
Fluidized Bed Solids Management: 
How Knowledge of Fundamentals can 

Help Optimize Plant Operations 



Example Coal-Fired Fluidized Bed 

Operations Issues 

• Higher than Design Bottom Ash Flow 

– Plant Design Missed the Ash Split 

– Bottom Ash Equipment Runs Hot (may Aggravate 
Erosion) 

• Excessive Limestone Consumption Required to 
Maintain SO2 Compliance 

• Can these be Predicted Using Science? 

– What are the Relevant Concepts to Consider? 

– How can these Concepts be Used to Construct Useful 
Mathematical Models? 

 



Concepts Relevant to Fluid Bed Solids 

Management: Classification 

Flyash to PGF 

Pneumatic 

Classification 

(by Particle Size 

and Density) 

Cyclone Classification 

(by Particle Size and Density) 

Bottom Ash 

Cyclone 

Downcomer 

Flow 

Feed 

Stage 1:  

Pneumatic 

Classification 

Stage 2:  

Cyclone 

Classification 

Flyash 

Bottom Ash 

Mathematically: 



A Multistage Separation can be 

Described as a Single Separation 

Cyclone 

Downcomer 

Flow 

Feed 

Stage 1:  

Pneumatic 

Classification 

Stage 2:  

Cyclone 

Classification 

Flyash 

Bottom Ash 
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Mathematical Description of 

Classification 

F 

P 

T 

K 
K(x) 

Particle Size (x) 

F(x): The Mass Fraction of Particles of Size x in Feed 

K(x): The Mass Fraction of Particles of Size x in Feed that Report to the P Stream 
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Useful Relationships Relevant to 

Fluid Bed Solids Classification 
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Umf = Minimum Fluidization Velocity 
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Ut = Transport Velocity 

NRE < 0.4 

0.4 < NRE < 500 

500 < NRE  

Common to all of these: 

 

dp: Particle Diameter 

s: Particle Density 

g: Gas Density* 

g: Gas Viscosity* 

g  : Gravitational Acceleration 

Constant 

 

*Function of Gas Temperature, 

Pressure, and Composition 



• Particle Size 

– A Function of Preparation Method (Crushing and 
Grinding) 

– Topsize umf < u0 in System 

– Fines with ut<u0 may have Short Residence Times 

– Attrition will Turn Big Pieces into Small Ones 

– Reacting Particles can Change in Size 

– Particle Size is a Distributive Property (i.e. all 
Particles do not have the Same Property as the 
Composite Analysis) 

Concepts Relevant to Fluid Bed Solids 

Management: Particle Properties 



• Particle Density 

– Depends on Mineral Composition 

Coal: 1.3 to 2+ 

Coal Char: See Above 

Shale: ~2.8 

Ash: ~2.5 

– Reacting Particles can Change in Density 

Particles that Lose Mass at Constant Size can Weaken 

– Particle Size is a Distributive Property (i.e. all 
Particles do not have the Same Property as the 
Composite Analysis) 

Concepts Relevant to Fluid Bed Solids 

Management: Particle Properties 



• Examples of Reacting Particles in Fluid Bed 

Systems- Fuel 

– Devolatilization: Particle can Swell and Lose 

Mass 

– Combustion: Particle Loses Mass 

𝑪 + 𝑶𝟐 → 𝑪𝑶𝟐 

– Gasification: Particle Loses Mass 

𝑪 +𝑯𝟐𝑶 → 𝑪𝑶 +𝑯𝟐 

𝑪 + 𝑪𝑶𝟐 → 𝟐𝑪𝑶 

Concepts Relevant to Fluid Bed Solids 

Management: Particle Properties 

Higher Carbon 
Content 
Particles can 
Lose More Mass 
and Become 
Weaker 



• Examples of Reacting Particles in Fluid Bed 

Systems- Limestone 

– Calcination: Particle Loses Mass 

𝑪𝒂𝑪𝑶𝟑 → 𝑪𝒂𝑶 + 𝑪𝑶𝟐 

– Sulfation: Particle Gains Mass 

𝑪𝒂𝑶 +
𝟏

𝟐
𝑶𝟐 + 𝑺𝑶𝟐 → 𝑪𝒂𝑺𝑶𝟒 

Concepts Relevant to Fluid Bed Solids 

Management: Particle Properties 

Calcination 
Weakens 
Particles 

Bed Solids Reaction with Acid Gas Species: Analogous to 
Carbonation Reaction in the DMR 



