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1. Introduction 
 
A new capability, called Cartesian grid cut-cell technique has been implemented in MFIX, 
which allows the definition of curved or sloping boundaries, instead of the usual stair-step 
representation. Computational cells are truncated at the wall to conform to the shape of the 
boundaries. When a face is truncated, the velocity node is moved to the center of the face. 
The cell truncation introduces an additional face, called the cut face. Face surface areas 
and cell volumes are updated based on the shape of the cut cell. The contribution of the 
new cut face is added to the computation. The data can be saved in a vtk file for post-
processing purpose.  
 
The implementation of the Cartesian grid cut-cell technique is based on the work of 
Kirkpatrick and Armfield, and details about the cut cell treatment can be found in Reference 
[1]. Modifications have been implemented for the Eulerian/Eulerian approach, i.e., it is not 
available for Discrete Element Model. The cut-cell technique is a complement to existing 
boundary conditions. The usual specification of boundary conditions is still available. 
 
This document describes how to use the Cartesian grid cut-cell capability. The new 
keywords introduced in mfix.dat are described and some examples illustrate their utilization. 
A series of tutorial files are provided with the MFIX distribution to help users get familiar with 
the new technique. 
 
It is assumed that the reader is familiar with the general operation of MFIX. This document 
only describes the utilization of the Cartesian cut-cell technique. Details about MFIX can be 
found in Refs. [2-4]. 
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2. Geometry definition 
 
The Cartesian grid cut cell capability is activated by setting the keyword CARTESIAN_GRID 
= .TRUE. . Once this option is activated, the boundary geometry must be specified using 
one of the following methods: 
 

a) Quadric surface(s): The boundaries are defined using one or several quadric 
surfaces that can be translated, rotated, and combined. This option is activated by 
specifying a positive number of quadric surfaces  (N_QUADRIC  ≥ 1), and is valid for 
two and three-dimensional geometries. 

b) Polygons: The boundaries are defined using one or several polygons. The geometry 
information is read from the data file poly.dat, which must be generated prior to 
running MFIX, and must be located in the run directory. This option is activated by 
setting the keyword  USE_POLYGON = .TRUE.,  and is limited to two-dimensional 
geometry only. 

c) User-defined function: The boundaries are specified using a user-defined function. 
The geometry is defined in the subroutine eval_usr_fct.f prior to running MFIX. 
The code must be compiled every time this subroutine is modified. This option is 
activated by setting N_USR_DEF = 1,  and is valid for two and three-dimensional 
geometries. 

d) STL file: The boundaries geometry is read directly from an ASCII STL file, named 
geometry.stl.  The STL file describes the surface of a three-dimensional 
geometry, and is typically generated by a CAD software. The file geometry.slt 
must be located in the run directory. This option is activated by setting the keyword 
USE_STL = .TRUE., and is limited to three-dimensional geometry only. 

e) MSH file: The boundaries are read from a Gambit .msh file, named geometry.slt, 
which must be located in the run directory. This option is activated by setting the 
keyword USE_MSH = .TRUE., and is limited to three-dimensional geometry only. 
 

Note: In the current version, only one method can be used at a time. 
 

 
2.1. Quadric surface 

 
2.1.1. Normal form 

 
Quadric surface parameters are defined as one-dimensional arrays, which index 
corresponds to the quadric being defined. In this document, the index is referred to as the 
quadric ID  (QID). Several quadrics can be defined. The total number of active quadrics is 
defined by the keyword N_QUADRIC.  
 
Quadric surfaces are written into one of their normal form: 
 

  ݂ሺݔ, ,ݕ ሻݖ ൌ ଶݔ௫ߣ ൅ ଶݕ௬ߣ ൅ ଶݖ௭ߣ ൅ ݀ ൌ 0 (1)
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Where ߣ௫, ,௬ߣ ,ݔ௭ ܽ݊݀ ݀ are real scalars. The boundary is located where the function ݂ሺߣ ,ݕ  ሻݖ
is zero (within some tolerance defined by the parameter TOL_F). Regions where ݂ሺݔ, ,ݕ  ሻ isݖ
positive are excluded from the computational domain (blocked cells), and regions where 
 ݂ ሺݔ, ,ݕ  ሻݖ is negative are part of the computational domain (fluid cells). This option is 
activated by the keyword QUADRIC_FORM(QID) = ‘NORMAL’, and is the default value. By 
default, all quadrics are centered about the origin (x = 0, y = 0, z = 0), and any quadric can 
be translated and rotated (see section 2.1.3). 
 
Examples:  
 
The following two examples illustrate the description of simple quadric surfaces (cylinder 
and cone). The idea is to express the shape’s surface in the form of Equation (1) such that 
the quadric’s parameters can be identified. The same procedure can be applied to other 
quadric surfaces, such as ellipsoids, hyperboloids, elliptic cylinders, etc. Note that there is 
an alternate way of defining planes, cylinders and cones, using pre-defined input (see 
section 2.1.2). 
 
Circular cylinder 
To model the flow over a circular cylinder of radius 2 in the (xy) plane (Figure 1a), the 
equation defining the boundary must be rearranged to fit the form of Equation (1), i.e., 
ଶݔ ൅ ଶݕ ൌ 4 becomes    ݂ሺݔ, ,ݕ ሻݖ ൌ െݔଶ െ ଶݕ ൅ 4 ൌ 0, since we want values of ݂ሺݔ, ,ݕ  ሻ to beݖ
negative outside the cylinder. Therefore, the following parameters are specified as:  
 

  λ୶ ൌ െ1.0   ; λ୷ ൌ െ1.0 ; λ୸ ൌ 0.0 ; d ൌ 4.0 (2)
 
In mfix.dat, this will be written as: 
 
CARTESIAN_GRID = .TRUE. 
N_QUADRIC = 1 
lambda_x(1) = -1.0 
lambda_y(1) = -1.0 
lambda_z(1) =  0.0 
dquadric(1) =  4.0 
 
Note that it would be equivalent to use: 
 

  λ୶ ൌ െ0.25   ; λ୷ ൌ െ0.25 ; λ୸ ൌ 0.0 ; d ൌ 1.0  (3)

 
i.e., multiplying all coefficients by the same positive constant does not have any effect. 
However, changing the sign of all coefficients reverses blocked and fluid cells. Using the 
following parameters  
 

    λ୶ ൌ 1.0   ;  λ୷ ൌ 1.0 ; λ୸ ൌ 0.0 ; d ൌ െ4.0 (4)

 
will mesh the interior of the cylinder (Figure 1b). 
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    ( a ) External flow     ( b ) Internal flow 

Figure 1. Meshing the exterior or interior region of a cylinder. 
 
Cone 
Assume the cone’s axis of revolution is aligned with the y-axis, it has a cylindrical cross 
section along any y-plane, and the cone’s half-angle is . Since the radius varies linearly 

with height, we can write  ݎ ൌ ඥ2ݔ ൅ 2ݖ ൌ  which can be re-arranged into ,ߚ݊ܽݐݕ
 

 
ଶݔ

ሺߚ݊ܽݐሻଶ െ ଶݕ ൅
ଶݖ

ሺߚ݊ܽݐሻଶ ൌ 0  (5)

i.e., 

  λ୶ ൌ
1

ሺtanβሻଶ    ;  λ୷ ൌ െ1.0 ; λ୸ ൌ
1

ሺtanβሻଶ ; ݀ ൌ 0.0  (6)

 
Notes:  

1) The cone is by default centered around the origin. It will typically need to be 
translated, and probably combined with other quadrics (for example to model a 
spouted bed). 

2) In 2D, we could leave λ୸ ൌ 0 since there is no z-dependence. 
 

For example, to define a cone with half-angle of  =30 degrees, the following input can be 
entered in mfix.dat (note that tanሺ30 ݀݁݃ሻ ൌ  1 √3⁄  ): 
 
CARTESIAN_GRID = .TRUE. 
 
N_QUADRIC = 1 

 
  lambda_x(1) =  3.0D0 
  lambda_y(1) = -1.0D0 
  lambda_z(1) =  3.0D0 
  dquadric(1) =  0.0D0 
 
  t_x(1) = 2.5        ! Translation in x direction 
  t_y(1) = 0.0        ! Translation in y direction 
  t_z(1) = 2.5        ! Translation in z direction 

 

݂ሺݔ, ,ݕ ሻݖ ൑ 0 

݂ሺݔ, ,ݕ ሻݖ ൌ 0 

݂ሺݔ, ,ݕ ሻݖ ൒ 0 

 

 

௫ߣ ൌ 1.0
௬ߣ ൌ 1.0 
௭ߣ ൌ 0.0 
݀ ൌ െ4.0 

௫ߣ ൌ െ1.0 
௬ߣ ൌ െ1.0 
௭ߣ ൌ 0.0 
݀ ൌ 4.0 



r 

x

y 

z 
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2.1.2. Pre-defined quadrics 

 
It is anticipated that a few common quadrics, such as planes, cylinders, and cones will be 
used on a regular basis. Their definition is facilitated through user-friendly input that 
bypasses the specification of quadric parameters. The type of pre-defined quadric is set by 
the keyword QUADRIC_FORM. Current pre-defined quadrics include planes, cylinders and 
cones. 
 
