MFiX Tutorial
Rotating drum with varying rotational speed

Sathish Sanjeevi and Jeff Dietiker

National Energy Technology Laboratory, USA

November, 2019

1 Introduction

In this tutorial, a rotating drum is simulated with varying rotational speed using user-defined
functions (UDFs). The objectives of this tutorial are:

e Show how to apply a tangential velocity on a STL object to represent moving walls. It should
be noted that the STL faces do not move in our simulations but rather the movement is
mimicked by adding tangential velocity on the stationary STL faces.

e Use keyframe data to specify transient rotational velocity for the drum.

2 Keyframes

This section provides a general description of keyframe data usage. Keyframes are tables with nu-
merical data to be used in simulations, and are currently implemented through UDFs. Such tables
are useful to perform dynamic simulations, for example, a time dependent inflow boundary. Each
keyframe is titled in the form data_kf_<ID>.txt. Here, ID is a four-padded integer representing
the keyframe ID, which will typically be associated with the same boundary condition ID (BCIDs),
although ID and BCID are independent from each other (it is the user’s responsibility to decide
how to use the keyframe data). The user-defined keyword read_kf (ID) allows reading a given
keyframe file. Each keyframe file has the following structure:

nrows, nvar
interpolation_type
! header
x_1 y_{11} ... y_{in}
xm y_{m1} ... y_{mn}

Here, nrows (=m) is the number of data rows in the keyframe file, and nvar (=n) is the number of

dependent variables. The first column defines a list of increasing values for the independent variable
x. In this tutorial, we are using keyframes to define transient data, so x correspond to time. Other
columns define values of the dependent variables y, for example velocity at corresponding time.
The data in all columns are floating point (real) scalars. For vector quantities, users need to specify
the 3 components of the vector using 3 columns (for example, if two scalars and one vector are
defined, then n=5). interpolation_type defines the available interpolation types, namely linear
or step. Once the keyframe data is defined, users can evaluate y at any x-value between the data
points. Two interpolation schemes are available: 1) Linear interpolation, where y is assumed to vary
linearly between two consecutive points (interval [z;; 2;41]) , and 2) Step function which returns the
constant y-value y; when the x value lies within the interval [z;; ;11]. The actual keyframe reading
(read_keyframe_data) and interpolation (interpolate_keyframe_data) functions are located in
usr_mod.f file.

2.1 A keyframe example

The following example explains the actual value of a variable var1 depending on the interpolation_type.
Consider the following keyframe file:

6,1

<interpolation_type>

Ix varl
0.0 0.5
2.0 0.0
4.0 2.5
6.0 6.0
8.0 4.0
10.0 3.0

67 =< linear
step
5_
44 S
— \,
@ 31 p ¢
=
2,
l_
0 \
0 2 4 6 8 10

Figure 1: Profiles of varl when interpolation_type = linear or step.

The actual profile of var1 is illustrated in figure[I]depending on interpolation_type = linear
or step. Symbols represent the keyframe data, lines represent the interpolated data. Values of vari
are kept constant outside the x-range. For example, consider the following keyframe file:

3,1
<interpolation_type>
Ix varl
4.0 2.5
6.0 6.0
8.0 4.0
61 =< linear
step
5_
4, _________
—
&3y
2_
1_
0,
0 2 a 6 8 10

Figure 2: Value of varl outside the keyframe x-range is indicated with dashed line. Behaviour
outside the specified keyframe x-range is independent of interpolation_type.

The full profile of varil in actual simulations is shown in figure 2l As seen, the first and last
values of the keyframe values are extended outside the x-range (dashed line), both for linear and
step interpolation schemes.

3 Problem setup

This tutorial performs a Discrete Element Method (DEM) simulation of particles in a rotating drum
enclosed with side walls. This is a pure granular flow (the gas phase is ignored). In this testcase,
the drum’s rotational velocity is ramped from zero to 20 rad/s and subsequently to -20 rad/s about
z-axis over time. The rotating drum initialized with particles is shown in figure 3]

The rotating drum has BCID=1 and accordingly reads data_kf_0001.txt which contains the
time and the corresponding rotational velocity shown in table |1} For each simulation timestep, the
velocities of the conveyor belts are linearly interpolated between keyframe values. The correspond-
ing interpolation of the keyframe data is shown in figure [We briefly explain the functions of
different files available for this tutorial:

Figure 3: The rotating drum initialized with particles.

4,1

linear

ltime varl
0.0 0.0
0.5 20.0
1.0 0.0
1.5 -20.0

Table 1: Contents of data_kf_0001.txt.

usr_mod.f - contains all the necessary functions for reading and interpolating keyframe data.
Also contains the functions for returning appropriate interpolated data.

usr0.f - calls the function to read keyframe files and allocates required variables.

usrl_des.f - utilizes the interpolated data (rotational velocity magnitude) and converts it
to rotational velocity vector.

calc_collision_wall_mod.f - assigns the tangential relative velocity for the wall (drum)
boundaries. It should be noted that the drum (made with STL faces) does not move in our
simulation. Rather, the drum rotation is mimicked by adding relative tangential velocity on
the still drum.

des_time_march.f - the call for usrl_des is moved earlier (compare with original file:
mfix/model/des/des_time_march.f). This enables proper use of interpolated data for a
given time.

usr_init_namelist.f and usrnlst.inc - Both files let the solver and GUI known about the
new keyword read_kf which is an addition in this tutorial. This is a Boolean flag used in the
UDFs to read a given keyframe file.

—10

Rotational velocity (rad/s)
o

—151

=204 Mmmemm——————

0.0 0.5 1.0 15 2.0
time (s)

Figure 4: Rotational velocity of the drum. Markers indicate keyframe data (data_kf_0001.txt),
solid lines indicate the linear interpolation, and dashed line indicate the extrapolation of last
keyframe data within the simulation.

4 Results

[
Y

(a) t=0s (b) t =0.5s

y

o
[
[

() t=1s (d) t =1.5s

[

(e) t =2s

Figure 5: Snapshot of the rotating drum at different time intervals. In this case, the drum starts
from from rest, rotates in one direction and then changes direction after a specific time based on
the user specified keyframe data.

The dynamics of particles inside the rotating drum with varying rotational speed are shown in
figure The particles are initialized in a matrix form and then released to settle under gravity.
Simultaneously, the drum rotates from rest with increasing speed until ¢ = 0.5 s and then the
rotational velocity decreases until ¢ = 1.5 s. It should be noted that after ¢ = 1 s, the change in
drum rotation direction can be observed.

5 Notes

e Since this tutorial involves UDFs, the custom solver must be built prior to running the simu-
lation.

e Once the custom solver is built, users can modify and save the keyframe files to adjust the
belt velocities. There is no need to build the custom solver when modifying keyframe data.

e The user-defined keyword read_kf is accessible through the GUI Advanced pane. To com-
pletely turn off the keyframe data for the drum, set read_kf (1)=False. This will set the
default zero rotational velocity to the drum.

	Introduction
	Keyframes
	A keyframe example

	Problem setup
	Results
	Notes

