

Multiphase Flow with Interphase eXchanges

Cartesian Grid User Guide

Version MFIX-2012-1

Jeff Dietiker

January 9, 2012

Page 2 of 43 MFIX with Cartesian Grid Capability

Table of Contents

1. Introduction ... 3
2. Geometry definition .. 4

2.1. Quadric surface .. 4
2.1.1. Normal form ... 4
2.1.2. Pre-defined quadrics .. 7
2.1.3. Translating and rotating quadrics .. 10
2.1.4. Clipping limits .. 10
2.1.5. Combining quadrics ... 11
2.1.6. Logical grouping within a group ... 12
2.1.7. Logical grouping among groups ... 13
2.1.8. Piecewise grouping .. 13
2.1.9. Example of quadric combination .. 14

2.2. Polygons .. 15
2.3. User-defined function ... 16
2.4. STL file ... 17
2.5. MSH file ... 17

3. Boundary condition specification ... 17
4. Removal of small pressure cells .. 18
5. Utilities ... 19

5.1. Grid spacing .. 19
5.2. Progress bar .. 20
5.3. Dashboard ... 21

6. Post-processing .. 23
7. Code modifications .. 25

7.1. Preprocessing ... 25
7.2. No-slip wall .. 27
7.3. Free-Slip wall .. 31
7.4. Problematic cells .. 31

8. Tutorial files ... 32
9. Cartesian Grid keywords ... 33
10. Quick reference .. 41
11. Trouble shooting ... 42
12. References .. 43

MFIX with Cartesian Grid Capability Page 3 of 43

1. Introduction

A new capability, called Cartesian grid cut-cell technique has been implemented in MFIX,
which allows the definition of curved or sloping boundaries, instead of the usual stair-step
representation. Computational cells are truncated at the wall to conform to the shape of the
boundaries. When a face is truncated, the velocity node is moved to the center of the face.
The cell truncation introduces an additional face, called the cut face. Face surface areas
and cell volumes are updated based on the shape of the cut cell. The contribution of the
new cut face is added to the computation. The data can be saved in a vtk file for post-
processing purpose.

The implementation of the Cartesian grid cut-cell technique is based on the work of
Kirkpatrick and Armfield, and details about the cut cell treatment can be found in Reference
[1]. Modifications have been implemented for the Eulerian/Eulerian approach, i.e., it is not
available for Discrete Element Model. The cut-cell technique is a complement to existing
boundary conditions. The usual specification of boundary conditions is still available.

This document describes how to use the Cartesian grid cut-cell capability. The new
keywords introduced in mfix.dat are described and some examples illustrate their utilization.
A series of tutorial files are provided with the MFIX distribution to help users get familiar with
the new technique.

It is assumed that the reader is familiar with the general operation of MFIX. This document
only describes the utilization of the Cartesian cut-cell technique. Details about MFIX can be
found in Refs. [2-4].

Page 4 of 43 MFIX with Cartesian Grid Capability

2. Geometry definition

The Cartesian grid cut cell capability is activated by setting the keyword CARTESIAN_GRID
= .TRUE. . Once this option is activated, the boundary geometry must be specified using
one of the following methods:

a) Quadric surface(s): The boundaries are defined using one or several quadric
surfaces that can be translated, rotated, and combined. This option is activated by
specifying a positive number of quadric surfaces (N_QUADRIC ≥ 1), and is valid for
two and three-dimensional geometries.

b) Polygons: The boundaries are defined using one or several polygons. The geometry
information is read from the data file poly.dat, which must be generated prior to
running MFIX, and must be located in the run directory. This option is activated by
setting the keyword USE_POLYGON = .TRUE., and is limited to two-dimensional
geometry only.

c) User-defined function: The boundaries are specified using a user-defined function.
The geometry is defined in the subroutine eval_usr_fct.f prior to running MFIX.
The code must be compiled every time this subroutine is modified. This option is
activated by setting N_USR_DEF = 1, and is valid for two and three-dimensional
geometries.

d) STL file: The boundaries geometry is read directly from an ASCII STL file, named
geometry.stl. The STL file describes the surface of a three-dimensional
geometry, and is typically generated by a CAD software. The file geometry.slt
must be located in the run directory. This option is activated by setting the keyword
USE_STL = .TRUE., and is limited to three-dimensional geometry only.

e) MSH file: The boundaries are read from a Gambit .msh file, named geometry.slt,
which must be located in the run directory. This option is activated by setting the
keyword USE_MSH = .TRUE., and is limited to three-dimensional geometry only.

Note: In the current version, only one method can be used at a time.

2.1. Quadric surface

2.1.1. Normal form

Quadric surface parameters are defined as one-dimensional arrays, which index
corresponds to the quadric being defined. In this document, the index is referred to as the
quadric ID (QID). Several quadrics can be defined. The total number of active quadrics is
defined by the keyword N_QUADRIC.

Quadric surfaces are written into one of their normal form:

 ݂ሺݔ, ,ݕ ሻݖ ൌ ଶݔ௫ߣ ൅ ଶݕ௬ߣ ൅ ଶݖ௭ߣ ൅ ݀ ൌ 0 (1)

MFIX with Cartesian Grid Capability Page 5 of 43

Where ߣ௫, ,௬ߣ ,ݔ௭ ܽ݊݀ ݀ are real scalars. The boundary is located where the function ݂ሺߣ ,ݕ ሻݖ
is zero (within some tolerance defined by the parameter TOL_F). Regions where ݂ሺݔ, ,ݕ ሻ isݖ
positive are excluded from the computational domain (blocked cells), and regions where
 ݂ ሺݔ, ,ݕ ሻݖ is negative are part of the computational domain (fluid cells). This option is
activated by the keyword QUADRIC_FORM(QID) = ‘NORMAL’, and is the default value. By
default, all quadrics are centered about the origin (x = 0, y = 0, z = 0), and any quadric can
be translated and rotated (see section 2.1.3).

Examples:

The following two examples illustrate the description of simple quadric surfaces (cylinder
and cone). The idea is to express the shape’s surface in the form of Equation (1) such that
the quadric’s parameters can be identified. The same procedure can be applied to other
quadric surfaces, such as ellipsoids, hyperboloids, elliptic cylinders, etc. Note that there is
an alternate way of defining planes, cylinders and cones, using pre-defined input (see
section 2.1.2).

Circular cylinder
To model the flow over a circular cylinder of radius 2 in the (xy) plane (Figure 1a), the
equation defining the boundary must be rearranged to fit the form of Equation (1), i.e.,
ଶݔ ൅ ଶݕ ൌ 4 becomes ݂ሺݔ, ,ݕ ሻݖ ൌ െݔଶ െ ଶݕ ൅ 4 ൌ 0, since we want values of ݂ሺݔ, ,ݕ ሻ to beݖ
negative outside the cylinder. Therefore, the following parameters are specified as:

 λ୶ ൌ െ1.0 ; λ୷ ൌ െ1.0 ; λ୸ ൌ 0.0 ; d ൌ 4.0 (2)

In mfix.dat, this will be written as:

CARTESIAN_GRID = .TRUE.
N_QUADRIC = 1
lambda_x(1) = -1.0
lambda_y(1) = -1.0
lambda_z(1) = 0.0
dquadric(1) = 4.0

Note that it would be equivalent to use:

 λ୶ ൌ െ0.25 ; λ୷ ൌ െ0.25 ; λ୸ ൌ 0.0 ; d ൌ 1.0 (3)

i.e., multiplying all coefficients by the same positive constant does not have any effect.
However, changing the sign of all coefficients reverses blocked and fluid cells. Using the
following parameters

 λ୶ ൌ 1.0 ; λ୷ ൌ 1.0 ; λ୸ ൌ 0.0 ; d ൌ െ4.0 (4)

will mesh the interior of the cylinder (Figure 1b).

Page 6 of 43 MFIX with Cartesian Grid Capability

 (a) External flow (b) Internal flow

Figure 1. Meshing the exterior or interior region of a cylinder.

Cone
Assume the cone’s axis of revolution is aligned with the y-axis, it has a cylindrical cross
section along any y-plane, and the cone’s half-angle is . Since the radius varies linearly

with height, we can write ݎ ൌ ඥ2ݔ ൅ 2ݖ ൌ which can be re-arranged into ,ߚ݊ܽݐݕ

ଶݔ

ሺߚ݊ܽݐሻଶ െ ଶݕ ൅
ଶݖ

ሺߚ݊ܽݐሻଶ ൌ 0 (5)

i.e.,

 λ୶ ൌ
1

ሺtanβሻଶ ; λ୷ ൌ െ1.0 ; λ୸ ൌ
1

ሺtanβሻଶ ; ݀ ൌ 0.0 (6)

Notes:

1) The cone is by default centered around the origin. It will typically need to be
translated, and probably combined with other quadrics (for example to model a
spouted bed).

2) In 2D, we could leave λ୸ ൌ 0 since there is no z-dependence.

For example, to define a cone with half-angle of  =30 degrees, the following input can be
entered in mfix.dat (note that tanሺ30 ݀݁݃ሻ ൌ 1 √3⁄):

CARTESIAN_GRID = .TRUE.