Plane 
Single planes are defined by specifying the plane normal vector, and a point belonging to 
the plane. This option is activated by the keyword QUADRIC_FORM(QID) = ‘PLANE’. The 
following notation is used:  
 
ሬ݊Ԧ ൌ ൫݊௫, ݊௬, ݊௭൯ is the normal vector to the plane, pointing away from fluid cells. The normal 

vector does not need to be normalized.  ሬܲԦ ൌ ሺݔ, ,ݕ Ԧݐ .ሻ is any point in spaceݖ ൌ ൫ݐ௫, ,௬ݐ  ௭൯ is aݐ
point belonging to the plane. 
 
The equation of the plane is given by  ሬ݊Ԧ ڄ ൫ ሬܲԦ െ Ԧ൯ݐ ൌ 0 
or 

  ݂ሺݔ, ,ݕ ሻݖ ൌ ݊௫ݔ ൅ ݊௬ݕ ൅ ݊௭ݖ ൅ ݀ ൌ 0 (7a)
where 

  ݀ ൌ െ൫݊௫ݐ௫ ൅ ݊௬ݐ௬ ൅ ݊௭ݐ௭൯  (7b)

 

The user needs to specify values of  ሬ݊Ԧ ൌ ൫݊௫, ݊௬, ݊௭൯ and ݐԦ ൌ ൫ݐ௫, ,௬ݐ  ௭൯. The coefficient ݀ canݐ
be left undefined as it will be automatically computed based on Equation (7b). From a 
practical point of view, the plane’s orientation is defined by the vector  ሬ݊Ԧ , and translated by 
the amount ݐԦ. 
 
Notes: 1) The vector  ሬ݊Ԧ points away from the fluid cells. 
 2) Planes are useful to clip other quadrics or groups of quadrics (see section 2.1.9). 
 
Example:  
The following parameters define a plane perpendicular to the (xy) plane, passing through 
(x=3, y=2), and rotated 20 degrees with respect to the y-axis (Figure 2): 
 
CARTESIAN_GRID = .TRUE. 
N_QUADRIC = 1 
QUADRIC_FORM(1) = 'PLANE' 
n_x(1) =   0.940  
n_y(1) =   0.342   
t_x(1) =   3.0   
t_y(1) =   2.0   
 

 
 
 

Figure 2. Example of plane definition.  

ሬ݊Ԧ ൌ ሺ0.940, 0.342ሻ

ሺ3, 2ሻ

x 

y 
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Cylinder 
A circular cylinder is defined by specifying its radius, initial orientation, and whether we want 
to model internal or external flow. The keyword QUADRIC_FORM(QID) contains information 
regarding the initial orientation and type of flow. For example, setting 
QUADRIC_FORM(QID) = ’Y_CYL_INT’  will define a cylinder which axis of revolution is 
along the y-direction, for internal flow computation. Using  QUADRIC_FORM(QID) = 
’Z_CYL_EXT’ will define a cylinder which axis of revolution is along the z-direction, for 
external flow computation. The cylinder radius is defined by setting a positive value to 
RADIUS(QID). 
For example, to model the flow over a cylinder of radius 2, in the (xy) plane (the axis of 
revolution points in the z-direction), the following parameters are defined 
 
CARTESIAN_GRID = .TRUE. 
N_QUADRIC = 1 
QUADRIC_FORM(1) = ’Z_CYL_EXT’ 
RADIUS(1) = 2.0 
 
 
The initial orientation is limited to x, y, or z axis, but the cylinder can be rotated by any 
arbitrary angle, and translated in any direction (see section 2.1.3). 
 
Cone 
A cone is defined by setting its half-angle and initial orientation. A value of 
QUADRIC_FORM(QID) = ’Y_CONE’ will define a cone which axis of revolution is aligned 
with the y-axis. The keyword HALF_ANGLE(QID) defined the cone’s half-angle (in degrees). 
 
For example, to define a cone in the y-direction with half-angle of 30 degrees: 
 
CARTESIAN_GRID = .TRUE. 
N_QUADRIC = 1 
QUADRIC_FORM(1) = ’Y_CONE’ 
HALF_ANGLE(1) = 30.0 

 
By default, the cone’s apex is located at the origin. The cone can be translated and rotated 
as any other quadric (see section 2.1.3). Currently, only internal flows can be modeled with 
the pre-defined cone.  
 
Table 1 summarizes current available pre-defined quadrics. Other pre-defined quadrics can 
be included by adding them to the list in the SELECT CASE(TRIM(QUADRIC_FORM(Q))) 
construct in subroutine check_data_cartesian.f. The code must be recompiled for 
the modification to take effect. 
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Pre-defined 

quadric Snapshot Value of 
QUADRIC_FORM(QID)  Other input required 

Plane 

 

‘PLANE’ 
n_x(QID) 
n_y(QID) 
n_z(QID) 

Cylinder aligned 
with x‐axis 
Internal flow   

‘X_CYL_INT’ RADIUS(QID) 

Cylinder aligned 
with x‐axis 

External flow 
 

‘X_CYL_EXT’ RADIUS(QID) 

Cylinder aligned 
with y‐axis 
Internal flow 

 

‘Y_CYL_INT’ RADIUS(QID) 

Cylinder aligned 
with y‐axis 

External flow   

‘Y_CYL_EXT’ RADIUS(QID) 

Cylinder aligned 
with z‐axis 
Internal flow 

 

‘Z_CYL_INT’ RADIUS(QID) 

Cylinder aligned 
with z‐axis 

External flow 
 

‘Z_CYL_EXT’ RADIUS(QID) 

Cone aligned 
with x‐axis 
Internal flow   

‘X_CONE’ HALF_ANGLE(QID) 

Cone aligned 
with y‐axis 
Internal flow 

 

‘Y_CONE’ HALF_ANGLE(QID) 

Cone aligned 
with z‐axis 
Internal flow   

‘Z_CONE’ HALF_ANGLE(QID) 

 
Table 1. Available pre-defined quadrics. 

   



Page 10 of 43    MFIX with Cartesian Grid Capability 

 

 
2.1.3. Translating and rotating quadrics 

 

Any quadric surface defined in its normal form can be translated by the amount    Ԧݐ ൌ
൫ݐ௫, ,௬ݐ ,௫ߠ ௭൯, and rotated around the x, y, and z axes, by the amountݐ ,௬ߠ  ௭ respectivelyߠ ݀݊ܽ
(angles expressed in degrees). The order of rotation is currently fixed and is performed first 
around the x-axis, then the y-axis, and finally the z-axis. 
 
Example: 
 
To translate quadric 1 by the amount   ݐԦ ൌ ሺ1,2ሻ, use: 
 
t_x(1)      =  1.0   
t_y(1)      =  2.0   
 
To rotate quadric 5 by ߠ௬ ൌ20 degrees about the y-axis, use: 
 
Theta_y(5) = 20.0 
 
 
Quadric surfaces defined in their degenerate forms (planes) are not allowed to be translated 
or rotated since all information required to define the plane is already contained in the 
normal vector ߣԦ and point ݐԦ belonging to the plane. 
 
 

2.1.4. Clipping limits 
 
By default, the function ݂ሺݔ, ,ݕ  ሻݖ is defined over the entire original computational domain, 
i.e., 0 ൑ ݔ ൑ ,ܪܶܩܰܧܮܺ 0 ൑ ݕ ൑ ,ܪܶܩܰܧܮܻ ܽ݊݀ 0 ൑ ݖ ൑  .ܪܶܩܰܧܮܼ It is possible to limit the 
definition of a given quadric surface to a rectangular region: 
݊݅݉ݔ_݌݈݅ܿ ൑ ݔ ൑ ,ݔܽ݉ݔ_݌݈݅ܿ ݊݅݉ݕ_݌݈݅ܿ ൑ ݕ ൑ ,ݔܽ݉ݕ_݌݈݅ܿ ݊݅݉ݖ_݌݈݅ܿ ݀݊ܽ ൑ ݖ ൑  .ݔܽ݉ݖ_݌݈݅ܿ
This has the effect of truncating the quadric. The region where the quadric is not defined 
(clipped region) can be considered either as part of the computational domain (fluid cells) or 
excluded from the computation (blocked cells). The flag FLUID_IN_CLIPPED_REGION  is 
used to switch from one option to another. The default value is .TRUE.. Figure 3 illustrates 
the use of clipping limits for an internal flow. The quadric is limited to the region 5.0 ൑ ݔ ൑
20.0.  When  FLUID_IN_CLIPPED_REGION = .TRUE.,  the cells that are outside the 
clipping limits are retained in the computational domain, whereas when 
FLUID_IN_CLIPPED_REGION = .FALSE., the cells that are outside the clipping limits are 
removed from the computational domain. 
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( a ) FLUID_IN_CLIPPED_REGION= .TRUE.       ( b ) FLUID_IN_CLIPPED_REGION = .FALSE. 

 
Figure 3. Illustration of clipping limits. 

 
Note: Quadrics can also be clipped along arbitrary planes using group relations (sections 
2.1.5 to 2.1.9). 
 

