (x=10, z=10) 
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Note: 
 
For conical transitions between two cylinders, the cone half-angle must be provided with 
sufficient precision to make sure the cone intersects the two cylinders along the planes 
defined with the piecewise limits. To simplify the input process, a built-in cylinder to cylinder 
cone shape is available. It is called by setting QUADRIC_FORM = ‘C2C’, and its ID must be 
enclosed by two cylinders. For examples, if Quadrics 1 and 3 are cylinders, Quadric 2 can 
be assigned the ‘C2C’ type. No additional input is required, and the half-angle, translation 
and piecewise limits will be computed and assigned directly from the surrounding cylinders. 
The example shown in Figure 5 could be more conveniently set as follows: 
 
N_QUADRIC = 3 
 
QUADRIC_FORM(1) = 'Y_CYL_INT' 
RADIUS(1)       =     2.0     
piece_ymax(1)   =    10.0     
t_x(1)          =    10.0      
t_y(1)          =     0.0      
t_z(1)          =    10.0      
 
QUADRIC_FORM(2) = 'C2C' 
 
QUADRIC_FORM(3) = 'Y_CYL_INT'  
RADIUS(3)       =     8.0     
piece_ymin(3)   =     16.0 
t_x(3)          =    10.0      
t_y(3)          =     0.0      
t_z(3)          =    10.0      
 
 
N_GROUP = 1 
 
GROUP_SIZE(1) = 3 
GROUP_Q(1,1)  = 1 
GROUP_Q(1,2)  = 2 
GROUP_Q(1,3)  = 3 
 
GROUP_RELATION(1) = 'PIECEWISE' 
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2.1.9. Example of quadric combination 
 
This example illustrates the use of several groups to combine quadrics. The corresponding 
mfix.dat is located in the tutorial folder spoutedbed2. The geometry consists of a spouted 
bed and a stabilizer. The entire geometry can be described with 7 quadrics, shown in Figure 
6a. Quadrics 1, 3, 4, and 5 represent pairs of parallel planes. Quadric 2 represents a pair of 
non-parallel planes. Quadrics 6 and 7 are two single planes (degenerate form). The 
geometry is built using the following steps: 
 
Step 1: Define all quadric parameters (see mfix.dat in tutorial folder). 
Step 2: Build group 1: Piecewise combination of quadric 4 and 5 (Figure 6b). This creates 
the stabilizer shape, running through the entire width of the spouted bed. 
 
  N_GROUP = 3 
 
  GROUP_SIZE(1) = 2 
  GROUP_Q(1,1) = 4 
  GROUP_Q(1,2) = 5 
  GROUP_RELATION(1) = 'PIECEWISE' 
 
Step 3: Build group 2: Combine quadrics 6 and 7 with ‘OR’ relation (Figure 6c). This 
creates a mask that will be used to trim group 1. 
 
  GROUP_SIZE(2) = 2             
  GROUP_Q(2,1) = 6 
  GROUP_Q(2,2) = 7 
  GROUP_RELATION(2) = 'OR' 
 
Step 4: Combine groups 1 and 2 with ‘OR’ relation (Figure 6d). The mask (group 2) is 
applied to group 1. 
 
  RELATION_WITH_PREVIOUS(2) = 'OR' 
 
Step 5: Build group 3: Piecewise combination of quadric 1, 2, and 3 (Figure 6e). This group 
represents the walls of the spouted bed. 
 
  GROUP_SIZE(3) = 3 
  GROUP_Q(3,1) = 1 
  GROUP_Q(3,2) = 2 
  GROUP_Q(3,3) = 3 
  GROUP_RELATION(3) = 'PIECEWISE' 
 
Step 6: Combine group 3 with groups 1 and 2, using ‘AND’ relation (Figure 6f) to create the 
final geometry. 
 
  RELATION_WITH_PREVIOUS(3) = 'AND' 
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   (a )         (b)         (c)         (d)                (e)          (f) 
Individual        Group 1            Group 2              Groups              Group 3           Overall  
quadrics                                                               1 and 2                                     geometry 

 
Figure 6. Steps involved in geometry definition of a spouted bed with stabilizer. 