N_QUADRIC = 1

 lambda_x(1) = 3.0D0
 lambda_y(1) = -1.0D0
 lambda_z(1) = 3.0D0
 dquadric(1) = 0.0D0

 t_x(1) = 2.5 ! Translation in x direction
 t_y(1) = 0.0 ! Translation in y direction
 t_z(1) = 2.5 ! Translation in z direction

݂ሺݔ, ,ݕ ሻݖ ൑ 0

݂ሺݔ, ,ݕ ሻݖ ൌ 0

݂ሺݔ, ,ݕ ሻݖ ൒ 0

௫ߣ ൌ 1.0
௬ߣ ൌ 1.0
௭ߣ ൌ 0.0
݀ ൌ െ4.0

௫ߣ ൌ െ1.0
௬ߣ ൌ െ1.0
௭ߣ ൌ 0.0
݀ ൌ 4.0



r

x

y

z

MFIX with Cartesian Grid Capability Page 7 of 43

2.1.2. Pre-defined quadrics

It is anticipated that a few common quadrics, such as planes, cylinders, and cones will be
used on a regular basis. Their definition is facilitated through user-friendly input that
bypasses the specification of quadric parameters. The type of pre-defined quadric is set by
the keyword QUADRIC_FORM. Current pre-defined quadrics include planes, cylinders and
cones.

Plane
Single planes are defined by specifying the plane normal vector, and a point belonging to
the plane. This option is activated by the keyword QUADRIC_FORM(QID) = ‘PLANE’. The
following notation is used:

ሬ݊Ԧ ൌ ൫݊௫, ݊௬, ݊௭൯ is the normal vector to the plane, pointing away from fluid cells. The normal

vector does not need to be normalized. ሬܲԦ ൌ ሺݔ, ,ݕ Ԧݐ .ሻ is any point in spaceݖ ൌ ൫ݐ௫, ,௬ݐ ௭൯ is aݐ
point belonging to the plane.

The equation of the plane is given by ሬ݊Ԧ ڄ ൫ ሬܲԦ െ Ԧ൯ݐ ൌ 0
or

 ݂ሺݔ, ,ݕ ሻݖ ൌ ݊௫ݔ ൅ ݊௬ݕ ൅ ݊௭ݖ ൅ ݀ ൌ 0 (7a)
where

 ݀ ൌ െ൫݊௫ݐ௫ ൅ ݊௬ݐ௬ ൅ ݊௭ݐ௭൯ (7b)

The user needs to specify values of ሬ݊Ԧ ൌ ൫݊௫, ݊௬, ݊௭൯ and ݐԦ ൌ ൫ݐ௫, ,௬ݐ ௭൯. The coefficient ݀ canݐ
be left undefined as it will be automatically computed based on Equation (7b). From a
practical point of view, the plane’s orientation is defined by the vector ሬ݊Ԧ , and translated by
the amount ݐԦ.

Notes: 1) The vector ሬ݊Ԧ points away from the fluid cells.
 2) Planes are useful to clip other quadrics or groups of quadrics (see section 2.1.9).

Example:
The following parameters define a plane perpendicular to the (xy) plane, passing through
(x=3, y=2), and rotated 20 degrees with respect to the y-axis (Figure 2):

CARTESIAN_GRID = .TRUE.
N_QUADRIC = 1
QUADRIC_FORM(1) = 'PLANE'
n_x(1) = 0.940
n_y(1) = 0.342
t_x(1) = 3.0
t_y(1) = 2.0

Figure 2. Example of plane definition.

ሬ݊Ԧ ൌ ሺ0.940, 0.342ሻ

ሺ3, 2ሻ

x

y

Page 8 of 43 MFIX with Cartesian Grid Capability

Cylinder
A circular cylinder is defined by specifying its radius, initial orientation, and whether we want
to model internal or external flow. The keyword QUADRIC_FORM(QID) contains information
regarding the initial orientation and type of flow. For example, setting
QUADRIC_FORM(QID) = ’Y_CYL_INT’ will define a cylinder which axis of revolution is
along the y-direction, for internal flow computation. Using QUADRIC_FORM(QID) =
’Z_CYL_EXT’ will define a cylinder which axis of revolution is along the z-direction, for
external flow computation. The cylinder radius is defined by setting a positive value to
RADIUS(QID).
For example, to model the flow over a cylinder of radius 2, in the (xy) plane (the axis of
revolution points in the z-direction), the following parameters are defined

CARTESIAN_GRID = .TRUE.
N_QUADRIC = 1
QUADRIC_FORM(1) = ’Z_CYL_EXT’
RADIUS(1) = 2.0

The initial orientation is limited to x, y, or z axis, but the cylinder can be rotated by any
arbitrary angle, and translated in any direction (see section 2.1.3).

Cone
A cone is defined by setting its half-angle and initial orientation. A value of
QUADRIC_FORM(QID) = ’Y_CONE’ will define a cone which axis of revolution is aligned
with the y-axis. The keyword HALF_ANGLE(QID) defined the cone’s half-angle (in degrees).

For example, to define a cone in the y-direction with half-angle of 30 degrees:

CARTESIAN_GRID = .TRUE.
N_QUADRIC = 1
QUADRIC_FORM(1) = ’Y_CONE’
HALF_ANGLE(1) = 30.0

By default, the cone’s apex is located at the origin. The cone can be translated and rotated
as any other quadric (see section 2.1.3). Currently, only internal flows can be modeled with
the pre-defined cone.

Table 1 summarizes current available pre-defined quadrics. Other pre-defined quadrics can
be included by adding them to the list in the SELECT CASE(TRIM(QUADRIC_FORM(Q)))
construct in subroutine check_data_cartesian.f. The code must be recompiled for
the modification to take effect.

MFIX with Cartesian Grid Capability Page 9 of 43

Pre-defined

quadric Snapshot Value of
QUADRIC_FORM(QID) Other input required

Plane

‘PLANE’
n_x(QID)
n_y(QID)
n_z(QID)

Cylinder aligned
with x‐axis
Internal flow

‘X_CYL_INT’ RADIUS(QID)

Cylinder aligned
with x‐axis

External flow

‘X_CYL_EXT’ RADIUS(QID)

Cylinder aligned
with y‐axis
Internal flow

‘Y_CYL_INT’ RADIUS(QID)

Cylinder aligned
with y‐axis

External flow

‘Y_CYL_EXT’ RADIUS(QID)

Cylinder aligned
with z‐axis
Internal flow

‘Z_CYL_INT’ RADIUS(QID)

Cylinder aligned
with z‐axis

External flow

‘Z_CYL_EXT’ RADIUS(QID)

Cone aligned
with x‐axis
Internal flow

‘X_CONE’ HALF_ANGLE(QID)

Cone aligned
with y‐axis
Internal flow

‘Y_CONE’ HALF_ANGLE(QID)

Cone aligned
with z‐axis
Internal flow

‘Z_CONE’ HALF_ANGLE(QID)

Table 1. Available pre-defined quadrics.

Page 10 of 43 MFIX with Cartesian Grid Capability

2.1.3. Translating and rotating quadrics

Any quadric surface defined in its normal form can be translated by the amount Ԧݐ ൌ
൫ݐ௫, ,௬ݐ ,௫ߠ ௭൯, and rotated around the x, y, and z axes, by the amountݐ ,௬ߠ ௭ respectivelyߠ ݀݊ܽ
(angles expressed in degrees). The order of rotation is currently fixed and is performed first
around the x-axis, then the y-axis, and finally the z-axis.

Example:

To translate quadric 1 by the amount ݐԦ ൌ ሺ1,2ሻ, use:

t_x(1) = 1.0
t_y(1) = 2.0

To rotate quadric 5 by ߠ௬ ൌ20 degrees about the y-axis, use:

Theta_y(5) = 20.0

Quadric surfaces defined in their degenerate forms (planes) are not allowed to be translated
or rotated since all information required to define the plane is already contained in the
normal vector ߣԦ and point ݐԦ belonging to the plane.

2.1.4. Clipping limits

By default, the function ݂ሺݔ, ,ݕ ሻݖ is defined over the entire original computational domain,
i.e., 0 ൑ ݔ ൑ ,ܪܶܩܰܧܮܺ 0 ൑ ݕ ൑ ,ܪܶܩܰܧܮܻ ܽ݊݀ 0 ൑ ݖ ൑ .ܪܶܩܰܧܮܼ It is possible to limit the
definition of a given quadric surface to a rectangular region:
݊݅݉ݔ_݌݈݅ܿ ൑ ݔ ൑ ,ݔܽ݉ݔ_݌݈݅ܿ ݊݅݉ݕ_݌݈݅ܿ ൑ ݕ ൑ ,ݔܽ݉ݕ_݌݈݅ܿ ݊݅݉ݖ_݌݈݅ܿ ݀݊ܽ ൑ ݖ ൑ .ݔܽ݉ݖ_݌݈݅ܿ
This has the effect of truncating the quadric. The region where the quadric is not defined
(clipped region) can be considered either as part of the computational domain (fluid cells) or
excluded from the computation (blocked cells). The flag FLUID_IN_CLIPPED_REGION is
used to switch from one option to another. The default value is .TRUE.. Figure 3 illustrates
the use of clipping limits for an internal flow. The quadric is limited to the region 5.0 ൑ ݔ ൑
20.0. When FLUID_IN_CLIPPED_REGION = .TRUE., the cells that are outside the
clipping limits are retained in the computational domain, whereas when
FLUID_IN_CLIPPED_REGION = .FALSE., the cells that are outside the clipping limits are
removed from the computational domain.