2.1.5. Combining quadrics 
 
All quadric surfaces must belong to a group. The number of group(s) must be defined 
(default value is  N_GROUP = 1),  and the size of each group determines the number of 
quadric in the groups (default value is GROUP_SIZE(1) =  1). For each group, a list of 
quadric IDs is specified to populate the groups, using the matrix GROUP_Q(I,J), which 
store the quadric ID of Jth quadric assigned to group I. 
 
Example: 
 

Assuming  N_QUADRIC = 5,  the following would form two groups: group 1 combining 
quadrics 1, 2 and 4, and group 2 combining quadrics 3 and 5. 
 
N_GROUP = 2 
GROUP_SIZE(1) = 3 
GROUP_Q(1,1)  = 1 
GROUP_Q(1,2)  = 2 
GROUP_Q(1,3)  = 4 
GROUP_RELATION(1) = 'OR' 
 
GROUP_SIZE(1) = 2 
GROUP_Q(2,1)  = 3 
GROUP_Q(2,2)  = 5 
GROUP_RELATION(2) = 'AND' 
 

clip_xmin = 5.0       clip_xmax = 20.0 

Region where 
the quadric is 

defined 

Clipped 
region 

Clipped 
region 

clip_xmin = 5.0       clip_xmax = 20.0 

Region where 
the quadric is 

defined 

Clipped 
region 

Clipped 
region 

Quadric  Quadric
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RELATION_WITH_PREVIOUS(2) = 'AND' 
 
Quadrics belonging to the same group can be combined by setting the keyword 
GROUP_RELATION for that group. Available options are ‘OR’, ‘AND’ (logical grouping), and 
‘PIECEWISE’. 
 
 

2.1.6. Logical grouping within a group 
 
Several quadrics belonging to a common group can be combined using the ‘OR’ or ‘AND’ 
attribute. In this case, the actual intersection points between quadrics do not need to be 
known in advance. For a given group GID,  if GROUP_RELATION(GID) = ‘OR’, a point 
belongs to the computational domain if at least one value of ݂ሺݔ, ,ݕ  ሻ  among all quadrics isݖ
negative. If  GROUP_RELATION(GID) = ‘AND’,  a point belongs to the computational 
domain if all values of ݂ሺݔ, ,ݕ  ሻ among all quadrics are negative. Each group is assigned anݖ
f-value, based on the group relation. With an ‘OR’ relation, the f-value is the minimum value 
of fሺx, y, zሻ for all quadrics in the group. With an ‘AND’ relation, the f-value is the maximum 
value of fሺx, y, zሻ for all quadrics in the group. 
 
In the previous example, quadrics in group 1 are combined with the  ‘OR’ relation, and 
quadrics in group 2 are combined with the ‘AND’ relation. 
 
Note that this attribute will behave differently for internal and external flows (Figure 4). 

 

Type of flow  Quadric signs OR AND 

Internal 

 

 
 

External 

 

 

 

 
 

Figure 4. Differences in the effect of GROUP_RELATION for internal and external flows.

−  +                  +  −

+    −              −     +
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2.1.7. Logical grouping among groups 

 
When quadrics are combined within a group, they generate more complex shapes than the 
individual quadrics. The resulting shapes from a group can be combined with the geometry 
obtained from all previous groups, using the keyword RELATION_WITH_PREVIOUS. 
Available options are ‘OR’, and ‘AND’, and they work similar to logical grouping of 
quadrics, except they apply to the entire groups, not individual quadric. A values of ‘OR’ 
means a point belongs to the computational domain if the f-value for the current group or the 
f-value for the combination of previous groups is negative. A value of ‘AND’ means a point 
belongs to the computational domain if the f-value for the current group and the f-value for 
the combination of previous groups is negative. 
 
 

2.1.8. Piecewise grouping 
 
When quadrics intersect along planes that are perpendicular to either the x, y, or z-axis, 
quadrics can be smoothly combined in a piecewise manner. This option is particularly suited 
to the combination of two or more surfaces of revolution that share the same axis of 
revolution, typically involving cylinders and cones. In this case, quadrics intersects along 
planes perpendicular to the axis of revolution, and can be calculated in advance. To group 
quadrics in a piecewise fashion, set the group relation to ‘PIECEWISE’, and define 
piecewise limits for each quadric, corresponding to the intersection planes between 
quadrics. For example, setting piece_ymax(1) = 10.0 and piece_ymin(2) = 10.0 
will switch from quadric 1 to 2 at along the y = 10.0 plane. Figure 5 illustrates the piecewise 
grouping of three quadrics. Figure 5 illustrates the piecewise grouping of three quadrics. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Example of a piecewise grouping.  

ݕ ൑ 10 

Quadric 1 : cylinder of radius 
2  

Quadric 3 : cylinder of radius 
8 
൒ ݕ  16 

Quadric 2 : cone joining quadrics 
1 and 3 
 10 ൑ ݕ ൑ 16 

N_QUADRIC = 3 
 
QUADRIC_FORM(1) = 'Y_CYL_INT'   'Y_CONE'    'Y_CYL_INT' 
RADIUS(1)       =     2.0          0.0          8.0 
HALF_ANGLE(2)   =                 45.0  
 
t_x(1)          =    10.0         10.0         10.0     
t_y(1)          =     0.0          8.0          0.0   
t_z(1)          =    10.0         10.0         10.0   
 
piece_ymin(2)   =                 10.0         16.0 
piece_ymax(1)   =    10.0         16.0              
 
N_GROUP = 1 
 
GROUP_SIZE(1) = 3 
GROUP_Q(1,1)  = 1 
GROUP_Q(1,2)  = 2 
GROUP_Q(1,3)  = 3 
 
GROUP_RELATION(1) = 'PIECEWISE' 

 

Axis of revolution along the y‐direction, 
passing through (x=10, z=10) 
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2.1.9. Example of quadric combination 

 
This example illustrates the use of several groups to combine quadrics. The corresponding 
mfix.dat is located in the tutorial folder spoutedbed2. The geometry consists of a spouted 
bed and a stabilizer. The entire geometry can be described with 7 quadrics, shown in Figure 
6a. Quadrics 1, 3, 4, and 5 represent pairs of parallel planes. Quadric 2 represents a pair of 
non-parallel planes. Quadrics 6 and 7 are two single planes (degenerate form). The 
geometry is built using the following steps: 
 
Step 1: Define all quadric parameters (see mfix.dat in tutorial folder). 
Step 2: Build group 1: Piecewise combination of quadric 4 and 5 (Figure 6b). This creates 
the stabilizer shape, running through the entire width of the spouted bed. 
 
  N_GROUP = 3 
 
  GROUP_SIZE(1) = 2 
  GROUP_Q(1,1) = 4 
  GROUP_Q(1,2) = 5 
  GROUP_RELATION(1) = 'PIECEWISE' 
 
Step 3: Build group 2: Combine quadrics 6 and 7 with ‘OR’ relation (Figure 6c). This 
creates a mask that will be used to trim group 1. 
 
  GROUP_SIZE(2) = 2             
  GROUP_Q(2,1) = 6 
  GROUP_Q(2,2) = 7 
  GROUP_RELATION(2) = 'OR' 
 
Step 4: Combine groups 1 and 2 with ‘OR’ relation (Figure 6d). The mask (group 2) is 
applied to group 1. 
 
  RELATION_WITH_PREVIOUS(2) = 'OR' 
 
Step 5: Build group 3: Piecewise combination of quadric 1, 2, and 3 (Figure 6e). This group 
represents the walls of the spouted bed. 
 
  GROUP_SIZE(3) = 3 
  GROUP_Q(3,1) = 1 
  GROUP_Q(3,2) = 2 
  GROUP_Q(3,3) = 3 
  GROUP_RELATION(3) = 'PIECEWISE' 
 
Step 6: Combine group 3 with groups 1 and 2, using ‘AND’ relation (Figure 6f) to create the 
final geometry. 
 
  RELATION_WITH_PREVIOUS(3) = 'AND' 
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   (a )           (b)           (c)           (d)                  (e)           (f) 
Individual        Group 1            Group 2              Groups              Group 3           Overall  
quadrics                                                               1 and 2                                     geometry 

 
Figure 6. Steps involved in geometry definition of a spouted bed with stabilizer. 

 
 

2.2. Polygons 
 
For two-dimensional geometries, the boundaries can be described by one or a series of 
polygons. The polygons can be concave or convex. An ordered list of coordinates for each 
vertex is given by the user. The number of vertices is the same as the number of edges, 
since the polygon is closed by connecting the last vertex to the first vertex. Open shapes 
can be created by locating vertices outside of the computational domain defined by 
(XLENGTH, YLENGTH). The option to use polygon(s) is activated by setting the keyword 
USE_POLYGON = .TRUE., and the data is read from the file poly.dat. The file structure is 
as follows: 
Line 1-13: file header. User input starts at line 14 
Line 14: Number of polygon(s) 
Line 15: Number of vertices defining first polygon, followed by the polygon sign (either 1.0 or 
-1.0). A value of 1.0 means the interior region is removed from computation (blocked cells) 
and a value of -1.0 means the interior region is part of the computational domain (fluid cells). 
Lines 16 and below: For each vertex, provide x and y coordinate, followed by the boundary 
condition ID of the corresponding edge. The same sequence (number of vertices, polygon 
sign, list of coordinates, and boundary condition ID) is repeated as needed for each 
additional polygon. 
 