 
 

2.2. Polygons 
 
For two-dimensional geometries, the boundaries can be described by one or a series of 
polygons. The polygons can be concave or convex. An ordered list of coordinates for each 
vertex is given by the user. The number of vertices is the same as the number of edges, 
since the polygon is closed by connecting the last vertex to the first vertex. Open shapes 
can be created by locating vertices outside of the computational domain defined by 
(XLENGTH, YLENGTH). The option to use polygon(s) is activated by setting the keyword 
USE_POLYGON = .TRUE., and the data is read from the file poly.dat. The file structure is 
as follows: 
Line 1-13: file header. User input starts at line 14 
Line 14: Number of polygon(s) 
Line 15: Number of vertices defining first polygon, followed by the polygon sign (either 1.0 or 
-1.0). A value of 1.0 means the interior region is removed from computation (blocked cells) 
and a value of -1.0 means the interior region is part of the computational domain (fluid cells). 
Lines 16 and below: For each vertex, provide x and y coordinate, followed by the boundary 
condition ID of the corresponding edge. The same sequence (number of vertices, polygon 
sign, list of coordinates, and boundary condition ID) is repeated as needed for each 
additional polygon. 
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Example: 
 
An example is given below to define a square region using polygon data (Figure 7). Note 
that in this case, this could also be done using the regular boundary conditions in mfix.dat. 
The four vertices are located at the corners of the pressure cells. The four corresponding 
edges are assigned the same boundary condition ID (2). To define the boundary as a no-
slip wall, the boundary condition type BC_TYPE(2) = ‘CG_NSW’ must be defined in 
mfix.dat (see section 3). 
 

 
 

Figure 7. Example of polygon data entry. 
 
 

2.3. User-defined function 
 
To describe the geometry through a user-defined function, the subroutine 
eval_usr_fct.f must be modified, and MFIX must be compiled. The same convention 
applies, that is regions where 𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) is positive are excluded from the computational 
domain (blocked cells), and regions where 𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧) is negative are part of the 
computational domain (fluid cells). The boundaries are located where 𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) is zero 
(within the tolerance TOL_F). This option is activated by setting N_USR_DEF = 1. 
 
The subroutine must assign a value to the following variables: 
 
f_usr : value of 𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧) (Real), and 
 
BCID : boundary condition ID of the cut cell associated with the boundary (Integer) 
 
The subroutine eval_usr_fct.f is located in mfix/model/cartesian_grid folder.  
Before modifying the file, it is recommended to create the sub-folder cartesian_grid in 
the current run directory, and copy the file eval_usr_fct.f into this directory. Once the 
file is modified, MFIX must be compiled for the modifications to take effect. The makefile will 
look into the current run directory structure and use the file located in the cartesian_grid 
folder. For example, if the current run directory is wavy, the subroutine eval_usr_fct.f 
should be placed in wavy/cartesian_grid. 

1 2 

3 4 

 

 

 

 

Number of 
polygons 
Number of 
vertices 

Polygon sign 
(Block interior 
cells) 

(x,y) of vertex 1 

(x,y) of vertex 4 

 BC ID of edge  
 

BC ID of edge  
 

1 
4        1.0 
10.0    10.0     2 
15.0    10.0     2 
15.0     5.0     2 
10.0     5.0     2 

Line 14 of 
poly.dat 

(10,10) (15,10) 

(15,5) (10,5) 
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2.4. STL file 
 
Three-dimensional geometry can be described by one or several STL file(s), which are 
typically generated from a CAD software. The STL file(s) must be stored in ASCII format. If 
a single file is used, it must be named geometry.stl, and the entire geometry is assigned 
the same boundary condition ID and is set by defining the flag STL_BC_ID. If more than 
one boundary condition needs to be specified along the STL geometry, each boundary 
condition ID (BC_ID) must be associated with a separate STL file, named 
geometry_####.stl, where #### is a zero-padded integer corresponding to the BC_ID. 
For example, if we define BC_TYPE(12) = ‘CG_NSF’ and BC_TYPE(15) = ‘CG_MI’, 
then the corresponding STL files are geometry_0012.stl and geometry_0015.stl. 
The geometry can be scaled by the factor STL_SCALE and translated in any direction.  
 
 

2.5. MSH file 
 
If a three-dimensional .msh file generated by Gambit is available, the boundaries geometry 
can be imported directly. The .msh file must be stored in ASCII format and named 
geometry.msh. Boundary zones are read from the .msh file, and the corresponding 
boundary condition type must be assigned in mfix.dat. The geometry can be scaled by the 
factor MSH_SCALE and translated in any direction. 
 
3. Boundary condition specification 
 
Each cut cell is assigned a boundary condition identification number (BC_ID). For a given 
quadric surface, the BC_ID is stored in the variable BC_ID_Q. For polygon data, the BC_ID 
is defined for each polygon edge, in the file poly.dat (see section 2.2). For a user-defined 
function, the BC_ID must be defined in the file eval_usr_fct.f (see section 2.3). For a 
geometry defined by an single STL file, the flag STL_BC_ID is defined. 
 