MFIX with Cartesian Grid Capability Page 11 of 43

(a) FLUID_IN_CLIPPED_REGION= .TRUE. (b) FLUID_IN_CLIPPED_REGION = .FALSE.

Figure 3. Illustration of clipping limits.

Note: Quadrics can also be clipped along arbitrary planes using group relations (sections
2.1.5 to 2.1.9).

2.1.5. Combining quadrics

All quadric surfaces must belong to a group. The number of group(s) must be defined
(default value is N_GROUP = 1), and the size of each group determines the number of
quadric in the groups (default value is GROUP_SIZE(1) = 1). For each group, a list of
quadric IDs is specified to populate the groups, using the matrix GROUP_Q(I,J), which
store the quadric ID of Jth quadric assigned to group I.

Example:

Assuming N_QUADRIC = 5, the following would form two groups: group 1 combining
quadrics 1, 2 and 4, and group 2 combining quadrics 3 and 5.

N_GROUP = 2
GROUP_SIZE(1) = 3
GROUP_Q(1,1) = 1
GROUP_Q(1,2) = 2
GROUP_Q(1,3) = 4
GROUP_RELATION(1) = 'OR'

GROUP_SIZE(1) = 2
GROUP_Q(2,1) = 3
GROUP_Q(2,2) = 5
GROUP_RELATION(2) = 'AND'

clip_xmin = 5.0 clip_xmax = 20.0

Region where
the quadric is

defined

Clipped
region

Clipped
region

clip_xmin = 5.0 clip_xmax = 20.0

Region where
the quadric is

defined

Clipped
region

Clipped
region

Quadric Quadric

Page 12 of 43 MFIX with Cartesian Grid Capability

RELATION_WITH_PREVIOUS(2) = 'AND'

Quadrics belonging to the same group can be combined by setting the keyword
GROUP_RELATION for that group. Available options are ‘OR’, ‘AND’ (logical grouping), and
‘PIECEWISE’.

2.1.6. Logical grouping within a group

Several quadrics belonging to a common group can be combined using the ‘OR’ or ‘AND’
attribute. In this case, the actual intersection points between quadrics do not need to be
known in advance. For a given group GID, if GROUP_RELATION(GID) = ‘OR’, a point
belongs to the computational domain if at least one value of ݂ሺݔ, ,ݕ ሻ among all quadrics isݖ
negative. If GROUP_RELATION(GID) = ‘AND’, a point belongs to the computational
domain if all values of ݂ሺݔ, ,ݕ ሻ among all quadrics are negative. Each group is assigned anݖ
f-value, based on the group relation. With an ‘OR’ relation, the f-value is the minimum value
of fሺx, y, zሻ for all quadrics in the group. With an ‘AND’ relation, the f-value is the maximum
value of fሺx, y, zሻ for all quadrics in the group.

In the previous example, quadrics in group 1 are combined with the ‘OR’ relation, and
quadrics in group 2 are combined with the ‘AND’ relation.

Note that this attribute will behave differently for internal and external flows (Figure 4).

Type of flow Quadric signs OR AND

Internal

External

Figure 4. Differences in the effect of GROUP_RELATION for internal and external flows.

− + + −

+ − − +

MFIX with Cartesian Grid Capability Page 13 of 43

2.1.7. Logical grouping among groups

When quadrics are combined within a group, they generate more complex shapes than the
individual quadrics. The resulting shapes from a group can be combined with the geometry
obtained from all previous groups, using the keyword RELATION_WITH_PREVIOUS.
Available options are ‘OR’, and ‘AND’, and they work similar to logical grouping of
quadrics, except they apply to the entire groups, not individual quadric. A values of ‘OR’
means a point belongs to the computational domain if the f-value for the current group or the
f-value for the combination of previous groups is negative. A value of ‘AND’ means a point
belongs to the computational domain if the f-value for the current group and the f-value for
the combination of previous groups is negative.

2.1.8. Piecewise grouping

When quadrics intersect along planes that are perpendicular to either the x, y, or z-axis,
quadrics can be smoothly combined in a piecewise manner. This option is particularly suited
to the combination of two or more surfaces of revolution that share the same axis of
revolution, typically involving cylinders and cones. In this case, quadrics intersects along
planes perpendicular to the axis of revolution, and can be calculated in advance. To group
quadrics in a piecewise fashion, set the group relation to ‘PIECEWISE’, and define
piecewise limits for each quadric, corresponding to the intersection planes between
quadrics. For example, setting piece_ymax(1) = 10.0 and piece_ymin(2) = 10.0
will switch from quadric 1 to 2 at along the y = 10.0 plane. Figure 5 illustrates the piecewise
grouping of three quadrics. Figure 5 illustrates the piecewise grouping of three quadrics.

Figure 5. Example of a piecewise grouping.

ݕ ൑ 10

Quadric 1 : cylinder of radius
2

Quadric 3 : cylinder of radius
8
൒ ݕ 16

Quadric 2 : cone joining quadrics
1 and 3
 10 ൑ ݕ ൑ 16

N_QUADRIC = 3

QUADRIC_FORM(1) = 'Y_CYL_INT' 'Y_CONE' 'Y_CYL_INT'
RADIUS(1) = 2.0 0.0 8.0
HALF_ANGLE(2) = 45.0

t_x(1) = 10.0 10.0 10.0
t_y(1) = 0.0 8.0 0.0
t_z(1) = 10.0 10.0 10.0

piece_ymin(2) = 10.0 16.0
piece_ymax(1) = 10.0 16.0

N_GROUP = 1

GROUP_SIZE(1) = 3
GROUP_Q(1,1) = 1
GROUP_Q(1,2) = 2
GROUP_Q(1,3) = 3

GROUP_RELATION(1) = 'PIECEWISE'

Axis of revolution along the y‐direction,
passing through (x=10, z=10)

Page 14 of 43 MFIX with Cartesian Grid Capability

2.1.9. Example of quadric combination

This example illustrates the use of several groups to combine quadrics. The corresponding
mfix.dat is located in the tutorial folder spoutedbed2. The geometry consists of a spouted
bed and a stabilizer. The entire geometry can be described with 7 quadrics, shown in Figure
6a. Quadrics 1, 3, 4, and 5 represent pairs of parallel planes. Quadric 2 represents a pair of
non-parallel planes. Quadrics 6 and 7 are two single planes (degenerate form). The
geometry is built using the following steps:

Step 1: Define all quadric parameters (see mfix.dat in tutorial folder).
Step 2: Build group 1: Piecewise combination of quadric 4 and 5 (Figure 6b). This creates
the stabilizer shape, running through the entire width of the spouted bed.

 N_GROUP = 3

 GROUP_SIZE(1) = 2
 GROUP_Q(1,1) = 4
 GROUP_Q(1,2) = 5
 GROUP_RELATION(1) = 'PIECEWISE'

Step 3: Build group 2: Combine quadrics 6 and 7 with ‘OR’ relation (Figure 6c). This
creates a mask that will be used to trim group 1.

 GROUP_SIZE(2) = 2
 GROUP_Q(2,1) = 6
 GROUP_Q(2,2) = 7
 GROUP_RELATION(2) = 'OR'

Step 4: Combine groups 1 and 2 with ‘OR’ relation (Figure 6d). The mask (group 2) is
applied to group 1.

 RELATION_WITH_PREVIOUS(2) = 'OR'

Step 5: Build group 3: Piecewise combination of quadric 1, 2, and 3 (Figure 6e). This group
represents the walls of the spouted bed.

 GROUP_SIZE(3) = 3
 GROUP_Q(3,1) = 1
 GROUP_Q(3,2) = 2
 GROUP_Q(3,3) = 3
 GROUP_RELATION(3) = 'PIECEWISE'

Step 6: Combine group 3 with groups 1 and 2, using ‘AND’ relation (Figure 6f) to create the
final geometry.

 RELATION_WITH_PREVIOUS(3) = 'AND'

MFIX with Cartesian Grid Capability Page 15 of 43

 (a) (b) (c) (d) (e) (f)
Individual Group 1 Group 2 Groups Group 3 Overall
quadrics 1 and 2 geometry

Figure 6. Steps involved in geometry definition of a spouted bed with stabilizer.

2.2. Polygons

For two-dimensional geometries, the boundaries can be described by one or a series of
polygons. The polygons can be concave or convex. An ordered list of coordinates for each
vertex is given by the user. The number of vertices is the same as the number of edges,
since the polygon is closed by connecting the last vertex to the first vertex. Open shapes
can be created by locating vertices outside of the computational domain defined by
(XLENGTH, YLENGTH). The option to use polygon(s) is activated by setting the keyword
USE_POLYGON = .TRUE., and the data is read from the file poly.dat. The file structure is
as follows:
Line 1-13: file header. User input starts at line 14
Line 14: Number of polygon(s)
Line 15: Number of vertices defining first polygon, followed by the polygon sign (either 1.0 or
-1.0). A value of 1.0 means the interior region is removed from computation (blocked cells)
and a value of -1.0 means the interior region is part of the computational domain (fluid cells).
Lines 16 and below: For each vertex, provide x and y coordinate, followed by the boundary
condition ID of the corresponding edge. The same sequence (number of vertices, polygon
sign, list of coordinates, and boundary condition ID) is repeated as needed for each
additional polygon.