 
 
 
 

 

 

 

   

   
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Example: 
 
An example is given below to define a square region using polygon data (Figure 7). Note 
that in this case, this could also be done using the regular boundary conditions in mfix.dat. 
The four vertices are located at the corners of the pressure cells. The four corresponding 
edges are assigned the same boundary condition ID (2). To define the boundary as a no-
slip wall, the boundary condition type BC_TYPE(2) = ‘CG_NSW’ must be defined in 
mfix.dat (see section 3). 
 

 
 

Figure 7. Example of polygon data entry. 
 
 

2.3. User-defined function 
 
To describe the geometry through a user-defined function, the subroutine 
eval_usr_fct.f must be modified, and MFIX must be compiled. The same convention 
applies, that is regions where ݂ሺݔ, ,ݕ  ሻ is positive are excluded from the computationalݖ
domain (blocked cells), and regions where ݂ሺݔ, ,ݕ  ሻ is negative are part of theݖ
computational domain (fluid cells). The boundaries are located where ݂ሺݔ, ,ݕ  ሻ is zeroݖ
(within the tolerance TOL_F). This option is activated by setting N_USR_DEF = 1. 
 
The subroutine must assign a value to the following variables: 
 
f_usr : value of ݂ሺݔ, ,ݕ  ሻ (Real), andݖ
 
BCID : boundary condition ID of the cut cell associated with the boundary (Integer) 
 
The subroutine eval_usr_fct.f is located in mfix/model/cartesian_grid folder.  
Before modifying the file, it is recommended to create the sub-folder cartesian_grid in 
the current run directory, and copy the file eval_usr_fct.f into this directory. Once the 
file is modified, MFIX must be compiled for the modifications to take effect. The makefile will 
look into the current run directory structure and use the file located in the cartesian_grid 
folder. For example, if the current run directory is wavy, the subroutine eval_usr_fct.f 
should be placed in wavy/cartesian_grid. 

1  2

3 4 

 



 

 

Number of 
polygons 

Number of 
vertices 

Polygon sign 
(Block interior 
cells) 

(x,y) of vertex 1

(x,y) of vertex 4

BC ID of edge 

BC ID of edge 

1 
4        1.0 
10.0    10.0     2 
15.0    10.0     2 
15.0     5.0     2 
10.0     5.0     2 

Line 14 of 
poly.dat 

(10,10)  (15,10)

(15,5)(10,5) 
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2.4. STL file 
 
Three-dimensional geometry can be described by an STL file, which is typically generated 
from a CAD software. The STL file must be stored in ASCII format and named 
geometry.stl. The entire geometry is assigned the same boundary condition ID and is 
set by defining the flag STL_BC_ID. The geometry can be scaled by the factor STL_SCALE 
and translated in any direction.  
 
 

2.5. MSH file 
 
If a three-dimensional .msh file generated by Gambit is available, the boundaries geometry 
can be imported directly. The .msh file must be stored in ASCII format and named 
geometry.msh. Boundary zones are read from the .msh file, and the corresponding 
boundary condition type must be assigned in mfix.dat. The geometry can be scaled by the 
factor MSH_SCALE and translated in any direction. 
 
3. Boundary condition specification 
 
Each cut cell is assigned a boundary condition identification number (BC_ID). For a given 
quadric surface, the BC_ID is stored in the variable BC_ID_Q. For polygon data, the BC_ID 
is defined for each polygon edge, in the file poly.dat (see section 2.2). For a user-defined 
function, the BC_ID must be defined in the file eval_usr_fct.f (see section 2.3). For a 
geometry defined by an STL file, the flag STL_BC_ID is defined. 
 
The BC_ID is linked to a type of boundary condition, similar to what is done for standard 
cells. Current available boundary conditions types for cut cells include: 
 
CG_NSW:  No-slip wall  
CG_FSW: Free-slip wall 
CG_PSW: Partial-slip wall 
CG_MI: Mass Inlet 
CG_PO: Pressure Outlet 
 
In the example below, BC_ID 12 is assigned to quadric 1. Any cut cell related to Quadric 1, 
will be treated as a no-slip wall. 
 
BC_ID_Q(1)  = 12 
BC_TYPE(12) = 'CG_NSW' 
 
 
Note: It is possible to define different wall boundary conditions for the gas and solid phases. 
The input is similar to the partial-slip wall for regular cells. Specifying a boundary conditions 
type of ‘CG_PSW’ requires the input of the coefficient hw for gas and solid phase. For free-
slip, set hw=0, and for no-slip, leave hw undefined (hw = ).  
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For example, BC_ID 10, linked to quadric ID 1 will specify no-slip wall for the gas phase and 
free-slip wall for the solids phase: 
 
BC_ID_Q(1)  = 10 
BC_TYPE(10) = 'CG_PSW' 
 
BC_HW_s(10,1) = 0.0 
 
Note: The BC_ID assigned to cut cells can be visualized from the vtk file, by including the 
flag 101 into the list of vtk variables VTK_VAR (see section 6). 
 
 
4. Removal of small pressure cells  

 
The intersection of quadrics, polygons, or user-defined function with the background grid is 
likely to generate small cells, which can increase the stiffness of the system of equations. 
Small cells can be removed from the computational domain by slightly altering the 
geometry. When the boundary intersects the background grid near a corner point, the 
intersection point is moved to the corresponding corner point (i.e., the intersection point is 
“snapped” onto the grid). The tolerance parameter TOL_SNAP defines the sensitivity of the 
snapping procedure. It is expressed in term of a fraction of the current cell edge along which 
the intersection point is located. For example, specifying TOL_SNAP = 0.01 will snap an 
intersection points to a corner point if they are separated by less than 1 % of the cell edge. A 
value of TOL_SNAP = 0.0 turns off this option (default value). Figure 8 illustrates this 
procedure with an exaggerated value of TOL_SNAP = 0.10 for clarity. Typical values are 
in the range 0.01 to 0.05. For stretched grid, providing different values for TOL_SNAP(1), 
TOL_SNAP(2) and TOL_SNAP(3) will apply different tolerances along the x, y, and z-axis, 
respectively. Setting a single value to TOL_SNAP will apply the same tolerance in all 
directions. 

 
 

( a ) TOL_SNAP = 0.00 ( b ) TOL_SNAP = 0.10 
 

Figure 8. Effect of TOL_SNAP on small cells. 

Small cells 

The boundary now intersects 
the grid at the corner points, 
which removes small 
pressure cells 
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The definition of a small cell is arbitrary. One way to characterize a cell as small is to 
compare the volume of the cut cell with the volume of the original (uncut) cell. If the ratio of 
the volume of a cut cell over the volume of the original cell is less than the tolerance 
TOL_SMALL_CELL, a cut cell is flagged as small. A value of TOL_SMALL_CELL = 0.01 
would flag cell IJK as small if  VOL(IJK) < 0.01 DX(I)*DY(J)*DZ(K), where 
VOL(IJK) is the volume of the cut cell, and DX(I), DX(J), DZ(K) are the original cell 
dimensions. Currently, small pressure cell remaining after the snapping procedure are 
removed from computation. 
 
 
5. Utilities 
 

5.1. Grid spacing 
 
To facilitate the specification of non uniform grid spacing, a simple grading option is 
available. The following description applies to the definition of grid spacing DX in the x-
direction. Similar input for specifying DY and DZ can be applied in the y and z directions as 
well. 
 
First, the domain length is split into several segments by specifying a list of control points. 
Since the origin is always located at x=0, the first control point that needs to be specified 
locates the end point of the first segment. The last control point must match the value of 
XLENGTH. Therefore, the number of control points is the same as the number of segments. 
Along each segment, the number of cells is specified by NCX. To control the grid spacing 
within each segment, one of the following attributes must be specified: 
 

 ERX: Expansion ratio (positive real number). This is the ratio of the last to first grid 

spacing  
Lୟୱ୲ DX

F୧୰ୱ୲ DX
. A value of ERX larger than one tends to stretch the grid as x 

increases, while a value smaller than one tends to compress the grid as x increases. 
A value of one will keep the spacing uniform in that segment.  

 

 First_DX : Grid spacing of the first cell in a given segment. A positive value assigns 
the value, a negative value copies the grid spacing from the previous segment (if it 
was defined separately). The size of the other cells is automatically adjusted based 
on the segment length and number of cells. 

 

 Last_DX : Grid spacing of the last cell in a given segment. A positive value assigns 
the value, a negative value copies the grid spacing from the next segment (if it was 
defined separately). The size of the other cells is automatically adjusted based on 
the segment length and number of cells. 

 
For example, the following input: 
 
  CPX  = 1.0   2.0 
  NCX  = 10    10 
  ERX  = 0.5   1.0 
 



Page 20 of 43    MFIX with Cartesian Grid Capability 

 

 
Defines two segments, [0.0 ; 1.0], and [1.0 ; 2.0], with 10 cells each, and an expansion ratio 
of 0.5 in the first segment, and 2.0 in the second segment. In the first segment, the last cell 
is half the size of the first cell, while in the second segment, the last cell is twice the size of 
the first cell. 
 