The BC_ID is linked to a type of boundary condition, similar to what is done for standard 
cells. Current available boundary conditions types for cut cells include: 
 
CG_NSW:  No-slip wall  
CG_FSW: Free-slip wall 
CG_PSW: Partial-slip wall 
CG_MI: Mass Inlet 
CG_PO: Pressure Outlet 
 
In the example below, BC_ID 12 is assigned to quadric 1. Any cut cell related to Quadric 1, 
will be treated as a no-slip wall. 
 
BC_ID_Q(1)  = 12 
BC_TYPE(12) = 'CG_NSW' 
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Note: It is possible to define different wall boundary conditions for the gas and solid phases. 
The input is similar to the partial-slip wall for regular cells. Specifying a boundary conditions 
type of ‘CG_PSW’ requires the input of the coefficient hw for gas and solid phase. For free-
slip, set hw=0, and for no-slip, leave hw undefined (hw = ∞).  
 
For example, BC_ID 10, linked to quadric ID 1 will specify no-slip wall for the gas phase and 
free-slip wall for the solids phase: 
 
BC_ID_Q(1)  = 10 
BC_TYPE(10) = 'CG_PSW' 
 
BC_HW_s(10,1) = 0.0 
 
Note: The BC_ID assigned to cut cells can be visualized from the vtk file, by including the 
flag 101 into the list of vtk variables VTK_VAR (see section 6). 
 
 
4. Removal of small pressure cells  

 
The intersection of quadrics, polygons, or user-defined function with the background grid is 
likely to generate small cells, which can increase the stiffness of the system of equations. 
Small cells can be removed from the computational domain by slightly altering the 
geometry. When the boundary intersects the background grid near a corner point, the 
intersection point is moved to the corresponding corner point (i.e., the intersection point is 
“snapped” onto the grid). The tolerance parameter TOL_SNAP defines the sensitivity of the 
snapping procedure. It is expressed in term of a fraction of the current cell edge along which 
the intersection point is located. For example, specifying TOL_SNAP = 0.01 will snap an 
intersection points to a corner point if they are separated by less than 1 % of the cell edge. A 
value of TOL_SNAP = 0.0 turns off this option (default value). Figure 8 illustrates this 
procedure with an exaggerated value of TOL_SNAP = 0.10 for clarity. Typical values are 
in the range 0.01 to 0.05. For stretched grid, providing different values for TOL_SNAP(1), 
TOL_SNAP(2) and TOL_SNAP(3) will apply different tolerances along the x, y, and z-axis, 
respectively. Setting a single value to TOL_SNAP will apply the same tolerance in all 
directions. 



Page 24 of 41  MFIX with Cartesian Grid Capability 

 
 

 
 

( a ) TOL_SNAP = 0.00 ( b ) TOL_SNAP = 0.10 
 

Figure 8. Effect of TOL_SNAP on small cells. 
The definition of a small cell is arbitrary. One way to characterize a cell as small is to 
compare the volume of the cut cell with the volume of the original (uncut) cell. If the ratio of 
the volume of a cut cell over the volume of the original cell is less than the tolerance 
TOL_SMALL_CELL, a cut cell is flagged as small. A value of TOL_SMALL_CELL = 0.01 
would flag cell IJK as small if  VOL(IJK) < 0.01 DX(I)*DY(J)*DZ(K), where 
VOL(IJK) is the volume of the cut cell, and DX(I), DX(J), DZ(K) are the original cell 
dimensions. Currently, small pressure cell remaining after the snapping procedure are 
removed from computation. 
 
 
5. Utilities 
 

5.1. Grid spacing 
 
To facilitate the specification of non uniform grid spacing, a simple grading option is 
available. The following description applies to the definition of grid spacing DX in the x-
direction. Similar input for specifying DY and DZ can be applied in the y and z directions as 
well. 
 
First, the domain length is split into several segments by specifying a list of control points. 
Since the origin is always located at x=0, the first control point that needs to be specified 
locates the end point of the first segment. The last control point must match the value of 
XLENGTH. Therefore, the number of control points is the same as the number of segments. 
The list of control point coordinates is given as CPX. Along each segment, the number of 
cells is specified by NCX. To control the grid spacing within each segment, one of the 
following attributes must be specified: 
 

Small cells 

The boundary now intersects 
the grid at the corner points, 
which removes small 
pressure cells 
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• ERX: Expansion ratio (positive real number). This is the ratio of the last to first grid 
spacing  Last DX

First DX
. A value of ERX larger than one tends to stretch the grid as x 

increases, while a value smaller than one tends to compress the grid as x increases. 
A value of one will keep the spacing uniform in that segment.  