 

 

Page 16 of 43 MFIX with Cartesian Grid Capability

Example:

An example is given below to define a square region using polygon data (Figure 7). Note
that in this case, this could also be done using the regular boundary conditions in mfix.dat.
The four vertices are located at the corners of the pressure cells. The four corresponding
edges are assigned the same boundary condition ID (2). To define the boundary as a no-
slip wall, the boundary condition type BC_TYPE(2) = ‘CG_NSW’ must be defined in
mfix.dat (see section 3).

Figure 7. Example of polygon data entry.

2.3. User-defined function

To describe the geometry through a user-defined function, the subroutine
eval_usr_fct.f must be modified, and MFIX must be compiled. The same convention
applies, that is regions where ݂ሺݔ, ,ݕ ሻ is positive are excluded from the computationalݖ
domain (blocked cells), and regions where ݂ሺݔ, ,ݕ ሻ is negative are part of theݖ
computational domain (fluid cells). The boundaries are located where ݂ሺݔ, ,ݕ ሻ is zeroݖ
(within the tolerance TOL_F). This option is activated by setting N_USR_DEF = 1.

The subroutine must assign a value to the following variables:

f_usr : value of ݂ሺݔ, ,ݕ ሻ (Real), andݖ

BCID : boundary condition ID of the cut cell associated with the boundary (Integer)

The subroutine eval_usr_fct.f is located in mfix/model/cartesian_grid folder.
Before modifying the file, it is recommended to create the sub-folder cartesian_grid in
the current run directory, and copy the file eval_usr_fct.f into this directory. Once the
file is modified, MFIX must be compiled for the modifications to take effect. The makefile will
look into the current run directory structure and use the file located in the cartesian_grid
folder. For example, if the current run directory is wavy, the subroutine eval_usr_fct.f
should be placed in wavy/cartesian_grid.

1 2

3 4









Number of
polygons

Number of
vertices

Polygon sign
(Block interior
cells)

(x,y) of vertex 1

(x,y) of vertex 4

BC ID of edge 

BC ID of edge 

1
4 1.0
10.0 10.0 2
15.0 10.0 2
15.0 5.0 2
10.0 5.0 2

Line 14 of
poly.dat

(10,10) (15,10)

(15,5)(10,5)

MFIX with Cartesian Grid Capability Page 17 of 43

2.4. STL file

Three-dimensional geometry can be described by an STL file, which is typically generated
from a CAD software. The STL file must be stored in ASCII format and named
geometry.stl. The entire geometry is assigned the same boundary condition ID and is
set by defining the flag STL_BC_ID. The geometry can be scaled by the factor STL_SCALE
and translated in any direction.

2.5. MSH file

If a three-dimensional .msh file generated by Gambit is available, the boundaries geometry
can be imported directly. The .msh file must be stored in ASCII format and named
geometry.msh. Boundary zones are read from the .msh file, and the corresponding
boundary condition type must be assigned in mfix.dat. The geometry can be scaled by the
factor MSH_SCALE and translated in any direction.

3. Boundary condition specification

Each cut cell is assigned a boundary condition identification number (BC_ID). For a given
quadric surface, the BC_ID is stored in the variable BC_ID_Q. For polygon data, the BC_ID
is defined for each polygon edge, in the file poly.dat (see section 2.2). For a user-defined
function, the BC_ID must be defined in the file eval_usr_fct.f (see section 2.3). For a
geometry defined by an STL file, the flag STL_BC_ID is defined.

The BC_ID is linked to a type of boundary condition, similar to what is done for standard
cells. Current available boundary conditions types for cut cells include:

CG_NSW: No-slip wall
CG_FSW: Free-slip wall
CG_PSW: Partial-slip wall
CG_MI: Mass Inlet
CG_PO: Pressure Outlet

In the example below, BC_ID 12 is assigned to quadric 1. Any cut cell related to Quadric 1,
will be treated as a no-slip wall.

BC_ID_Q(1) = 12
BC_TYPE(12) = 'CG_NSW'

Note: It is possible to define different wall boundary conditions for the gas and solid phases.
The input is similar to the partial-slip wall for regular cells. Specifying a boundary conditions
type of ‘CG_PSW’ requires the input of the coefficient hw for gas and solid phase. For free-
slip, set hw=0, and for no-slip, leave hw undefined (hw = ).

Page 18 of 43 MFIX with Cartesian Grid Capability

For example, BC_ID 10, linked to quadric ID 1 will specify no-slip wall for the gas phase and
free-slip wall for the solids phase:

BC_ID_Q(1) = 10
BC_TYPE(10) = 'CG_PSW'

BC_HW_s(10,1) = 0.0

Note: The BC_ID assigned to cut cells can be visualized from the vtk file, by including the
flag 101 into the list of vtk variables VTK_VAR (see section 6).

4. Removal of small pressure cells

The intersection of quadrics, polygons, or user-defined function with the background grid is
likely to generate small cells, which can increase the stiffness of the system of equations.
Small cells can be removed from the computational domain by slightly altering the
geometry. When the boundary intersects the background grid near a corner point, the
intersection point is moved to the corresponding corner point (i.e., the intersection point is
“snapped” onto the grid). The tolerance parameter TOL_SNAP defines the sensitivity of the
snapping procedure. It is expressed in term of a fraction of the current cell edge along which
the intersection point is located. For example, specifying TOL_SNAP = 0.01 will snap an
intersection points to a corner point if they are separated by less than 1 % of the cell edge. A
value of TOL_SNAP = 0.0 turns off this option (default value). Figure 8 illustrates this
procedure with an exaggerated value of TOL_SNAP = 0.10 for clarity. Typical values are
in the range 0.01 to 0.05. For stretched grid, providing different values for TOL_SNAP(1),
TOL_SNAP(2) and TOL_SNAP(3) will apply different tolerances along the x, y, and z-axis,
respectively. Setting a single value to TOL_SNAP will apply the same tolerance in all
directions.

(a) TOL_SNAP = 0.00 (b) TOL_SNAP = 0.10

Figure 8. Effect of TOL_SNAP on small cells.

Small cells

The boundary now intersects
the grid at the corner points,
which removes small
pressure cells

MFIX with Cartesian Grid Capability Page 19 of 43

The definition of a small cell is arbitrary. One way to characterize a cell as small is to
compare the volume of the cut cell with the volume of the original (uncut) cell. If the ratio of
the volume of a cut cell over the volume of the original cell is less than the tolerance
TOL_SMALL_CELL, a cut cell is flagged as small. A value of TOL_SMALL_CELL = 0.01
would flag cell IJK as small if VOL(IJK) < 0.01 DX(I)*DY(J)*DZ(K), where
VOL(IJK) is the volume of the cut cell, and DX(I), DX(J), DZ(K) are the original cell
dimensions. Currently, small pressure cell remaining after the snapping procedure are
removed from computation.

5. Utilities

5.1. Grid spacing

To facilitate the specification of non uniform grid spacing, a simple grading option is
available. The following description applies to the definition of grid spacing DX in the x-
direction. Similar input for specifying DY and DZ can be applied in the y and z directions as
well.

First, the domain length is split into several segments by specifying a list of control points.
Since the origin is always located at x=0, the first control point that needs to be specified
locates the end point of the first segment. The last control point must match the value of
XLENGTH. Therefore, the number of control points is the same as the number of segments.
Along each segment, the number of cells is specified by NCX. To control the grid spacing
within each segment, one of the following attributes must be specified:

 ERX: Expansion ratio (positive real number). This is the ratio of the last to first grid

spacing
Lୟୱ୲ DX

F୧୰ୱ୲ DX
. A value of ERX larger than one tends to stretch the grid as x

increases, while a value smaller than one tends to compress the grid as x increases.
A value of one will keep the spacing uniform in that segment.

 First_DX : Grid spacing of the first cell in a given segment. A positive value assigns
the value, a negative value copies the grid spacing from the previous segment (if it
was defined separately). The size of the other cells is automatically adjusted based
on the segment length and number of cells.

 Last_DX : Grid spacing of the last cell in a given segment. A positive value assigns
the value, a negative value copies the grid spacing from the next segment (if it was
defined separately). The size of the other cells is automatically adjusted based on
the segment length and number of cells.

For example, the following input:

 CPX = 1.0 2.0
 NCX = 10 10
 ERX = 0.5 1.0

Page 20 of 43 MFIX with Cartesian Grid Capability

Defines two segments, [0.0 ; 1.0], and [1.0 ; 2.0], with 10 cells each, and an expansion ratio
of 0.5 in the first segment, and 2.0 in the second segment. In the first segment, the last cell
is half the size of the first cell, while in the second segment, the last cell is twice the size of
the first cell.