 
 
 
 
Specifying grid spacing independently does not guaranty a smooth transition from one 
segment to another. To avoid discontinuities in grid spacing, it is recommended to use a 
negative input for First_DX or Last_DX, which will force the grid spacing of one segment 
to match the grid spacing of the adjacent segment. For example, the following input: 
 
  CPX         =  2.0   3.0   6.0 
  NCX         =  5     5     10 
  ERX(2)      =        1.0 
  LAST_DX(1)  = -1.0 
  FIRST_DX(3) =             -1.0 
 
Specifies a uniform grid spacing in the second segment [2.0 ; 3.0]. The last value of DX in 
the first segment matches the first DX in the second segment. The first DX in the third 
segment matches the last DX in the second segment. 
 

 
 
 
 
The cylinder tutorial illustrates the use of control points to define non-uniform grid spacing. 
 
 

5.2. Progress bar 
 
A progress bar can be displayed to visualize the progress of the major pre-processing steps 
step. This option is activated with the keyword PRINT_PROGRESS_BAR=.TRUE.. The 
appearance of the progress bar can be controlled by changing its length (keyword 
BAR_WIDTH) and the character used to create the bar (BAR_CHAR). By default, the progress 
bar is updated by increments of 5%. The update frequency is controlled by the keyword 
BAR_RESOLUTION. The progress is also printed at the center of the bar. Figure 9 shows the 
appearance of the progress bar. Showing the progress bar is mostly useful for fine grids and 
three dimensional grids to monitor the progress of the pre-processing stage. 
 
INTERSECTING GEOMETRY WITH SCALAR CELLS... 
|=====================  75.0 % ========            | 
 

Figure 9. Appearance of the progress bar. 

x=0.0                                                                           x = 1.0                                                                         x = 2.0 

              First segment (10 cells, ERX=0.5)                       Second segment (10 cells, ERX=2.0)     

x=0.0                                            x = 2.0                 x = 3.0                                                                   x = 6.0 

                 First segment                        Second segment                                   Third segment 
                    (5 cells)                                        (5 cells)                                                 (10 cells)   
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5.3. Dashboard 

 
While MFIX is running, progress in the simulation can be followed on the screen. The 
screen output can be redirected to a file. For example, issuing the command ./mfix | 
tee run.log will launch MFIX, display the output on the screen as well as in the file 
run.log. 
 
A summary of the simulation progress can also be written in the file DASHBOARD.TXT, 
which will be referred to as the dashboard. This option is activated by setting the keyword 
WRITE_DASHBOARD = .TRUE. (default value is .FALSE.). When this option is activated, 
the dashboard is updated at every time step. The frequency can be increased by setting a 
value of F_DASHBOARD larger than one. 
 
Figure 10 illustrates the dashboard. The top portion contains descriptions of the simulation 
(provided in mfix.dat), the run status, elapsed CPU time and estimated CPU time left, the 
name of the latest vtk file written, and the type of run (serial or parallel). 
 
A table summarizes values of some variables. The current, minimum and maximum values 
are displayed, and a progress bar corresponding to the numerical value is displayed on the 
right-hand-side. The sign beside the variable name DT indicates whether the last time step 
was increased (+) or decreased (-) during the computation. Units for Time and DT are 
seconds. Sm is the solid inventory in the domain (expressed in grams for cgs unit system 
and kilograms for SI unit system). NIT is the number of iterations for the current time step. 
The name of the variable yielding the maximum residual is displayed in the bottom row. A 
time stamps is printed at the bottom of the dashboard. 
 
The script show_dashboard located in mfix/tools/Dashboard can be used to display 
and automatically refresh the dashboard. For example, issuing the command ./mfix.exe 
> run.log & will run MFIX in the background, and invoking show_dashboard 2 will 
display the dashboard and update it every 2 seconds. 
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Figure 10. Appearance of the dashboard. 
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6. Post-processing 
 
When the Cartesian grid option is activated, the data can be saved into vtk files [5], which 
can be visualized with the post-processing tool Paraview [6] or Visit [7]. Visualizing the data 
using the .RES file will not show any cut cell. To save output files in vtk format, set the 
keyword WRITE_VTK_FILES = .TRUE.. This option is only valid when CARTESIAN_GRID 
= .TRUE.. When the Cartesian grid capability is turned-off, the .RES file can be used for 
data visualization, since no cut cells are generated. 
 
The name of the vtk file is based on RUN_NAME, defined in mfix.dat. For transient computations, a 
sequential integer is appended to the filename, starting at 0, to create a series of files (use 
TIME_DEPENDENT_FILENAME = .TRUE.). The file(s) extension is always .vtk. The 
keyword FRAME will offset the starting integer. For example, assume we have the following files 
after a successful run: VAR_0.vtk, VAR_1.vtk, ……, VAR_10.vtk. We can restart the 
simulation (with RUN_TYPE = ‘RESTART_1’), and set FRAME = 10. The simulation will restart 
and the vtk files will not be overwritten, i.e., the next vtk file will be VAR_11.vtk. 
 
The list of variables stored into the vtk file is controlled by a list of integers stored in VTK_VAR. 
Current available flags for VTK_VAR are: 
 

1: Void fraction (EP_g) 
2: Gas pressure, solids pressure (P_g, P_star) 
3: Gas velocity (U_g, V_g, W_g) 
4: Solids velocity (U_s, V_s, W_s) 
5: Solids density (ROP_s) 
6: Gas and solids temperature (T_g, T_s1, T_s2) 
7: Gas and solids mass fractions (X_g, X_s) 
8: Granular temperature (G) 
9: User-defined scalar (Scalar) 
11: Turbulence quantities (k and epsilon) 
12: Gas vorticity magnitude and Lambda_2 (VORTICITY, LAMBDA_2) 
100: Processor assigned to scalar cell (Partition) 
101: Boundary condition flag for scalar cell (BC_ID) 
 
For example, setting VTK_VAR = 1 3 4 will store the void fraction, gas velocity and solids 
velocity into each vtk file. 
 

A boundary file, starting with the value of RUN_NAME, and ending with _boundary.vtk is 
written during the preprocessing stage. It can be used to easily visualize the boundary. It is 
mostly useful for three-dimensional geometries. If it is desired to look through the boundary, 
the boundary must be displayed with a low opacity value. Figure 11 shows data obtained 
from the 3dfb tutorial (three-dimensional fluidized bed), with a cylindrical boundary. Figure 
11a show void fraction contour along a vertical slice, whereas Figure 11b shows the 
boundary, and isosurfaces of the void fraction. 
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                   ( a)                          (b)  

 
Figure 11. Instantaneous data visualization (a) void fraction contour along a vertical slice  

and (b) boundary and isosurfaces of void fraction. 
 

The file CUT_CELL.LOG contains statistics about the grid, with minimum and maximum 
values of geometrical quantities, interpolation factors, and non-orthogonality correction 
terms. 
 
For two-dimensional simulations, the file  ani_cutcell.vtk  will be generated at the 
beginning of the run. It will be used by animate_mfix to display cut cells. Cut cells will not be 
displayed by animate_mfix for three-dimensional computations. The only option to visualize 
cut cells in 3D is to use the VTK files. Note that animate_mfix uses the SPX_DT values 
between consecutive frames, not the VTK_DT values. 

 

  

Boundary surface displayed 
from 3DFB_boundary.vtk, with 
an opacity of 0.5 

Iso‐surfaces of void fraction 
displayed from 3DFB_200.vtk 
(time = 2.0 sec) 
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7. Code modifications 
 

7.1. Preprocessing 
 
The procedure to identify cut cells is as follows. An intersection search is performed along 
each edge of the cell (the search is performed only if the function ݂ሺݔ, ,ݕ  ሻ has oppositeݖ
signs at the edge extremities). The location of the intersection points may be altered 
depending on the value of TOL_SNAP (see section 4). Once all intersections points are 
determined within a cell, the connectivity is established for each cut-cell and its faces, and 
re-ordered if necessary. Faces are described as convex polygons, and the face areas are 
computed similar to convex polygon areas. To compute cut-cell volumes, cut-cells are split 
into pyramids, and volumes of pyramids are computed and added to form the cell volume. 
 
Velocity nodes are placed at the center of pressure cell faces. All interpolation correction 
terms and non-orthogonality correction terms are computed from the new velocity node 
locations. An example of a computational grid, with the location of velocity nodes is shown 
in Figure 12, where the thick solid line is the domain boundary. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12. Example of scalar cut-cells with location of velocity nodes. 
 

 
Note: It is assumed that the geometry (surface quadrics, polygon data, or user-defined 
function) intersects an edge no more than one time. If there are actually two intersections 
along the same edge, they will not be detected since the function ݂ሺݔ, ,ݕ  ሻ will have theݖ

Standard 
cell 

Cut cell 

Blocked  
cell 



Page 26 of 43    MFIX with Cartesian Grid Capability 

 

 
same sign at the edge extremities (see Figure 13). The sign of ݂ሺݔ, ,ݕ  ሻ is indicated at theݖ
corners. 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 
(a) Original cell and quadric surface  (b) shape of corresponding cut cell 

 
Figure 13. Example of misrepresentation of boundary. 