 
• First_DX : Grid spacing of the first cell in a given segment. A positive value assigns 

the value, a negative value copies the grid spacing from the previous segment (if it 
was defined separately). The size of the other cells is automatically adjusted based 
on the segment length and number of cells. 

 
• Last_DX : Grid spacing of the last cell in a given segment. A positive value assigns 

the value, a negative value copies the grid spacing from the next segment (if it was 
defined separately). The size of the other cells is automatically adjusted based on 
the segment length and number of cells. 

 
For example, the following input: 
 
  CPX  = 1.0   2.0 
  NCX  = 10    10 
  ERX  = 0.5   2.0 
 

Defines two segments, [0.0 ; 1.0], and [1.0 ; 2.0], with 10 cells each, and an expansion ratio 
of 0.5 in the first segment, and 2.0 in the second segment. In the first segment, the last cell 
is half the size of the first cell, while in the second segment, the last cell is twice the size of 
the first cell. 
 

 
 
 
 
Specifying grid spacing independently does not guaranty a smooth transition from one 
segment to another. To avoid discontinuities in grid spacing, it is recommended to use a 
negative input for First_DX or Last_DX, which will force the grid spacing of one segment 
to match the grid spacing of the adjacent segment. For example, the following input: 
 
  CPX         =  2.0   3.0   6.0 
  NCX         =  5     5     10 
  ERX(2)      =        1.0 
  LAST_DX(1)  = -1.0 
  FIRST_DX(3) =             -1.0 
 
Specifies a uniform grid spacing in the second segment [2.0 ; 3.0]. The last value of DX in 
the first segment matches the first DX in the second segment. The first DX in the third 
segment matches the last DX in the second segment. 
 

x=0.0                                                                           x = 1.0                                                                         x = 2.0  

              First segment (10 cells, ERX=0.5)                       Second segment (10 cells, ERX=2.0)      
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The cylinder tutorial illustrates the use of control points to define non-uniform grid spacing. 
 
 

5.2. Progress bar 
 
A progress bar can be displayed to visualize the progress of the major pre-processing steps 
step. This option is activated with the keyword PRINT_PROGRESS_BAR=.TRUE.. The 
appearance of the progress bar can be controlled by changing its length (keyword 
BAR_WIDTH) and the character used to create the bar (BAR_CHAR). By default, the progress 
bar is updated by increments of 5%. The update frequency is controlled by the keyword 
BAR_RESOLUTION. The progress is also printed at the center of the bar. Figure 9 shows the 
appearance of the progress bar. Showing the progress bar is mostly useful for fine grids and 
three dimensional grids to monitor the progress of the pre-processing stage. 
 
INTERSECTING GEOMETRY WITH SCALAR CELLS... 
|=====================  75.0 % ========            | 
 

Figure 9. Appearance of the progress bar. 
5.3. Dashboard 

 
While MFIX is running, progress in the simulation can be followed on the screen. The 
screen output can be redirected to a file. For example, issuing the command ./mfix | 
tee run.log will launch MFIX, display the output on the screen as well as in the file 
run.log. 
 
A summary of the simulation progress can also be written in the file DASHBOARD.TXT, 
which will be referred to as the dashboard. This option is activated by setting the keyword 
WRITE_DASHBOARD = .TRUE. (default value is .FALSE.). When this option is activated, 
the dashboard is updated at every time step. The frequency can be increased by setting a 
value of F_DASHBOARD larger than one. 
 
Figure 10 illustrates the dashboard. The top portion contains descriptions of the simulation 
(provided in mfix.dat), the run status, elapsed CPU time and estimated CPU time left, the 
name of the latest vtk file written, and the type of run (serial or parallel). 
 
A table summarizes values of some variables. The current, minimum and maximum values 
are displayed, and a progress bar corresponding to the numerical value is displayed on the 
right-hand-side. The sign beside the variable name DT indicates whether the last time step 
was increased (+) or decreased (-) during the computation. Units for Time and DT are 
seconds. Sm is the solid inventory in the domain (expressed in grams for cgs unit system 
and kilograms for SI unit system). NIT is the number of iterations for the current time step. 

x=0.0                                            x = 2.0                 x = 3.0                                                                   x = 6.0  

                 First segment                        Second segment                                   Third segment 
                    (5 cells)                                        (5 cells)                                                 (10 cells)   
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The name of the variable yielding the maximum residual is displayed in the bottom row. A 
time stamps is printed at the bottom of the dashboard. 
 