Specifying grid spacing independently does not guaranty a smooth transition from one
segment to another. To avoid discontinuities in grid spacing, it is recommended to use a
negative input for First_DX or Last_DX, which will force the grid spacing of one segment
to match the grid spacing of the adjacent segment. For example, the following input:

 CPX = 2.0 3.0 6.0
 NCX = 5 5 10
 ERX(2) = 1.0
 LAST_DX(1) = -1.0
 FIRST_DX(3) = -1.0

Specifies a uniform grid spacing in the second segment [2.0 ; 3.0]. The last value of DX in
the first segment matches the first DX in the second segment. The first DX in the third
segment matches the last DX in the second segment.

The cylinder tutorial illustrates the use of control points to define non-uniform grid spacing.

5.2. Progress bar

A progress bar can be displayed to visualize the progress of the major pre-processing steps
step. This option is activated with the keyword PRINT_PROGRESS_BAR=.TRUE.. The
appearance of the progress bar can be controlled by changing its length (keyword
BAR_WIDTH) and the character used to create the bar (BAR_CHAR). By default, the progress
bar is updated by increments of 5%. The update frequency is controlled by the keyword
BAR_RESOLUTION. The progress is also printed at the center of the bar. Figure 9 shows the
appearance of the progress bar. Showing the progress bar is mostly useful for fine grids and
three dimensional grids to monitor the progress of the pre-processing stage.

INTERSECTING GEOMETRY WITH SCALAR CELLS...
|===================== 75.0 % ======== |

Figure 9. Appearance of the progress bar.

x=0.0 x = 1.0 x = 2.0

 First segment (10 cells, ERX=0.5) Second segment (10 cells, ERX=2.0)

x=0.0 x = 2.0 x = 3.0 x = 6.0

 First segment Second segment Third segment
 (5 cells) (5 cells) (10 cells)

MFIX with Cartesian Grid Capability Page 21 of 43

5.3. Dashboard

While MFIX is running, progress in the simulation can be followed on the screen. The
screen output can be redirected to a file. For example, issuing the command ./mfix |
tee run.log will launch MFIX, display the output on the screen as well as in the file
run.log.

A summary of the simulation progress can also be written in the file DASHBOARD.TXT,
which will be referred to as the dashboard. This option is activated by setting the keyword
WRITE_DASHBOARD = .TRUE. (default value is .FALSE.). When this option is activated,
the dashboard is updated at every time step. The frequency can be increased by setting a
value of F_DASHBOARD larger than one.

Figure 10 illustrates the dashboard. The top portion contains descriptions of the simulation
(provided in mfix.dat), the run status, elapsed CPU time and estimated CPU time left, the
name of the latest vtk file written, and the type of run (serial or parallel).

A table summarizes values of some variables. The current, minimum and maximum values
are displayed, and a progress bar corresponding to the numerical value is displayed on the
right-hand-side. The sign beside the variable name DT indicates whether the last time step
was increased (+) or decreased (-) during the computation. Units for Time and DT are
seconds. Sm is the solid inventory in the domain (expressed in grams for cgs unit system
and kilograms for SI unit system). NIT is the number of iterations for the current time step.
The name of the variable yielding the maximum residual is displayed in the bottom row. A
time stamps is printed at the bottom of the dashboard.

The script show_dashboard located in mfix/tools/Dashboard can be used to display
and automatically refresh the dashboard. For example, issuing the command ./mfix.exe
> run.log & will run MFIX in the background, and invoking show_dashboard 2 will
display the dashboard and update it every 2 seconds.

Page 22 of 43 MFIX with Cartesian Grid Capability

Figure 10. Appearance of the dashboard.

MFIX with Cartesian Grid Capability Page 23 of 43

6. Post-processing

When the Cartesian grid option is activated, the data can be saved into vtk files [5], which
can be visualized with the post-processing tool Paraview [6] or Visit [7]. Visualizing the data
using the .RES file will not show any cut cell. To save output files in vtk format, set the
keyword WRITE_VTK_FILES = .TRUE.. This option is only valid when CARTESIAN_GRID
= .TRUE.. When the Cartesian grid capability is turned-off, the .RES file can be used for
data visualization, since no cut cells are generated.

The name of the vtk file is based on RUN_NAME, defined in mfix.dat. For transient computations, a
sequential integer is appended to the filename, starting at 0, to create a series of files (use
TIME_DEPENDENT_FILENAME = .TRUE.). The file(s) extension is always .vtk. The
keyword FRAME will offset the starting integer. For example, assume we have the following files
after a successful run: VAR_0.vtk, VAR_1.vtk, ……, VAR_10.vtk. We can restart the
simulation (with RUN_TYPE = ‘RESTART_1’), and set FRAME = 10. The simulation will restart
and the vtk files will not be overwritten, i.e., the next vtk file will be VAR_11.vtk.

The list of variables stored into the vtk file is controlled by a list of integers stored in VTK_VAR.
Current available flags for VTK_VAR are:

1: Void fraction (EP_g)
2: Gas pressure, solids pressure (P_g, P_star)
3: Gas velocity (U_g, V_g, W_g)
4: Solids velocity (U_s, V_s, W_s)
5: Solids density (ROP_s)
6: Gas and solids temperature (T_g, T_s1, T_s2)
7: Gas and solids mass fractions (X_g, X_s)
8: Granular temperature (G)
9: User-defined scalar (Scalar)
11: Turbulence quantities (k and epsilon)
12: Gas vorticity magnitude and Lambda_2 (VORTICITY, LAMBDA_2)
100: Processor assigned to scalar cell (Partition)
101: Boundary condition flag for scalar cell (BC_ID)

For example, setting VTK_VAR = 1 3 4 will store the void fraction, gas velocity and solids
velocity into each vtk file.

A boundary file, starting with the value of RUN_NAME, and ending with _boundary.vtk is
written during the preprocessing stage. It can be used to easily visualize the boundary. It is
mostly useful for three-dimensional geometries. If it is desired to look through the boundary,
the boundary must be displayed with a low opacity value. Figure 11 shows data obtained
from the 3dfb tutorial (three-dimensional fluidized bed), with a cylindrical boundary. Figure
11a show void fraction contour along a vertical slice, whereas Figure 11b shows the
boundary, and isosurfaces of the void fraction.

Page 24 of 43 MFIX with Cartesian Grid Capability

 (a) (b)

Figure 11. Instantaneous data visualization (a) void fraction contour along a vertical slice

and (b) boundary and isosurfaces of void fraction.

The file CUT_CELL.LOG contains statistics about the grid, with minimum and maximum
values of geometrical quantities, interpolation factors, and non-orthogonality correction
terms.

For two-dimensional simulations, the file ani_cutcell.vtk will be generated at the
beginning of the run. It will be used by animate_mfix to display cut cells. Cut cells will not be
displayed by animate_mfix for three-dimensional computations. The only option to visualize
cut cells in 3D is to use the VTK files. Note that animate_mfix uses the SPX_DT values
between consecutive frames, not the VTK_DT values.

Boundary surface displayed
from 3DFB_boundary.vtk, with
an opacity of 0.5

Iso‐surfaces of void fraction
displayed from 3DFB_200.vtk
(time = 2.0 sec)

MFIX with Cartesian Grid Capability Page 25 of 43

7. Code modifications

7.1. Preprocessing

The procedure to identify cut cells is as follows. An intersection search is performed along
each edge of the cell (the search is performed only if the function ݂ሺݔ, ,ݕ ሻ has oppositeݖ
signs at the edge extremities). The location of the intersection points may be altered
depending on the value of TOL_SNAP (see section 4). Once all intersections points are
determined within a cell, the connectivity is established for each cut-cell and its faces, and
re-ordered if necessary. Faces are described as convex polygons, and the face areas are
computed similar to convex polygon areas. To compute cut-cell volumes, cut-cells are split
into pyramids, and volumes of pyramids are computed and added to form the cell volume.

Velocity nodes are placed at the center of pressure cell faces. All interpolation correction
terms and non-orthogonality correction terms are computed from the new velocity node
locations. An example of a computational grid, with the location of velocity nodes is shown
in Figure 12, where the thick solid line is the domain boundary.

Figure 12. Example of scalar cut-cells with location of velocity nodes.

Note: It is assumed that the geometry (surface quadrics, polygon data, or user-defined
function) intersects an edge no more than one time. If there are actually two intersections
along the same edge, they will not be detected since the function ݂ሺݔ, ,ݕ ሻ will have theݖ

Standard
cell

Cut cell

Blocked
cell

Page 26 of 43 MFIX with Cartesian Grid Capability

same sign at the edge extremities (see Figure 13). The sign of ݂ሺݔ, ,ݕ ሻ is indicated at theݖ
corners.

(a) Original cell and quadric surface (b) shape of corresponding cut cell

Figure 13. Example of misrepresentation of boundary.

