.. _ReferenceMPMD: Multiple Program Multiple Data (MPMD) ===================================== The AMReX-MPMD interface is used to send data to another program or application. In order to enable this feature, the executable has to be built with ``-DMFIX_MPMD = yes``. :ref:`Input parameters controlling the AMReX-MPMD interface<InputsMPMD>` are defined in the User Guide run-time inputs section. Sample Python Program ---------------------- A sample python script that gathers and plots velocity statistics for the case of fluid flow through a pipe can be found in ``tutorials/mpmd/main.py``. The script can be divided into the following sections: Initialize ~~~~~~~~~~ * Initialize AMReX::MPMD and leverage MPI from ``mpi4py`` to perform communication split. .. code-block:: python amr.MPMD_Initialize_without_split([]) app_comm = MPI.COMM_WORLD.Split(amr.MPMD_AppNum(), amr.MPMD_MyProc()) app_world_size = app_comm.Get_size() app_rank = app_comm.Get_rank() amr.initialize_when_MPMD([], app_comm) * Determine the C++ app's root process .. code-block:: python if app_rank == 0: if amr.MPMD_MyProc() == app_rank: # first program other_root = app_comm.Get_size() print(f'other_root = {other_root}') * Create an MPMD::Copier object that gets the BoxArray information from the C++ app. .. code-block:: python copr = amr.MPMD_Copier(True) Receive Once ~~~~~~~~~~~~ * Receive the ``Header`` information as a json string on the python root from the C++ root and broadcast to all python ranks. .. code-block:: python header_json = "" if app_rank == 0: buf = bytearray(10000) # Create a buffer to receive the message MPI.COMM_WORLD.Recv([buf, MPI.CHAR], source=other_root) header_json = buf.decode().strip('\x00') # Decode and strip null characters header_json = app_comm.bcast(header_json, root=0) * Receive all the static ``Multifab`` data. .. code-block:: python my_static_data = MyData() for mf in header["data"]["static_mfs"]: my_static_data.define_mf(copr, mf["n"], mf["c"]) my_static_data.copy_mf(copr, mf["n"], mf["c"]) Receive Until *End* ~~~~~~~~~~~~~~~~~~~ * Receive ``End Flag`` on the python root from the C++ root and broadcast to all python ranks. If the flag is ``1``, break out of the loop. .. code-block:: python if app_rank == 0: int_flags = np.empty(len(header["data"]["int_flags_root"]), dtype='i') MPI.COMM_WORLD.Recv(int_flags, source=other_root) print(f"app_rank = {app_rank}, int_flags = {int_flags})") end = int_flags[0] end = app_comm.bcast(end, root=0) if end == 1: break * Receive ``Reals`` on the python root from the C++ root and broadcast to all python ranks. Save ``time`` to an array on the python root for plotting. .. code-block:: python if app_rank == 0: reals = np.empty(len(header["data"]["reals_root"]), dtype=np.double) MPI.COMM_WORLD.Recv(reals, source=other_root) print(f"app_rank = {app_rank}, reals = {reals})") time = reals[0] time_arr.append(time) time = app_comm.bcast(time, root=0) * Receive ``MultiFab`` data and store to arrays on the python root as necessary. In this example, the ``centerline`` u-velocity and the data needed to compute the mean and variance of u-velocity on the central ``y-plane`` are stored as an array in time. .. code-block:: python for mf in header["data"]["mfs"]: my_data.copy_mf(copr, mf["n"], mf["c"]) for mfi in my_data.mfs["vel_g"]: bx = mfi.validbox() y_intrst_exists = True z_intrst_exists = True if (j_intrst < bx.small_end[1] or j_intrst > bx.big_end[1]): y_intrst_exists = False if (k_intrst < bx.small_end[2] or k_intrst > bx.big_end[2]): z_intrst_exists = False if (not((y_intrst_exists or z_intrst_exists))): continue ###.............. if ( y_intrst_exists and z_intrst_exists ): np_array = np.array(vel_g_array[0,k_intrst,j_intrst,:]) u_centerline[bx.small_end[0]:bx.small_end[0] + np_array.size] = np_array if (y_intrst_exists): ###.............. y_pl_npts += np.sum(y_volfrac_array) y_pl_u_mn += np.sum(y_vel_g_array[0,:,:]) y_pl_u2_mn += np.sum(y_vel_g_array[0,:,:]*y_vel_g_array[0,:,:]) # Reduce from all python ranks y_pl_npts = app_comm.reduce(y_pl_npts,op=MPI.SUM,root=0) y_pl_u_mn = app_comm.reduce(y_pl_u_mn,op=MPI.SUM,root=0) y_pl_u2_mn = app_comm.reduce(y_pl_u2_mn,op=MPI.SUM,root=0) u_centerline = app_comm.reduce(u_centerline,op=MPI.SUM,root=0) #................... if app_rank == 0: y_pl_u_mn /= y_pl_npts y_pl_u2_mn /= y_pl_npts y_pl_u_mn_arr.append(y_pl_u_mn) y_pl_u_var_arr.append(y_pl_u2_mn-y_pl_u_mn*y_pl_u_mn) u_centerline_arr.append(u_centerline) app_comm.barrier() Plot ~~~~ * Plot figures on the python root using the collected arrays. .. code-block:: python if app_rank == 0: fig, (ax1, ax2, ax3) = plt.subplots(1,3) ax1.plot(time_arr, y_pl_u_mn_arr) ax1.set_title('mean') ax1.set_xlabel('Time (s)') ax2.plot(time_arr, y_pl_u_var_arr) ax2.set_title('var') ax2.set_xlabel('Time (s)') ax3.plot(range(xlen), np.array(u_centerline_arr).mean(axis=0)) ax3.set_title('centerline U (m/s)') ax3.set_xlabel('i') plt.savefig('my_plot.png') Finalize ~~~~~~~~ * Finalize AMReX and AMReX::MPMD. .. code-block:: python amr.finalize() amr.MPMD_Finalize()