The script show_dashboard located in mfix/tools/Dashboard can be used to display 
and automatically refresh the dashboard. For example, issuing the command ./mfix.exe 
> run.log & will run MFIX in the background, and invoking show_dashboard 2 will 
display the dashboard and update it every 2 seconds. 
 
 

 
 

Figure 10. Appearance of the dashboard. 
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6. Post-processing 
 
When the Cartesian grid option is activated, the data can be saved into vtk files [5], which 
can be visualized with the post-processing tool Paraview [6] or Visit [7]. Visualizing the data 
using the .RES file will not show any cut cell. To save output files in vtk format, set the 
keyword WRITE_VTK_FILES = .TRUE.. This option is only valid when CARTESIAN_GRID 
= .TRUE.. When the Cartesian grid capability is turned-off, the .RES file can be used for 
data visualization, since no cut cells are generated. 
 
The name of the vtk file is based on RUN_NAME, defined in mfix.dat. For transient computations, a 
sequential integer is appended to the filename, starting at 0, to create a series of files (use 
TIME_DEPENDENT_FILENAME = .TRUE.). Individual files are stored with the .vtu extension, 
(unstructured vtk file) and their names contain a sequential frame index. A .pvd file links all .vtu files 
and stores the simulation time associated with each file. The .vtu files can be visualized in Paraview, 
individually or as a group of files. When loading .vtu files, only the frame index is available. 
Typically, the entire series of vtu files is loaded in Paraview directly by opening the .pvd file. In this 
case, the frame index and corresponding simulation time is available. During simulation, the current 
frame index is store in the file VTU_FRAME_INDEX.TXT. If the simulation is restarted, the .vtu file 
numbering will continue from the frame index found in this file for continuous numbering. Deleting 
VTU_FRAME_INDEX.TXT will overwrite existing .vtu files upon restart. By default, the .vtu files 
are stored in the run directory. The keyword VTU_DIR can be used to store the vtu files in a different 
directory. The .vtu file format is compatible with Distributed IO option. 
 
 
 
The list of variables stored into the vtk file is controlled by a list of integers stored in VTK_VAR. 
Current available flags for VTK_VAR are: 
 
1: Void fraction (EP_g) 
2: Gas pressure, solids pressure (P_g, P_star) 
3: Gas velocity (U_g, V_g, W_g) 
4: Solids velocity (U_s, V_s, W_s) 
5: Solids density (ROP_s) 
6: Gas and solids temperature (T_g, T_s1, T_s2) 
7: Gas and solids mass fractions (X_g, X_s) 
8: Granular temperature (G) 
9: User-defined scalar (Scalar) 
10: Reaction Rates (Reactionrates) 
11: Turbulence quantities (k and epsilon) 
12: Gas vorticity magnitude and Lambda_2 (VORTICITY, LAMBDA_2) 
100: Processor assigned to scalar cell (Partition) 
101: Boundary condition flag for scalar cell (BC_ID) 
999: Cell index (JK) 
1000: Unit normal vector of scalar cut-cell (Normal_S) 
 
For example, setting VTK_VAR = 1 3 4 will store the void fraction, gas velocity and solids 
velocity into each vtk file. 
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A boundary file, starting with the value of RUN_NAME, and ending with _boundary.vtk is 
written during the preprocessing stage. It can be used to easily visualize the boundary. It is 
mostly useful for three-dimensional geometries. If it is desired to look through the boundary, 
the boundary must be displayed with a low opacity value. Figure 11 shows data obtained 
from the 3dfb tutorial (three-dimensional fluidized bed), with a cylindrical boundary. Figure 
11a show void fraction contour along a vertical slice, whereas Figure 11b shows the 
boundary, and isosurfaces of the void fraction. 
 
 
 
 

 
 

 

                   ( a)                          (b)  
 

Figure 11. Instantaneous data visualization (a) void fraction contour along a vertical slice  
and (b) boundary and isosurfaces of void fraction. 

 
The file CUT_CELL.LOG contains statistics about the grid, with minimum and maximum 
values of geometrical quantities, interpolation factors, and non-orthogonality correction 
terms. 
 