Concepts Relevant to Fluid Bed 

Solids Management: Attrition 

• Attrition Turns Bigger Pieces into Smaller 

Pieces 

• Function of: 

– Particle Strength 

– Kinetic Energy Associated with Particle Collisions 

• Particle Strength 

– May not Change in Non-Reacting Particles 

– May Change in Reacting Particles 



Concepts Relevant to Fluid Bed 

Solids Management: Attrition 

Attrition Conventions (Non-Reacting Particles) 

Collision 

Collision 

Abrasion: Very Fine Particles are Removed from “Mother Particle” 

Fragmentation: Breakage Products Closer in Size to Original Particle 



Concepts Relevant to Fluid Bed 

Solids Management: Attrition 

Attrition Conventions (Reacting Particles) 

Collision 

Percolation: Particle Uniformly Loses Mass at Constant Size (Reaction 

under Kinetic Control) 

Peripheral Percolation: Particle Loses Mass with a Shrinking Core 

(Reaction under Mixed Kinetic and Diffusion Control) 

Collision 



• A Fluid Bed System can Classify Particles 
into Output Streams 

• Particle Properties Relevant to 
Classification: 

– Size 

– Density 

• Particle Size Changes Due to Attrition 

• Reacting Particles Can Behave Differently 
from Non-Reacting Particles 

Concepts Relevant to Fluid Bed Solids 

Management: Recap So Far 



• All Bed Particle do Not Have Identical Properties 

• Classes of Bed Particles in the DMR 

– Derived from Startup Bed (Bauxite or Alumina) 

– Derived from DMR Fuel (Char) 

– Derived from DMR Fuel (Ash) 

– Varying Levels of Alkali Deposition and Carbonation 

• Classes of Bed Particles in the CRR 

– Derived from Startup Bed (Bauxite or Alumina) 

– Makeup Bed (Bauxite or Alumina) 

– Derived from CRR Fuel (Char) 

– Derived from CRR Fuel (Ash) 

Concepts Relevant to Fluid Bed Solids Management: 

Particle Classes and Distributive Properties 



All Particles are Not the Same as the Composite 

Analysis- Even within a Particle Class 

This is What 8% Ash Coal Looks Like to a Fluidized Bed 

Density Fractions 
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How the Density Distribution of Fuel 

Affects Attrition Behavior 

Flyash Sized Pieces 

Bottom Ash Sized Pieces 



Ground Pittsburgh Bed Coal 

1.3 Float Fraction 

47.8 % of the Fuel 
Ash Analysis: 

48.94% SiO2 

2.6 wt% Ash 
26.76% Al2O3 

10.71% Fe2O3 

14.1 wt% of Ash in Composite Fuel 
3.56% CaO 

0.95% MgO 

51.2% of Combustibles in Fuel 
0.44% Na2O 

1.49% K2O 



Ground Pittsburgh Bed Coal 

1.6 by 2.6 Fraction 

3.5 % of the Fuel 
Ash Analysis: 

54.65% SiO2 

52.6 wt% Ash 
21.10% Al2O3 

15.36% Fe2O3 

20.1 wt% of Ash in Composite Fuel 
2.82% CaO 

0.72% MgO 

1.8% of Combustibles in Fuel 
0.34% Na2O 

1.71% K2O 



Grouping Particles By Class and Tracking Behavior 

Separately: The Particle Population Model 

F 

P 

T 

K 

K(x) 

Particle Size (x) 

F(x): The Mass Fraction of Particles of Size x in Feed 

K(x): The Mass Fraction of Particles of Size x in Feed that Report to the P Stream 
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Flyash 

Bottom Ash 



Grouping Particles By Class and Tracking Behavior 

Separately: The Particle Population Model 

Q: This has sum notation, which is almost as bad as integrals. It 

must be complicated. We don’t have time to learn this. 