These two intersection
points will not be detected

−

+

−

+

MFIX with Cartesian Grid Capability Page 27 of 43

7.2. No-slip wall

Due to the relocation of velocity nodes at the face centers, the velocity ue may not be located
at the center of the east face (Figure 14). Instead, the velocity at the face center uec is
computed assuming zero velocity at the wall using the ratio of normal distances to the wall,
as given in Equation (8). Figure 14 shows the notation used to define the interpolation
correction factor ߙ௘. In the code, this correction factor is named alpha_ue_c. The same
types of correction terms are defined for other velocity components. Their names start with
the same root alpha_, followed by two letters, representing the velocity component (u,v, or
w), and the face (e for East , n for North, t for Top), respectively. For example, in the u-
momentum cell, the following three correction terms will be computed (in 3D):
alpha_ue_c, alpha_un_c, alpha_ut_c. Wall distances are named DELH in the code.

 uୣୡ ൌ
∆hୣୡ

∆hୣ
uୣ ൌ αୣuୣ (8)

Figure 14. Example of x-velocity cut-cells, with illustration of the interpolation correction for

uec at east face.

uP
ue

uE

uec

hec
he

Page 28 of 43 MFIX with Cartesian Grid Capability

In the u-momentum cell, other velocity components are interpolated at the face center
based on the location of adjacent velocity nodes (Figure 15). For example, the v-component
of velocity along the north face would be interpolated from

 v୬ ൌ θ୬ୣv୬ୣ ൅ θ୬୵v୬୵ (9)
where

 θ୬ୣ ൌ
∆୶౭

∆୶౭౛
 , θ୬୵ ൌ

∆୶౛

∆୶౭౛
, and ∆x୵ୣ ൌ ∆x୵ ൅ ∆xୣ (10)

In the code, ߠ௡௘ in the u-momentum cell is named theta_u_ne. Other interpolation
correction terms are computed for other velocity components, and named in a similar
fashion.

Figure 15. Interpolation of vn at north face of u-velocity cell.

Due to the relocation of velocity nodes at the face centers, vector Ԧܵ joining points P and E,
may not be perpendicular to the east face (Figure 16). Therefore, the derivative ߲ݑ ⁄ݔ߲ is
approximated by equations (11) using the fact that velocity is zero at the wall. The vector
ሬܰሬԦ is perpendicular to the wall and passes through point e.

∂u
∂x

ൎ
uE െ uP

|S୶|
െ

1
S୶

൬S୷
∂u
∂y

൅ S୸
∂u
∂z

൰ (11)

where

ப୳

ப୷
ൎ

N౯୳౛

∆୦౛
 and

ப୳

ப୸
ൎ

N౰୳౛

∆୦౛
 (12)

Therefore,

ப୳

ப୶
ൎ

୳Eି୳P

|S౮|
െ

S౯N౯ାS౰N౰

S౮∆୦౛
uୣൌ

୳Eି୳P

|S౮|
െ NOC uୣ (13)

vnw vn vne

xw xe

uP

MFIX with Cartesian Grid Capability Page 29 of 43

The non-orthogonality correction term NOC ൌ
S౯N౯ାS౰N౰

S౮∆୦౛
 can be computed during

preprocessing. In the code, it is named NOC_U_E. Other non-orthogonality correction terms
are computed and named similarly.

Figure 16. Example of x-velocity cut cells, with illustration of the non-orthogonality

correction for the evaluation of the derivative ߲ݑ ⁄ݔ߲ at east face.

P

ue
uE

he

ሬܰሬԦ
Ԧܵ

uP E
e

Page 30 of 43 MFIX with Cartesian Grid Capability

It is assumed that in the cut cell, the velocity is tangential to the wall. The shear force acting
on the fluid due to the wall shear stress is parallel to the velocity vector (Figure 17), and can
be written as

 FሬԦ ൎ െµ∆Aୡ୳୲
∂uሬԦ
∂n

ൎ െµ∆Aୡ୳୲ ቀ
u

∆h
ıԦ ൅

v
∆h

jԦ ൅
w
∆h

kሬԦቁ ൌ F୶ ıԦ ൅ F୷ jԦ ൅ F୸ kሬԦ (14)

Where ∆ܣ௖௨௧ is the surface area of the cut face. Therefore, the contribution of the cut face
can be applied implicitly along each direction (e.g., ܨ௫ ൌ െܣ∆ߤ௖௨௧

௨

∆௛
 in the x-direction).

Figure 17. Additional wall shear stress arising from the cut-face.

u
v ݑሬԦ

h

Acut

ଓԦ
ଔԦ

x

y

MFIX with Cartesian Grid Capability Page 31 of 43

7.3. Free-Slip wall

For free-slip walls, the assumption of zero wall velocity is not valid. Instead, the velocity
gradient normal to the wall is assumed to be zero. Therefore, the correction term ߙ௘ is set to
one, and the non-orthogonality correction terms are set to zero. No additional shear force
term is added.

7.4. Problematic cells

A wide variety of cut cells are typically generated, and cut cells vary in shape and size.
Figure 18 illustrates various shapes of cut cells. The generation of small pressure cells
leads to stability issues. Section 4 describes a method to reduce the number of small
pressure cells, by slightly altering the geometry. Due to the staggered grid formulation,
velocity cells require pairs of pressure nodes (East/West, North/South and Top/Bottom) to
compute pressure gradients. However, when some pressure cells are removed (blocked
cells), the corresponding velocity cells will only have one pressure node and the pressure
gradient cannot be computed in that direction. When this situation occurs, the velocity cell is
flagged as a “wall cell”, and the momentum equation is not solved for this cell. A velocity is
specified, which depends on the type of boundary condition assigned to the cell. For no-slip
wall (BC_TYPE = ‘CG_NSW’), a zero velocity is assigned. For Free-slip wall (BC_TYPE =
‘CG_FSW’), the velocity is the same as the velocity of an adjacent cell. The adjacent cell is
called the “master” cell of the “wall cell”.

The treatment of single-pressure velocity cells effectively limits their size to half the size of a
standard cell, in any direction. This criterion automatically avoids problems linked to small
velocity cells.

Figure 18. Examples of cut cell shapes.

Page 32 of 43 MFIX with Cartesian Grid Capability

8. Tutorial files

The tutorial files are located in /mfix/tutorials/Cartesian_grid_tutorials.

Snapshot Folder
Method to
describe
geometry

Dimension
Phase

(G=Gas,
S=Solid)

Description

channel

One quadric
surface

2D G Flow in a skewed

channel

cylinder

One quadric
surface

2D G Flow over a cylinder

naca4412 Polygon

data 2D G Flow over an airfoil

hourglass

Three
quadric
surfaces

2D G/S
Solids falling in an
hourglass-shaped

container

spoutedbed1
Three

quadric
surfaces

2D G/S Spouted bed

spoutedbed2

7 quadrics,
3 groups 2D G/S Spouted bed with

stabilizer

polygons Polygon

data 2D G/S Pack of solids falling
on polygons

wavy

User-
defined
function

2D G/S Solid jet impinging on
a wavy surface

3dfb

One quadric
surface

3D G/S 3D fluidized bed

cyclone

12 quadrics,
6 groups 3D G/S Flow of particles

through a cyclone

MFIX with Cartesian Grid Capability Page 33 of 43

9. Cartesian Grid keywords

keyword(dimension) Type Description

CARTESIAN_GRID
 L Activate Cartesian grid cut cell technique.

[.FALSE.] Do not use Cartesian grid cut cell technique.

.TRUE.

Use Cartesian grid cut cell technique. One of the
following methods must be used to define the geometry:
Quadric surfaces (N_QUADRIC >=1), polygons
(USE_POLYGON = .TRUE.), or a user-defined function
(N_USR_DEF = 1).

N_QUADRIC
[0] I Number of quadric surfaces defining the boundaries

(<=100).

USE_POLYGON
 L Use polygons to describe geometry.

[.FALSE.] Do not use polygons.

.TRUE. Read polygon data (for 2D geometry only) from poly.dat.

N_USR_DEF
[0] I

Number of user-defined functions (currently limited to 0
or 1). If set to 1, the geometry is defined in the user
subroutine eval_usr_fct.f.

USE_STL L Use STL file to describe geometry.

[.FALSE.] Do not use STL file.

.TRUE. Read triangulated geometry (for 3D geometry only) from
geometry.stl.

USE_MSH L Use .msh file to describe geometry.

[.FALSE.] Do not use .msh file.

.TRUE. Read geometry (for 3D geometry only) from
geometry.msh.

QUADRIC_FORM
 C Form of the quadric surface equation.

['NORMAL']

Use normal form, as defined in Equation (1).
Regions where f(x,y,z) < 0 are part of the computational
domain.
Regions where f(x,y,z) > 0 are excluded from the
computational domain.

See section 2.1.2 for pre-defined quadric surfaces
(planes, cylinder and cones)

QUADRIC_SCALE DP Scaling factor, applied to all quadric geometry

Page 34 of 43 MFIX with Cartesian Grid Capability

[ONE] parameters.

LAMBDA_X()
[ZERO] DP

Coefficient lambda_x in Equation (1) ('NORMAL' form)
or x-component of normal vector defining plane in
Equation (5) ('DEGENERATE' form).

LAMBDA_Y()
[ZERO] DP

Coefficient lambda_y in Equation (1) ('NORMAL' form)
or y-component of normal vector defining plane in
Equation (5) ('DEGENERATE' form).

LAMBDA_Z()
[ZERO] DP

Coefficient lambda_z in Equation (1) ('NORMAL' form)
or z-component of normal vector defining plane in
Equation (5) ('DEGENERATE' form).

DQUADRIC()
[ZERO] DP Coefficient d in Equation (1).