 
  

Boundary surface displayed 
from 3DFB_boundary.vtk, with 
an opacity of 0.5 

Iso-surfaces of void fraction 
displayed from 3DFB_200.vtk 
(time = 2.0 sec) 
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7. Code modifications 
 

7.1. Preprocessing 
 
The procedure to identify cut cells is as follows. An intersection search is performed along 
each edge of the cell (the search is performed only if the function 𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧) has opposite 
signs at the edge extremities). The location of the intersection points may be altered 
depending on the value of TOL_SNAP (see section 4). Once all intersections points are 
determined within a cell, the connectivity is established for each cut-cell and its faces, and 
re-ordered if necessary. Faces are described as convex polygons, and the face areas are 
computed similar to convex polygon areas. To compute cut-cell volumes, cut-cells are split 
into pyramids, and volumes of pyramids are computed and added to form the cell volume. 
 
Velocity nodes are placed at the center of pressure cell faces. All interpolation correction 
terms and non-orthogonality correction terms are computed from the new velocity node 
locations. An example of a computational grid, with the location of velocity nodes is shown 
in Figure 12, where the thick solid line is the domain boundary. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12. Example of scalar cut-cells with location of velocity nodes. 
 

 
Note: It is assumed that the geometry (surface quadrics, polygon data, or user-defined 
function) intersects an edge no more than one time. If there are actually two intersections 
along the same edge, they will not be detected since the function 𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) will have the 

Standard 
cell Cut cell 

Blocked  
cell 



MFIX with Cartesian Grid Capability  Page 31 of 41 

 
 
same sign at the edge extremities (see Figure 13). The sign of 𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) is indicated at the 
corners. 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 
(a) Original cell and quadric surface (b) shape of corresponding cut cell 

 
Figure 13. Example of misrepresentation of boundary. 

 
 

  

These two intersection 
points will not be detected 

− 

+ 

− 

+ 
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7.2. No-slip wall 
 
Due to the relocation of velocity nodes at the face centers, the velocity ue may not be located 
at the center of the east face (Figure 14). Instead, the velocity at the face center uec is 
computed assuming zero velocity at the wall using the ratio of normal distances to the wall, 
as given in Equation (8). Figure 14 shows the notation used to define the interpolation 
correction factor 𝛼𝛼𝑒𝑒. In the code, this correction factor is named alpha_ue_c. The same 
types of correction terms are defined for other velocity components. Their names start with 
the same root alpha_, followed by two letters, representing the velocity component (u,v, or 
w), and the face (e for East , n for North, t for Top), respectively. For example, in the u-
momentum cell, the following three correction terms will be computed (in 3D): 
alpha_ue_c, alpha_un_c, alpha_ut_c. Wall distances are named DELH in the code. 
 

   uec =
∆hec
∆he

ue = αeue (8) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 14. Example of x-velocity cut-cells, with illustration of the interpolation correction for 

uec at east face. 
 

  

uP ue 
uE 

uec 

∆hec 
∆he 
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In the u-momentum cell, other velocity components are interpolated at the face center 
based on the location of adjacent velocity nodes (Figure 15). For example, the v-component 
of velocity along the north face would be interpolated from 
 

 vn = θnevne + θnwvnw (9) 
where 

 θne = ∆xw
∆xwe

 , θnw = ∆xe
∆xwe

, and ∆xwe = ∆xw + ∆xe    (10) 
 
In the code, 𝜃𝜃𝑛𝑛𝑒𝑒 in the u-momentum cell is named theta_u_ne. Other interpolation 
correction terms are computed for other velocity components, and named in a similar 
fashion. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15. Interpolation of vn at north face of u-velocity cell. 
 

 
 
Due to the relocation of velocity nodes at the face centers, vector �⃗�𝑆 joining points P and E, 
may not be perpendicular to the east face (Figure 16). Therefore, the derivative 𝜕𝜕𝜕𝜕 𝜕𝜕𝑥𝑥⁄    is 
approximated by equations (11) using the fact that velocity is zero at the wall. The vector  
𝑋𝑋��⃗  is perpendicular to the wall and passes through point e.  
 