 
 

  

These two intersection 
points will not be detected

− 

+ 

− 

+ 
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7.2. No-slip wall 

 
Due to the relocation of velocity nodes at the face centers, the velocity ue may not be located 
at the center of the east face (Figure 14). Instead, the velocity at the face center uec is 
computed assuming zero velocity at the wall using the ratio of normal distances to the wall, 
as given in Equation (8). Figure 14 shows the notation used to define the interpolation 
correction factor ߙ௘. In the code, this correction factor is named alpha_ue_c. The same 
types of correction terms are defined for other velocity components. Their names start with 
the same root alpha_, followed by two letters, representing the velocity component (u,v, or 
w), and the face (e for East , n for North, t for Top), respectively. For example, in the u-
momentum cell, the following three correction terms will be computed (in 3D): 
alpha_ue_c, alpha_un_c, alpha_ut_c. Wall distances are named DELH in the code. 
 

  uୣୡ ൌ
∆hୣୡ

∆hୣ
uୣ ൌ αୣuୣ  (8)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 14. Example of x-velocity cut-cells, with illustration of the interpolation correction for 

uec at east face. 
 

   

uP
ue

uE

uec 

hec 
he 
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In the u-momentum cell, other velocity components are interpolated at the face center 
based on the location of adjacent velocity nodes (Figure 15). For example, the v-component 
of velocity along the north face would be interpolated from 
 

  v୬ ൌ θ୬ୣv୬ୣ ൅ θ୬୵v୬୵ (9)
where 

  θ୬ୣ ൌ
∆୶౭

∆୶౭౛
 , θ୬୵ ൌ

∆୶౛

∆୶౭౛
, and ∆x୵ୣ ൌ ∆x୵ ൅ ∆xୣ   (10)

 
In the code, ߠ௡௘ in the u-momentum cell is named theta_u_ne. Other interpolation 
correction terms are computed for other velocity components, and named in a similar 
fashion. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15. Interpolation of vn at north face of u-velocity cell. 
 

 
 

Due to the relocation of velocity nodes at the face centers, vector Ԧܵ joining points P and E, 
may not be perpendicular to the east face (Figure 16). Therefore, the derivative ߲ݑ ⁄ݔ߲    is 
approximated by equations (11) using the fact that velocity is zero at the wall. The vector  
ሬܰሬԦ is perpendicular to the wall and passes through point e.  
 

 
∂u
∂x

ൎ
uE െ uP

|S୶|
െ

1
S୶

൬S୷
∂u
∂y

൅ S୸
∂u
∂z

൰   (11)

where 

 
ப୳

ப୷
ൎ

N౯୳౛

∆୦౛
 and

ப୳

ப୸
ൎ

N౰୳౛

∆୦౛
  (12)

Therefore, 

 
ப୳

ப୶
ൎ

୳Eି୳P

|S౮|
െ
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The non-orthogonality correction term NOC ൌ
S౯N౯ାS౰N౰

S౮∆୦౛
  can be computed during 

preprocessing. In the code, it is named NOC_U_E. Other non-orthogonality correction terms 
are computed and named similarly. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 16. Example of x-velocity cut cells, with illustration of the non-orthogonality 

correction for the evaluation of the derivative ߲ݑ ⁄ݔ߲    at east face. 
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It is assumed that in the cut cell, the velocity is tangential to the wall. The shear force acting 
on the fluid due to the wall shear stress is parallel to the velocity vector (Figure 17), and can 
be written as 
 

    FሬԦ ൎ െµ∆Aୡ୳୲
∂uሬԦ
∂n

ൎ െµ∆Aୡ୳୲ ቀ
u

∆h
ıԦ ൅

v
∆h

jԦ ൅
w
∆h

kሬԦቁ ൌ F୶ ıԦ ൅ F୷ jԦ ൅ F୸ kሬԦ  (14)

 
 
Where ∆ܣ௖௨௧ is the surface area of the cut face. Therefore, the contribution of the cut face 
can be applied implicitly along each direction (e.g., ܨ௫ ൌ െܣ∆ߤ௖௨௧

௨

∆௛
 in the x-direction). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 17. Additional wall shear stress arising from the cut-face. 
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7.3. Free-Slip wall 

 
For free-slip walls, the assumption of zero wall velocity is not valid. Instead, the velocity 
gradient normal to the wall is assumed to be zero. Therefore, the correction term ߙ௘ is set to 
one, and the non-orthogonality correction terms are set to zero. No additional shear force 
term is added.  
 

7.4. Problematic cells 
 
A wide variety of cut cells are typically generated, and cut cells vary in shape and size. 
Figure 18 illustrates various shapes of cut cells. The generation of small pressure cells 
leads to stability issues. Section 4 describes a method to reduce the number of small 
pressure cells, by slightly altering the geometry. Due to the staggered grid formulation, 
velocity cells require pairs of pressure nodes (East/West, North/South and Top/Bottom) to 
compute pressure gradients. However, when some pressure cells are removed (blocked 
cells), the corresponding velocity cells will only have one pressure node and the pressure 
gradient cannot be computed in that direction. When this situation occurs, the velocity cell is 
flagged as a “wall cell”, and the momentum equation is not solved for this cell. A velocity is 
specified, which depends on the type of boundary condition assigned to the cell. For no-slip 
wall (BC_TYPE = ‘CG_NSW’), a zero velocity is assigned. For Free-slip wall (BC_TYPE = 
‘CG_FSW’), the velocity is the same as the velocity of an adjacent cell. The adjacent cell is 
called the “master” cell of the “wall cell”.  
 
The treatment of single-pressure velocity cells effectively limits their size to half the size of a 
standard cell, in any direction. This criterion automatically avoids problems linked to small 
velocity cells. 
 
 

 
 

Figure 18. Examples of cut cell shapes. 
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8. Tutorial files 
 
The tutorial files are located in /mfix/tutorials/Cartesian_grid_tutorials. 

Snapshot Folder 
Method to 
describe 
geometry

Dimension
Phase 

(G=Gas, 
S=Solid)

Description 

 
channel 

One quadric 
surface 

 
2D G Flow in a skewed 

channel 

 
cylinder 

One quadric 
surface 

 
2D G Flow over a cylinder 

 
naca4412 Polygon 

data 2D G Flow over an airfoil 

 

hourglass 
 

Three 
quadric 
surfaces 

2D G/S 
Solids falling in an 
hourglass-shaped 

container 

 

spoutedbed1 
Three 

quadric 
surfaces 

2D G/S Spouted bed 

 

spoutedbed2 
 

7 quadrics, 
3 groups 2D G/S Spouted bed with 

stabilizer 

 
polygons Polygon 

data 2D G/S Pack of solids falling 
on polygons 

 
wavy 

User-
defined 
function

2D G/S Solid jet impinging on 
a wavy surface 

 

3dfb 
 

One quadric 
surface 

 
3D G/S 3D fluidized bed 

 

cyclone 
 

12 quadrics, 
6 groups 3D G/S Flow of particles 

through a cyclone 
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9. Cartesian Grid keywords 
 

keyword(dimension) Type Description 

CARTESIAN_GRID 
 L Activate Cartesian grid cut cell technique. 

[.FALSE.]  Do not use Cartesian grid cut cell technique. 

.TRUE.  

Use Cartesian grid cut cell technique. One of the 
following methods must be used to define the geometry:
Quadric surfaces (N_QUADRIC >=1), polygons 
(USE_POLYGON = .TRUE.), or a user-defined function 
(N_USR_DEF = 1).

N_QUADRIC 
[0] I Number of quadric surfaces defining the boundaries 

(<=100). 

USE_POLYGON 
 L Use polygons to describe geometry. 

[.FALSE.]  Do not use polygons.

.TRUE.  Read polygon data (for 2D geometry only) from poly.dat.

N_USR_DEF 
[0] I 

Number of user-defined functions (currently limited to 0 
or 1). If set to 1, the geometry is defined in the user 
subroutine eval_usr_fct.f. 

USE_STL L Use STL file to describe geometry. 

[.FALSE.]  Do not use STL file.

.TRUE.  Read triangulated geometry (for 3D geometry only) from 
geometry.stl.

USE_MSH L Use .msh file to describe geometry. 

[.FALSE.]  Do not use .msh file.

.TRUE.  Read geometry (for 3D geometry only) from 
geometry.msh.

QUADRIC_FORM 
 C Form of the quadric surface equation. 

['NORMAL']  

Use normal form, as defined in Equation (1).
Regions where f(x,y,z) < 0 are part of the computational 
domain. 
Regions where f(x,y,z) > 0 are excluded from the 
computational domain. 
 
See section 2.1.2 for pre-defined quadric surfaces 
(planes, cylinder and cones)

QUADRIC_SCALE DP Scaling factor, applied to all quadric geometry 
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[ONE] parameters. 

LAMBDA_X() 
[ZERO] DP 

Coefficient lambda_x in Equation (1) ('NORMAL' form) 
or x-component of normal vector defining plane in 
Equation (5) ('DEGENERATE' form). 

LAMBDA_Y() 
[ZERO] DP 

Coefficient lambda_y in Equation (1) ('NORMAL' form) 
or y-component of normal vector defining plane in 
Equation (5) ('DEGENERATE' form). 