N_X()
[ZERO] DP

x-component of normal vector defining the plane (used
when QUADRIC_FORM = ‘PLANE’)

N_Y()
[ZERO] DP

y-component of normal vector defining the plane (used
when QUADRIC_FORM = ‘PLANE’)

N_Z()
[ZERO] DP

z-component of normal vector defining the plane (used
when QUADRIC_FORM = ‘PLANE’)

RADIUS()
[ZERO] DP

Cylinder radius (used when QUADRIC_FORM =
‘*_CYL_***’)

HALF_ANGLE()
[ZERO] DP

Cone half angle, expressed in degrees (used when
QUADRIC_FORM = ‘*_CONE’)

THETA_X()
[ZERO] DP Rotation angle with respect to x-axis (Degrees).

THETA_Y()
[ZERO] DP Rotation angle with respect to y-axis (Degrees).

THETA_Z()
[ZERO] DP Rotation angle with respect to z-axis (Degrees).

T_X()
[ZERO] DP Translation in x-direction.

T_Y()
[ZERO] DP Translation in y-direction.

T_Z()
[ZERO] DP Translation in z-direction.

CLIP_XMIN()
[- LARGE_NUMBER] DP Lower x-limit where the quadric is defined.

CLIP_XMAX()
[LARGE_NUMBER] DP Upper x-limit where the quadric is defined.

MFIX with Cartesian Grid Capability Page 35 of 43

CLIP_YMIN()
[- LARGE_NUMBER] DP Lower y-limit where the quadric is defined.

CLIP_YMAX()
[LARGE_NUMBER] DP Upper y-limit where the quadric is defined.

CLIP_ZMIN()
[- LARGE_NUMBER] DP Lower z-limit where the quadric is defined.

CLIP_ZMAX()
[LARGE_NUMBER] DP Upper z-limit where the quadric is defined.

FLUID_IN_CLIPPED_REGION L

Flag defining the type of cells that are outside of the
zone defined by [CLIP_XMIN;CLIP_XMAX],
[CLIP_YMIN;CLIP_YMAX],[CLIP_ZMIN;CLIP_Z
MAX].

[.TRUE.] Treat cells as fluid cells.

.FALSE. Remove cells from computational domain.

PIECE_XMIN()
[- LARGE_NUMBER] DP Lower x-limit where the quadric is defined in a

piecewise group.

PIECE _XMAX()
[LARGE_NUMBER] DP Upper x-limit where the quadric is defined in a

piecewise group.

PIECE _YMIN()
[- LARGE_NUMBER] DP Lower y-limit where the quadric is defined in a

piecewise group.

PIECE _YMAX()
[LARGE_NUMBER] DP Upper y-limit where the quadric is defined in a

piecewise group.

PIECE _ZMIN()
[- LARGE_NUMBER] DP Lower z-limit where the quadric is defined in a

piecewise group.

PIECE _ZMAX()
[LARGE_NUMBER] DP Upper z-limit where the quadric is defined in a

piecewise group.

BC_ID_Q()
[UNDEFINED_I] I Boundary condition flag

N_GROUP
[1] I Number of group(s) of quadrics (<=50).

GROUP_SIZE()
[GROUP_SIZE(1)=1] I Number of quadrics in the group.

GROUP_Q(I,J)
[Q(1,1) = 1] I Quadric ID of Jth quadric assigned to group I.

GROUP_RELATION()
 C Relation among quadrics of a same group.

['OR'] A point belongs to the computational domain if at least
one of f(x,y,z) among all quadrics is negative

Page 36 of 43 MFIX with Cartesian Grid Capability

'AND' A point belongs to the computational domain if all of
f(x,y,z) among all quadrics are negative

RELATION_WITH_PREVIOUS C Relation between current group and combination of all
previous groups.

['OR']
A point belongs to the computational domain if f-value
for the current group or f-value for the combination of
previous groups is negative

'AND'
A point belongs to the computational domain if f-value
for the current group and f-value for the combination of
previous groups is negative

TOL_SNAP()
[0.0] DP

Tolerance used to snap an intersection point onto an
existing cell corner (expressed as a fraction of edge
length, between 0.0 and 0.5). For stretched grids, three
values can be entered in the x, y and z directions.

TOL_DELH
[0.0] DP

Tolerance used to limit acceptable values of normal
distance to the wall (expressed as a fraction of cell
diagonal, between 0.0 and 1.0).

TOL_SMALL_CELL
[0.01] DP Tolerance used to detect small cells (expressed as a

fraction of cell volume, between 0.0 and 1.0).

TOL_MERGE
[1.0E-12] DP Tolerance used to remove duplicate nodes (expressed

as a fraction of cell diagonal, between 0.0 and 1.0).

TOL_SMALL_AREA
[0.01] DP Tolerance used to detect small faces (expressed as a

fraction of original face area, between 0.0 and 1.0).

ALPHA_MAX
[ONE] DP Maximum acceptable value of interpolation correction

factor.

TOL_F
[1.0D-9] DP Tolerance used to find intersection of quadric surfaces

or user-defined function with background grid.

TOL_POLY
[1.0D-9] DP Tolerance used to find intersection of polygon with

background grid.

TOL_STL
[1.0D-6] DP Tolerance used to find intersection of STL triangles with

background grid.

STL_SMALL_ANGLE
[5.0] DP

Smallest angle accepted for valid STL triangles (in
degrees). Triangles having an angle smaller that this
value will be ignored.

RAY_DIR
['X-'] C

Ray direction used to determine whether any point is
located inside or outside of the STL surface. A value of
'X-' means the ray is parallel to the x-axis and points in
the negative x-direction

'X+' The ray is parallel to the x-axis and points in the positive
x-direction

MFIX with Cartesian Grid Capability Page 37 of 43

'Y-' The ray is parallel to the y-axis and points in the
negative y-direction

'Y+' The ray is parallel to the y-axis and points in the positive
y-direction

'Z-' The ray is parallel to the z-axis and points in the
negative x-direction

'Z+' The ray is parallel to the x-axis and points in the positive
x-direction

'MIN' The ray points to the origin (0.0 ; 0.0 ; 0.0) of the
coordinate system

'MAX' The ray points to (XLENGTH, YLENGTH,ZLENGTH)

OUT_STL_VALUE
[1.0] DP

Defines value of f_stl outside of the STL geometry. A
value of 1.0 means the domain outside of the STL
geometry is excluded from computation, i.e., an internal
flow is computed.

-1.0 Model an external flow

STL_BC_ID
[UNDEFINED_I] I Boundary condition flag for the STL geometry

TX_STL
[ZERO] DP Translation in x-direction, applied to the STL geometry.

TY_STL
[ZERO] DP Translation in y-direction, applied to the STL geometry.

TZ_STL
[ZERO] DP Translation in z-direction, applied to the STL geometry.

SCALE_STL
[ONE] DP Scaling factor, applied to the STL geometry. Note that

translation occurs after scaling.

TOL_MSH
[1.0D-6] DP Tolerance used to find intersection of .msh file with

background grid.

MSH_SMALL_ANGLE
[5.0] DP

Smallest angle accepted for valid .msh triangles (in
degrees). Triangles having an angle smaller that this
value will be ignored.

OUT_MSH_VALUE
[1.0] DP

Defines value of f outside of the .msh geometry. A value
of 1.0 means the domain outside of the .msh geometry
is excluded from computation, i.e., an internal flow is
computed.

-1.0 Model an external flow

TX_MSH
[ZERO] DP Translation in x-direction, applied to the .msh geometry.

TY_MSH DP Translation in y-direction, applied to the .msh geometry.

Page 38 of 43 MFIX with Cartesian Grid Capability

[ZERO]

TZ_MSH
[ZERO] DP Translation in z-direction, applied to the .msh geometry.

SCALE_MSH
[ONE] DP Scaling factor, applied to the .msh geometry. Note that

translation occurs after scaling.

ITERMAX_INT
[10000] I Maximum number of iterations used to find intersection

points.

SET_CORNER_CELLS
[.FALSE.] L

Flag to detect and treat corner cells the same way as in
the original MFIX version (i.e. without cut cells). If set to
.TRUE., some cut cells may be treated as corner cells.

FAC_DIM_MAX_CUT_CELL
[0.25] DP

Factor used to allocate some cut cell arrays (expressed
as a fraction of DIMENSION_3G)

WRITE_VTK_FILES L Write vtk files at regular intervals.

[.FALSE.]
Do not write vtk files. If there are cut cells, they will not
be displayed from the usual .RES file

.TRUE. Valid only if CARTESIAN_GRID = .TRUE.

TIME_DEPENDENT_FILENAME L Use time-dependent vtk file names

[.TRUE.]
A sequential integer is appended to the vtk filenames as
they are written to create a series of files (recommended
for transient computation).

.FALSE. The vtk file overwrites the previous file (recommended
for steady-state computation).

VTK_DT
[UNDEFINED] DP Interval (expressed in seconds of simulation time) at

which vtk files are written.