 
∂u
∂x ≈

uE − uP
|Sx| −

1
Sx

 �Sy
∂u
∂y + Sz

∂u
∂z�   (11) 

where 
 ∂u

∂y
≈ Nyue

∆he
    and   ∂u

∂z
≈ Nzue

∆he
 (12) 

Therefore, 
 ∂u

∂x
≈ uE−uP

|Sx|
− SyNy+SzNz

Sx∆he
 ue=uE−uP

|Sx|
− NOC ue   (13) 

 

vnw             vn      vne 

∆xw        ∆xe 

uP 
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The non-orthogonality correction term NOC = SyNy+SzNz

Sx∆he
  can be computed during 

preprocessing. In the code, it is named NOC_U_E. Other non-orthogonality correction terms 
are computed and named similarly. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 16. Example of x-velocity cut cells, with illustration of the non-orthogonality 

correction for the evaluation of the derivative 𝜕𝜕𝜕𝜕 𝜕𝜕𝑥𝑥⁄    at east face. 
  

P 

ue 
uE 

∆he 

𝑋𝑋��⃗  
𝑆𝑆 

uP E e 
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It is assumed that in the cut cell, the velocity is tangential to the wall. The shear force acting 
on the fluid due to the wall shear stress is parallel to the velocity vector (Figure 17), and can 
be written as 
 

   F�⃗ ≈ −µ∆Acut
∂u�⃗
∂n ≈ −µ∆Acut �

u
∆h ı⃗ +

v
∆h ȷ⃗ +

w
∆h k�⃗ � = Fx ı⃗ + Fy ȷ⃗ + Fz k�⃗  (14) 

 
 
Where ∆𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐 is the surface area of the cut face. Therefore, the contribution of the cut face 
can be applied implicitly along each direction (e.g., 𝐹𝐹𝑥𝑥 = −𝜇𝜇∆𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐

𝑐𝑐
∆ℎ

 in the x-direction). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 17. Additional wall shear stress arising from the cut-face. 
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7.3. Free-Slip wall 
 
For free-slip walls, the assumption of zero wall velocity is not valid. Instead, the velocity 
gradient normal to the wall is assumed to be zero. Therefore, the correction term 𝛼𝛼𝑒𝑒 is set to 
one, and the non-orthogonality correction terms are set to zero. No additional shear force 
term is added.  
 

7.4. Problematic cells 
 
A wide variety of cut cells are typically generated, and cut cells vary in shape and size. 
Figure 18 illustrates various shapes of cut cells. The generation of small pressure cells 
leads to stability issues. Section 4 describes a method to reduce the number of small 
pressure cells, by slightly altering the geometry. Due to the staggered grid formulation, 
velocity cells require pairs of pressure nodes (East/West, North/South and Top/Bottom) to 
compute pressure gradients. However, when some pressure cells are removed (blocked 
cells), the corresponding velocity cells will only have one pressure node and the pressure 
gradient cannot be computed in that direction. When this situation occurs, the velocity cell is 
flagged as a “wall cell”, and the momentum equation is not solved for this cell. A velocity is 
specified, which depends on the type of boundary condition assigned to the cell. For no-slip 
wall (BC_TYPE = ‘CG_NSW’), a zero velocity is assigned. For Free-slip wall (BC_TYPE = 
‘CG_FSW’), the velocity is the same as the velocity of an adjacent cell. The adjacent cell is 
called the “master” cell of the “wall cell”.  
 
The treatment of single-pressure velocity cells effectively limits their size to half the size of a 
standard cell, in any direction. This criterion automatically avoids problems linked to small 
velocity cells. 
 
 

 
 

Figure 18. Examples of cut cell shapes. 
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8. Tutorial files 
 
The tutorial files are located in /mfix/tutorials/Cartesian_grid_tutorials. 

Snapshot Folder 
Method to 
describe 
geometry 

Dimension 
Phase 

(G=Gas, 
S=Solid) 

Description 

 
channel 

One quadric 
surface 

 
2D G Flow in a skewed 

channel 

 
cylinder 

One quadric 
surface 

 
2D G Flow over a cylinder 

 
naca4412 Polygon 

data 2D G Flow over an airfoil 

 

hourglass 
 

Three 
quadric 
surfaces 

2D G/S 
Solids falling in an 
hourglass-shaped 

container 

 

spoutedbed1 
Three 

quadric 
surfaces 

2D G/S Spouted bed 

 

spoutedbed2 
 

7 quadrics, 
3 groups 2D G/S Spouted bed with 

stabilizer 

 
polygons Polygon 

data 2D G/S Pack of solids falling 
on polygons 

 
wavy 

User-
defined 
function 

2D G/S Solid jet impinging on 
a wavy surface 

 

3dfb 
 

One quadric 
surface 

 
3D G/S 3D fluidized bed 

 

cyclone 
 

12 quadrics, 
6 groups 3D G/S Flow of particles 

through a cyclone 
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9. Cartesian Grid keywords 
 
All Cartesian Grid keywords are now included in the main MFIX user guide. 
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10. Quick reference 
 
This section provides a summary of basic options to use the Cartesian grid cut-cell 
technique, for each boundary definition method. It can be used as a checklist before running 
MFIX. 
 