LAMBDA_Z() 
[ZERO] DP 

Coefficient lambda_z in Equation (1) ('NORMAL' form) 
or z-component of normal vector defining plane in 
Equation (5) ('DEGENERATE' form). 

DQUADRIC() 
[ZERO] DP Coefficient d in Equation (1). 

N_X() 
[ZERO] DP 

x-component of normal vector defining the plane (used
when QUADRIC_FORM = ‘PLANE’) 

N_Y() 
[ZERO] DP 

y-component of normal vector defining the plane (used 
when QUADRIC_FORM = ‘PLANE’) 

N_Z() 
[ZERO] DP 

z-component of normal vector defining the plane (used 
when QUADRIC_FORM = ‘PLANE’) 

RADIUS() 
[ZERO] DP 

Cylinder radius (used when QUADRIC_FORM = 
‘*_CYL_***’) 

HALF_ANGLE() 
[ZERO] DP 

Cone half angle, expressed in degrees (used when
QUADRIC_FORM = ‘*_CONE’) 

THETA_X() 
[ZERO] DP Rotation angle with respect to x-axis (Degrees). 

THETA_Y() 
[ZERO] DP Rotation angle with respect to y-axis (Degrees). 

THETA_Z() 
[ZERO] DP Rotation angle with respect to z-axis (Degrees). 

T_X() 
[ZERO] DP Translation in x-direction. 

T_Y() 
[ZERO] DP Translation in y-direction. 

T_Z() 
[ZERO] DP Translation in z-direction. 

CLIP_XMIN() 
[- LARGE_NUMBER] DP Lower x-limit where the quadric is defined. 

CLIP_XMAX() 
[LARGE_NUMBER] DP Upper x-limit where the quadric is defined. 
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CLIP_YMIN() 
[- LARGE_NUMBER] DP Lower y-limit where the quadric is defined. 

CLIP_YMAX() 
[LARGE_NUMBER] DP Upper y-limit where the quadric is defined. 

CLIP_ZMIN() 
[- LARGE_NUMBER] DP Lower z-limit where the quadric is defined. 

CLIP_ZMAX() 
[LARGE_NUMBER] DP Upper z-limit where the quadric is defined. 

FLUID_IN_CLIPPED_REGION L 

Flag defining the type of cells that are outside of the 
zone defined by [CLIP_XMIN;CLIP_XMAX], 
[CLIP_YMIN;CLIP_YMAX],[CLIP_ZMIN;CLIP_Z
MAX]. 

[.TRUE.]  Treat cells as fluid cells.

.FALSE.  Remove cells from computational domain.

PIECE_XMIN() 
[- LARGE_NUMBER] DP Lower x-limit where the quadric is defined in a 

piecewise group. 

PIECE _XMAX() 
[LARGE_NUMBER] DP Upper x-limit where the quadric is defined in a 

piecewise group. 

PIECE _YMIN() 
[- LARGE_NUMBER] DP Lower y-limit where the quadric is defined in a 

piecewise group. 

PIECE _YMAX() 
[LARGE_NUMBER] DP Upper y-limit where the quadric is defined in a 

piecewise group. 

PIECE _ZMIN() 
[- LARGE_NUMBER] DP Lower z-limit where the quadric is defined in a 

piecewise group. 

PIECE _ZMAX() 
[LARGE_NUMBER] DP Upper z-limit where the quadric is defined in a 

piecewise group. 

BC_ID_Q() 
[UNDEFINED_I] I Boundary condition flag  

N_GROUP 
[1] I Number of group(s) of quadrics (<=50). 

GROUP_SIZE() 
[GROUP_SIZE(1)=1] I Number of quadrics in the group. 

GROUP_Q(I,J) 
[Q(1,1) = 1] I Quadric ID of Jth quadric assigned to group I. 

GROUP_RELATION() 
 C Relation among quadrics of a same group. 

['OR']  A point belongs to the computational domain if at least 
one of f(x,y,z) among all quadrics is negative
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'AND'  A point belongs to the computational domain if all of 
f(x,y,z) among all quadrics are negative 

RELATION_WITH_PREVIOUS C Relation between current group and combination of all 
previous groups.

['OR']  
A point belongs to the computational domain if f-value 
for the current group or f-value for the combination of 
previous groups is negative

'AND'  
A point belongs to the computational domain if f-value 
for the current group and f-value for the combination of 
previous groups is negative

TOL_SNAP() 
[0.0] DP 

Tolerance used to snap an intersection point onto an 
existing cell corner (expressed as a fraction of edge 
length, between 0.0 and 0.5). For stretched grids, three 
values can be entered in the x, y and z directions.

TOL_DELH 
[0.0] DP 

Tolerance used to limit acceptable values of normal 
distance to the wall (expressed as a fraction of cell 
diagonal, between 0.0 and 1.0). 

TOL_SMALL_CELL 
[0.01] DP Tolerance used to detect small cells (expressed as a 

fraction of cell volume, between 0.0 and 1.0). 

TOL_MERGE 
[1.0E-12] DP Tolerance used to remove duplicate nodes (expressed 

as a fraction of cell diagonal, between 0.0 and 1.0). 

TOL_SMALL_AREA 
[0.01] DP Tolerance used to detect small faces (expressed as a 

fraction of original face area, between 0.0 and 1.0). 

ALPHA_MAX 
[ONE] DP Maximum acceptable value of interpolation correction 

factor. 

TOL_F 
[1.0D-9] DP Tolerance used to find intersection of quadric surfaces 

or user-defined function with background grid. 

TOL_POLY 
[1.0D-9] DP Tolerance used to find intersection of polygon with 

background grid. 

TOL_STL 
[1.0D-6] DP Tolerance used to find intersection of STL triangles with 

background grid. 

STL_SMALL_ANGLE 
[5.0] DP 

Smallest angle accepted for valid STL triangles (in 
degrees). Triangles having an angle smaller that this 
value will be ignored.

RAY_DIR 
['X-'] C 

Ray direction used to determine whether any point is 
located inside or outside of the STL surface. A value of  
'X-' means the ray is parallel to the x-axis and points in 
the negative x-direction

'X+'  The ray is parallel to the x-axis and points in the positive 
x-direction
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'Y-'  The ray is parallel to the y-axis and points in the 
negative y-direction

'Y+'  The ray is parallel to the y-axis and points in the positive 
y-direction

'Z-'  The ray is parallel to the z-axis and points in the 
negative x-direction

'Z+'  The ray is parallel to the x-axis and points in the positive 
x-direction

'MIN'  The ray points to the origin (0.0 ; 0.0 ; 0.0) of the
coordinate system

'MAX'  The ray points to (XLENGTH, YLENGTH,ZLENGTH)

OUT_STL_VALUE 
[1.0] DP 

Defines value of f_stl outside of the STL geometry. A 
value of 1.0 means the domain outside of the STL 
geometry is excluded from computation, i.e., an internal 
flow is computed.

-1.0  Model an external flow

STL_BC_ID 
[UNDEFINED_I] I Boundary condition flag for the STL geometry 

TX_STL 
[ZERO] DP Translation in x-direction, applied to the STL geometry. 

TY_STL 
[ZERO] DP Translation in y-direction, applied to the STL geometry. 

TZ_STL 
[ZERO] DP Translation in z-direction, applied to the STL geometry. 

SCALE_STL 
[ONE] DP Scaling factor, applied to the STL geometry. Note that 

translation occurs after scaling. 

TOL_MSH 
[1.0D-6] DP Tolerance used to find intersection of .msh file with 

background grid. 

MSH_SMALL_ANGLE 
[5.0] DP 

Smallest angle accepted for valid .msh triangles (in 
degrees). Triangles having an angle smaller that this 
value will be ignored.

OUT_MSH_VALUE 
[1.0] DP 

Defines value of f outside of the .msh geometry. A value 
of 1.0 means the domain outside of the .msh geometry 
is excluded from computation, i.e., an internal flow is 
computed.

-1.0  Model an external flow

TX_MSH 
[ZERO] DP Translation in x-direction, applied to the .msh geometry.

TY_MSH DP Translation in y-direction, applied to the .msh geometry.
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[ZERO] 

TZ_MSH 
[ZERO] DP Translation in z-direction, applied to the .msh geometry.

SCALE_MSH 
[ONE] DP Scaling factor, applied to the .msh geometry. Note that 

translation occurs after scaling. 

ITERMAX_INT 
[10000] I Maximum number of iterations used to find intersection 

points. 

SET_CORNER_CELLS 
[.FALSE.] L 

Flag to detect and treat corner cells the same way as in 
the original MFIX version (i.e. without cut cells). If set to 
.TRUE., some cut cells may be treated as corner cells. 

FAC_DIM_MAX_CUT_CELL 
[0.25] DP 

Factor used to allocate some cut cell arrays (expressed 
as a fraction of DIMENSION_3G) 

WRITE_VTK_FILES L Write vtk files at regular intervals.  

[.FALSE.]  
Do not write vtk files. If there are cut cells, they will not 
be displayed from the usual .RES file 

.TRUE.  Valid only if CARTESIAN_GRID = .TRUE. 