VTK_VAR()
[1 2 3 4] I

List of variables written in vtk files:
1 : Void fraction (EP_g)
2 : Gas pressure, solids pressure (P_g, P_star)
3 : Gas velocity (U_g, V_g, W_g)
4 : Solids velocity (U_s, V_s, W_s)
5 : Solids density (ROP_s)
6 : Gas and solids temperature (T_g, T_s1, T_s2)
7 : Gas and solids mass fractions (X_g, X_s)
8 : Granular temperature (G)
9 : User-defined scalar (Scalar)
10 : NOT AVAILABLE (Reaction Rates)
11 : Turbulence quantities (k and ε)
12 : Gas vorticity magnitude and Lambda_2
(VORTICITY, LAMBDA_2)
100 : Processor assigned to scalar cell (Partition)
101 : Boundary condition flag for scalar cell (BC_ID)

MFIX with Cartesian Grid Capability Page 39 of 43

FRAME
[-1] I Initial frame counter (suffix of vtk file)

PG_OPTION I Option for pressure gradient computation in cut cells.

[0] Use East, North and Top areas of pressure cell (same
as standard cells).

1 Use maximum of (East/West), (North/South), and
(Top/Bottom) pairs of velocity cells.

2 Use both (East/West), (North/South), and (Top/Bottom)
areas of velocity cells.

CG_SAFE_MODE() I Run code in safe mode.

[0] Runs the code with modified subroutines for cut cell
treatment.

1

Performs initial preprocessing but use all original MFIX
subroutines during flow solution (using only cell volumes
and areas of cut cells).
Setting CG_SAFE_MODE(1) = 1 will disable cut-cell
treatment for scalar cells.
Setting CG_SAFE_MODE(3) = 1 will disable cut-cell
treatment for u-velocity cells.
Setting CG_SAFE_MODE(4) = 1 will disable cut-cell
treatment for v-velocity cells.
Setting CG_SAFE_MODE(5) = 1 will disable cut-cell
treatment for w-velocity cells.

PRINT_WARNINGS
[.FALSE.] L

Prints any warning message encountered during pre-
processing on the screen.

CG_UR_FAC()
[1.0] DP

Under-Relaxation factor used in cut cells (only
CG_UR_FAC(2) is used).

PRINT_PROGRESS_BAR
[.FALSE.] L Print a progress bar during each major step of pre-

processing stage.

BAR_WIDTH
[50] I Width of the progress bar (complete status), expressed

in number of characters (between 10 and 80).

BAR_CHAR
['='] C Character used to create the progress bar.

BAR_RESOLUTION
[5.0] DP Update frequency of progress bar, expressed in percent

of total length (between 1.0 and 100.0).

WRITE_DASHBOARD
[.FALSE.] L Writes the file DASHBOARD.TXT at regular intervals.

The file shows a summary of the simulation progress.

F_DASHBOARD
[1] I Frequency, expressed in terms of iterations, at which

the dashboard is updated.

Page 40 of 43 MFIX with Cartesian Grid Capability

CPX()
[0.0] DP Location of control points in x-direction.

CPY()
[0.0] DP Location of control points in y-direction.

CPZ()
[0.0] DP Location of control points in z-direction.

NCX()
[0] I Number of cells within a segment (x-direction).

NCY()
[0] I Number of cells within a segment (y-direction).

NCZ()
[0] I Number of cells within a segment (z-direction).

ERX
[1.0] DP Expansion ratio (Last DX/First DX) in a segment (x-

direction).

ERY
[1.0] DP Expansion ratio (Last DY/First DY) in a segment (y-

direction).

ERZ
[1.0] DP Expansion ratio (Last DZ/First DZ) in a segment (z-

direction).

FIRST_DX()
[0.0] DP Value of first DX in a segment (x-direction). A negative

value will copy DX from previous segment (if available).

LAST_DX()
[0.0] DP Value of last DX in a segment (x-direction). A negative

value will copy DX from next segment (if available).

FIRST_DY()
[0.0] DP Value of first DY in a segment (y-direction). A negative

value will copy DY from previous segment (if available).

LAST_DY()
[0.0] DP Value of last DY in a segment (y-direction). A negative

value will copy DY from next segment (if available).

FIRST_DZ()
[0.0] DP Value of first DZ in a segment (z-direction). A negative

value will copy DZ from previous segment (if available).

LAST_DZ()
[0.0] DP Value of last DZ in a segment (z-direction). A negative

value will copy DZ from next segment (if available).

MFIX with Cartesian Grid Capability Page 41 of 43

10. Quick reference

This section provides a summary of basic options to use the Cartesian grid cut-cell
technique, for each boundary definition method. It can be used as a checklist before running
MFIX.

Quadric surface(s):

� Activate Cartesian grid capability: CARTESIAN_GRID = .TRUE..
� Define the number of quadrics N_QUADRIC.
� For each quadric surface, define quadric parameters, rotation angles, translation,

and clipping limits, as necessary.
� Assign a boundary condition ID to each quadric (BC_ID_Q).
� Use groups to combine quadrics if necessary.
� Define a boundary condition type for each value of BC_ID_Q.
� Set WRITE_VTK_FILES = .TRUE. and set list of output variables VTK_VAR.

Polygon(s):

� Activate Cartesian grid capability: CARTESIAN_GRID = .TRUE..
� Define polygon data in poly.dat. Place poly.dat in the run directory.
� Set the keyword USE_POLYGON = .TRUE..
� Define a boundary condition type for each Boundary condition ID associated with the

polygon edges.
� Set WRITE_VTK_FILES = .TRUE. and set list of output variables VTK_VAR.

User-defined function:

� Place eval_usr_fct.f in the sub-directory cartesian_grid/ in the run
directory.

� Modify the subroutine eval_usr_fct.f to define the function ݂ሺݔ, ,ݕ ሻ (f_usr) andݖ
boundary condition ID (BCID).

� Compile MFIX from run directory.
� Activate Cartesian grid capability: CARTESIAN_GRID = .TRUE..
� Set the keyword USE_USR_DEF = 1.
� For each value of BCID, set a boundary condition type.
� Set WRITE_VTK_FILES = .TRUE. and set list of output variables VTK_VAR.

STL file:

� Activate Cartesian grid capability: CARTESIAN_GRID = .TRUE..
� Define boundary in geometry.stl. Place geometry.stl in the run directory.
� Set the keyword USE_STL = .TRUE..
� Define the boundary condition ID STL_BC_ID.
� Define a boundary condition type for the Boundary condition ID associated with the

STL file.
� Set WRITE_VTK_FILES = .TRUE. and set list of output variables VTK_VAR.

Page 42 of 43 MFIX with Cartesian Grid Capability

MSH file:

� Activate Cartesian grid capability: CARTESIAN_GRID = .TRUE..
� Define boundary in geometry.msh. Place geometry.msh in the run directory.
� Set the keyword USE_MSH = .TRUE..
� Define a boundary condition type for each Boundary condition ID associated with the

MSH boundary zones.
� Set WRITE_VTK_FILES = .TRUE. and set list of output variables VTK_VAR.

11. Trouble shooting

It is recommended to go though the tutorials first to get familiar with the various options
described in this document. To start a new simulation, copy an existing mfix.dat file and
make incremental modifications. When using polygon data, copy poly.dat from one of the
tutorials (e.g. naca4412) and modify the file. When using user-defined function, copy the
subroutine eval_usr_fct.f from the tutorial wavy, and modify it.

When several quadrics are combined, define and visualize individual quadrics before
combining them, to make sure they are defined properly.

Small cells can be removed (to some extent) by increasing the value of TOL_SNAP.

The most common causes of pre-processing failure include (beside incorrect input data):

 Unable to find an intersection point. Try to increase TOL_F or ITERMAX_INT.

 Too many intersections found in one cell. This occurs when the geometry’s local
radius of curvature is very small, or the combination of quadrics is not well detected.
Refining the grid usually helps solving this problem. This can also occurs when
polygon data defines sharp angles. Slightly moving one or more vertices usually
helps solving this problem.

 Piecewise limits are not well defined when using the piecewise grouping option. The

piecewise limits must correspond to the plane where quadrics intersect.

When the code seems to be unstable, even with an optimized grid, running the code in safe
mode (CG_SAFE_MODE = 1) can help determine if the problem comes from the flow
condition. In safe mode, the flow solution proceeds without using any modification
introduced by the cut cell technique. The only modified variables are the cell volumes and
face areas. If MFIX still fails in safe mode, it is likely due to improper initial conditions or flow
properties.

MFIX with Cartesian Grid Capability Page 43 of 43

12. References

[1] M.P. Kirkpatrick, S.W. Armfield, J.H. Kent, “A representation of curved boundaries for

the solution of the Navier–Stokes equations on a staggered three-dimensional
Cartesian grid,” Journal of Computational Physics, 184 (2003) 1–36.

[2] https://mfix.netl.doe.gov/documentation/Readme.pdf
[3] Syamlal, M.; Rogers, W., O’Brien, T. J. MFIX Documentation: Theory Guide;

DOE/METC-94/1004 (DE94000087); U.S. Department of Energy: Morgantown, WV,
1993. https://mfix.netl.doe.gov/documentation/Theory.pdf.

[4] S. Benyahia, M. Syamlal, T.J. O’Brien, “Summary of MFIX Equations 2005-4”, From
URL http://www.mfix.org/documentation/MfixEquations2005-4-3.pdf, July 2007.

[5] http://www.vtk.org
[6] http://www. paraview.org
[7] https://wci.llnl.gov/codes/visit