Quadric surface(s): 

� Activate Cartesian grid capability: CARTESIAN_GRID = .TRUE.. 
� Define the number of quadrics N_QUADRIC. 
� For each quadric surface, define quadric parameters, rotation angles, translation, 

and clipping limits, as necessary. 
� Assign a boundary condition ID to each quadric (BC_ID_Q). 
� Use groups to combine quadrics if necessary. 
� Define a boundary condition type for each value of BC_ID_Q. 
� Set WRITE_VTK_FILES = .TRUE. and set list of output variables VTK_VAR. 

 
Polygon(s): 

� Activate Cartesian grid capability: CARTESIAN_GRID = .TRUE.. 
� Define polygon data in poly.dat. Place poly.dat in the run directory. 
� Set the keyword USE_POLYGON = .TRUE.. 
� Define a boundary condition type for each Boundary condition ID associated with the 

polygon edges. 
� Set WRITE_VTK_FILES = .TRUE. and set list of output variables VTK_VAR. 

 
User-defined function: 

� Place eval_usr_fct.f in the sub-directory cartesian_grid/ in the run 
directory. 

� Modify the subroutine eval_usr_fct.f to define the function 𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧) (f_usr) and 
boundary condition ID (BCID). 

� Compile MFIX from run directory. 
� Activate Cartesian grid capability: CARTESIAN_GRID = .TRUE.. 
� Set the keyword USE_USR_DEF = 1. 
� For each value of BCID, set a boundary condition type. 
� Set WRITE_VTK_FILES = .TRUE. and set list of output variables VTK_VAR. 

 
STL file(s): 

� Activate Cartesian grid capability: CARTESIAN_GRID = .TRUE.. 
� Define boundary in geometry.stl or geometry_####.stl if using more than one 

file.  Place the STL file(s) in the run directory. 
� Set the keyword USE_STL = .TRUE.. 
� Define the boundary condition ID STL_BC_ID. When a single STL file is used or match 

each STL file with a BC_ID. 
� Define a boundary condition type for the Boundary condition ID associated with the 

STL file(s).  
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� Set WRITE_VTK_FILES = .TRUE. and set list of output variables VTK_VAR. 
 
MSH file: 

� Activate Cartesian grid capability: CARTESIAN_GRID = .TRUE.. 
� Define boundary in geometry.msh. Place geometry.msh in the run directory. 
� Set the keyword USE_MSH = .TRUE.. 
� Define a boundary condition type for each Boundary condition ID associated with the 

MSH boundary zones.  
� Set WRITE_VTK_FILES = .TRUE. and set list of output variables VTK_VAR. 

 
 
11. Trouble shooting 
 
It is recommended to go through the tutorials first to get familiar with the various options 
described in this document. To start a new simulation, copy an existing mfix.dat file and 
make incremental modifications. When using polygon data, copy poly.dat from one of the 
tutorials (e.g. naca4412) and modify the file. When using user-defined function, copy the 
subroutine eval_usr_fct.f from the tutorial wavy, and modify it. 
 
When several quadrics are combined, define and visualize individual quadrics before 
combining them, to make sure they are defined properly. 
 
Small cells can be removed (to some extent) by increasing the value of TOL_SNAP. 
 
The most common causes of pre-processing failure include (beside incorrect input data): 
 

• Unable to find an intersection point. Try to increase TOL_F or ITERMAX_INT. 
 

• Too many intersections found in one cell. This occurs when the geometry’s local 
radius of curvature is very small, or the combination of quadrics is not well detected. 
Refining the grid usually helps solving this problem. This can also occurs when 
polygon data defines sharp angles. Slightly moving one or more vertices usually 
helps solving this problem. 

 
• Piecewise limits are not well defined when using the piecewise grouping option. The 

piecewise limits must correspond to the plane where quadrics intersect. 
 
When the code seems to be unstable, even with an optimized grid, running the code in safe 
mode (CG_SAFE_MODE = 1) can help determine if the problem comes from the flow 
condition. In safe mode, the flow solution proceeds without using any modification 
introduced by the cut cell technique. The only modified variables are the cell volumes and 
face areas. If MFIX still fails in safe mode, it is likely due to improper initial conditions or flow 
properties.  
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