TIME_DEPENDENT_FILENAME L Use time-dependent vtk file names 

[.TRUE.]  
A sequential integer is appended to the vtk filenames as 
they are written to create a series of files (recommended 
for transient computation).

.FALSE.  The vtk file overwrites the previous file (recommended 
for steady-state computation). 

VTK_DT 
[UNDEFINED] DP Interval (expressed in seconds of simulation time) at 

which vtk files are written. 

VTK_VAR() 
[1 2 3 4] I 

List of variables written in vtk files: 
1 : Void fraction (EP_g) 
2 : Gas pressure, solids pressure (P_g, P_star) 
3 : Gas velocity (U_g, V_g, W_g) 
4 : Solids velocity (U_s, V_s, W_s) 
5 : Solids density (ROP_s) 
6 : Gas and solids temperature (T_g, T_s1, T_s2) 
7 : Gas and solids mass fractions (X_g, X_s) 
8 : Granular temperature (G) 
9 : User-defined scalar (Scalar) 
10 : NOT AVAILABLE (Reaction Rates) 
11 : Turbulence quantities (k and ε) 
12 : Gas vorticity magnitude and Lambda_2 
(VORTICITY, LAMBDA_2) 
100 : Processor assigned to scalar cell (Partition) 
101 : Boundary condition flag for scalar cell (BC_ID)
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FRAME 
[-1] I Initial frame counter (suffix of vtk file) 

PG_OPTION I Option for pressure gradient computation in cut cells.

[0]  Use East, North and Top areas of pressure cell (same 
as standard cells).

1  Use maximum of (East/West), (North/South), and 
(Top/Bottom) pairs of velocity cells. 

2  Use both (East/West), (North/South), and (Top/Bottom) 
areas of velocity cells.

CG_SAFE_MODE() I Run code in safe mode.

[0]  Runs the code with modified subroutines for cut cell 
treatment.

1  

Performs initial preprocessing but use all original MFIX 
subroutines during flow solution (using only cell volumes 
and areas of cut cells). 
Setting CG_SAFE_MODE(1) = 1 will disable cut-cell 
treatment for scalar cells. 
Setting CG_SAFE_MODE(3) = 1 will disable cut-cell 
treatment for u-velocity cells. 
Setting CG_SAFE_MODE(4) = 1 will disable cut-cell 
treatment for v-velocity cells. 
Setting CG_SAFE_MODE(5) = 1 will disable cut-cell 
treatment for w-velocity cells. 
 

PRINT_WARNINGS 
[.FALSE.] L 

Prints any warning message encountered during pre-
processing on the screen. 

CG_UR_FAC() 
[1.0] DP 

Under-Relaxation factor used in cut cells (only
CG_UR_FAC(2) is used). 

PRINT_PROGRESS_BAR 
[.FALSE.] L Print a progress bar during each major step of pre-

processing stage. 

BAR_WIDTH 
[50] I Width of the progress bar (complete status), expressed 

in number of characters (between 10 and 80). 

BAR_CHAR 
['='] C Character used to create the progress bar. 

BAR_RESOLUTION 
[5.0] DP Update frequency of progress bar, expressed in percent 

of total length (between 1.0 and 100.0). 

WRITE_DASHBOARD 
[.FALSE.] L Writes the file DASHBOARD.TXT at regular intervals. 

The file shows a summary of the simulation progress. 

F_DASHBOARD 
[1] I Frequency, expressed in terms of iterations, at which 

the dashboard is updated. 
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CPX() 
[0.0] DP Location of control points in x-direction. 

CPY() 
[0.0] DP Location of control points in y-direction. 

CPZ() 
[0.0] DP Location of control points in z-direction. 

NCX() 
[0] I Number of cells within a segment (x-direction). 

NCY() 
[0] I Number of cells within a segment (y-direction). 

NCZ() 
[0] I Number of cells within a segment (z-direction). 

ERX 
[1.0] DP Expansion ratio (Last DX/First DX) in a segment (x-

direction). 

ERY 
[1.0] DP Expansion ratio (Last DY/First DY) in a segment (y-

direction). 

ERZ 
[1.0] DP Expansion ratio (Last DZ/First DZ) in a segment (z-

direction). 

FIRST_DX() 
[0.0] DP Value of first DX in a segment (x-direction). A negative 

value will copy DX from previous segment (if available). 

LAST_DX() 
[0.0] DP Value of last DX in a segment (x-direction). A negative 

value will copy DX from next segment (if available). 

FIRST_DY() 
[0.0] DP Value of first DY in a segment (y-direction). A negative 

value will copy DY from previous segment (if available). 

LAST_DY() 
[0.0] DP Value of last DY in a segment (y-direction). A negative 

value will copy DY from next segment (if available). 

FIRST_DZ() 
[0.0] DP Value of first DZ in a segment (z-direction). A negative 

value will copy DZ from previous segment (if available). 

LAST_DZ() 
[0.0] DP Value of last DZ in a segment (z-direction). A negative 

value will copy DZ from next segment (if available). 
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10. Quick reference 
 
This section provides a summary of basic options to use the Cartesian grid cut-cell 
technique, for each boundary definition method. It can be used as a checklist before running 
MFIX. 
 
Quadric surface(s): 

� Activate Cartesian grid capability: CARTESIAN_GRID = .TRUE.. 
� Define the number of quadrics N_QUADRIC. 
� For each quadric surface, define quadric parameters, rotation angles, translation, 

and clipping limits, as necessary. 
� Assign a boundary condition ID to each quadric (BC_ID_Q). 
� Use groups to combine quadrics if necessary. 
� Define a boundary condition type for each value of BC_ID_Q. 
� Set WRITE_VTK_FILES = .TRUE. and set list of output variables VTK_VAR. 

 
Polygon(s): 

� Activate Cartesian grid capability: CARTESIAN_GRID = .TRUE.. 
� Define polygon data in poly.dat. Place poly.dat in the run directory. 
� Set the keyword USE_POLYGON = .TRUE.. 
� Define a boundary condition type for each Boundary condition ID associated with the 

polygon edges. 
� Set WRITE_VTK_FILES = .TRUE. and set list of output variables VTK_VAR. 

 
User-defined function: 

� Place  eval_usr_fct.f  in the sub-directory  cartesian_grid/  in the run 
directory. 

� Modify the subroutine eval_usr_fct.f to define the function ݂ሺݔ, ,ݕ  ሻ (f_usr) andݖ
boundary condition ID (BCID). 

� Compile MFIX from run directory. 
� Activate Cartesian grid capability: CARTESIAN_GRID = .TRUE.. 
� Set the keyword USE_USR_DEF = 1. 
� For each value of BCID, set a boundary condition type. 
� Set WRITE_VTK_FILES = .TRUE. and set list of output variables VTK_VAR. 

 
STL file: 

� Activate Cartesian grid capability: CARTESIAN_GRID = .TRUE.. 
� Define boundary in geometry.stl. Place geometry.stl in the run directory. 
� Set the keyword USE_STL = .TRUE.. 
� Define the boundary condition ID STL_BC_ID. 
� Define a boundary condition type for the Boundary condition ID associated with the 

STL file.  
� Set WRITE_VTK_FILES = .TRUE. and set list of output variables VTK_VAR. 
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MSH file: 

� Activate Cartesian grid capability: CARTESIAN_GRID = .TRUE.. 
� Define boundary in geometry.msh. Place geometry.msh in the run directory. 
� Set the keyword USE_MSH = .TRUE.. 
� Define a boundary condition type for each Boundary condition ID associated with the 

MSH boundary zones.  
� Set WRITE_VTK_FILES = .TRUE. and set list of output variables VTK_VAR. 

 
 
 
11. Trouble shooting 
 
It is recommended to go though the tutorials first to get familiar with the various options 
described in this document. To start a new simulation, copy an existing mfix.dat file and 
make incremental modifications. When using polygon data, copy poly.dat from one of the 
tutorials (e.g. naca4412) and modify the file. When using user-defined function, copy the 
subroutine eval_usr_fct.f from the tutorial wavy, and modify it. 
 
When several quadrics are combined, define and visualize individual quadrics before 
combining them, to make sure they are defined properly. 
 
Small cells can be removed (to some extent) by increasing the value of TOL_SNAP. 
 
The most common causes of pre-processing failure include (beside incorrect input data): 
 

 Unable to find an intersection point. Try to increase TOL_F or ITERMAX_INT. 
 

 Too many intersections found in one cell. This occurs when the geometry’s local 
radius of curvature is very small, or the combination of quadrics is not well detected. 
Refining the grid usually helps solving this problem. This can also occurs when 
polygon data defines sharp angles. Slightly moving one or more vertices usually 
helps solving this problem. 

 
 Piecewise limits are not well defined when using the piecewise grouping option. The 

piecewise limits must correspond to the plane where quadrics intersect. 
 
When the code seems to be unstable, even with an optimized grid, running the code in safe 
mode (CG_SAFE_MODE = 1) can help determine if the problem comes from the flow 
condition. In safe mode, the flow solution proceeds without using any modification 
introduced by the cut cell technique. The only modified variables are the cell volumes and 
face areas. If MFIX still fails in safe mode, it is likely due to improper initial conditions or flow 
properties.  
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