.. _appx-smathry-rsmerr: RSM Error Metrics ----------------- There are five error metrics available to assess the quality of a surrogate model in the :ref:`sma-rsm-model` tab of the :ref:`sma-rsm` node. The commonly used metrics are defined below where :math:`r_i` is taken to be the response of the actual (full) model and :math:`f_i` is the response surface model evaluated at the :math:`i^\textrm{th}` (input) sample index ranging. In the following definitions, :math:`i` is simply taken to range from 1 to :math:`n`, however it should be noted that this range may be applied to either the complete dataset or the holdout data if cross-validation is being considered, see :ref:`sma-rsm-model` for more details. .. _appx-smathry-rsmerr-mse: Mean Squared Error ++++++++++++++++++ .. math:: \textrm{MSE} = \frac{{1}}{{n}} {\sum_{i=1}^n \left(r_i - f_i \right)^2 } .. _appx-smathry-rsmerr-sse: Sum of Squared Error ++++++++++++++++++++ .. math:: \textrm{SSE} = {\sum_{i=1}^n \left(r_i - f_i \right)^2 } .. _appx-smathry-rsmerr-rsq: R squared +++++++++ .. math:: \textrm{R}^2 = 1 - \frac{{\sum_{i=1}^n \left( r_i - f_i \right)^2}} {{\sum_{i=1}^n \left( r_i - \bar{r} \right)^2}} where .. math:: \bar{r} = \frac{{1}}{{n}} {\sum_{i=1}^n r_i } is the mean response. .. _appx-smathry-rsmerr-linf: L_infinity norm +++++++++++++++ .. math:: \textrm{L}_\infty = \frac{{ \max \left| r_i - f_i \right| }}{{ \max \left| r_i \right| }} .. _appx-smathry-rsmerr-l1: L_1 norm ++++++++ .. math:: \textrm{L}_1 = \frac{{ \sum_{i=1}^n \left| r_i - f_i \right| }} {{ \sum_{i=1}^n \left| r_i \right| }} .. _appx-smathry-rsmerr-l2: L_2 norm ++++++++ .. math:: \textrm{L}_2 = \frac{{ \sum_{i=1}^n \left( r_i - f_i \right)^2 }} {{ \sum_{i=1}^n r_i^2 }}