A: Here is the sum button in Excel 
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The Particle Population Model: 

 Development and Use 

Examples from Commercial CFB Boilers (Larger 

and more Complicated than the IWTU) 

• Starting the Model: 

Feed 

Solids 
Transformations 

Composite 

Ash Flow 

Bottom Ash 

Flyash 

K(x) 

• Solids Feed Rates 

Available from Data 

Historian 

• Solids Chemical 

Analyses Available 

• Solids Chemical 

Analyses Available 

• Solids Chemical 

Analyses Available 



The Particle Population Model: 

 Development and Use 

Calculating the Ash Split from Simultaneous Material Balances: 

F1A1+F2A2=FFAAFA+FBAABA 

F1B1+F2B2=FFABFA+FBABBA 

Known: 

F1: Feed Rate of Solids 1 from DCS 

F2: Feed Rate of Solids 2 from DCS 

A1: A Content of Solids 1 (Chemical Analysis) 

A2: A Content of Solids 2 (Chemical Analysis) 

AFA: A Content of Flyash (Chemical Analysis) 

ABA: A Content of Bottom Ash (Chemical Analysis) 

B1: B Content of Solids 1 (Chemical Analysis) 

B2: B Content of Solids 2 (Chemical Analysis) 

BFA: B Content of Flyash (Chemical Analysis) 

BBA: B Content of Bottom Ash (Chemical Analysis) 

Unknown: 

FFA: Flyash Flow Rate 

FBA: Bottom Ash Flow Rate 

Two Equations 
Two Unknowns 

For Best Results, A and B should Analyze 

as Oxides and Remain in the Solid Phase 

Throughout the Process (SiO2, etc.) 



The Particle Population Model: 

 Development and Use 

Calculating the Ash Split from Simultaneous Material Balances: Plant Operations 
Must be Relatively Constant Prior to Ash Sampling 

Bad Trend in CFB Power Plant Good Trend in CFB Power Plant 



The Particle Population Model: 

 Development and Use 

Calculating the Ash Split from Simultaneous Material Balances:  

30 MW Plant Test Results 

From Ash Stream Flow 

Rates and Particle Size 

Analyses We can 

Calculate the Partition 

Function 



The Particle Population Model: 

 Development and Use for Two Commercial CFB 

Power Plants 



Recap: What Makes Flyash and 

Bottom Ash? 

Plant Data 

Flyash 

Bottom Ash 

Fines in the Feed + 

Attrition Products 

Coarse Particles in the Feed 

that are Still Coarse after 

Exposure to the Bed 



Ash Split Model 

Tested at Two CFB Power Plants in Pennsylvania 

Plant 1- 40% Ash High Sulfur Fuel 

Plant 2- 60% Ash Low Sulfur Fuel 

Same Attrition Coefficient Assumed for both Fuels 
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Predicted Bottom Ash Flow 



Comparison of Ash Split Model Predictions with 

Operating Results from Two Power Plants 



Limestone Demand Model 

Tested at a CFB Power Plant for a Range of Limestones  

• 75-99 wt% CaCO3, 32-62 wt% Passing 200 Mesh 

• Two Petrographic Classes (Micritic and Sparry) 

• All Ground in the Same Limestone Plant, Fired at Full Load in the 

Boiler 
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Predicted Boiler 

Limestone Demand 



Comparison of Limestone Demand Model 

Predictions with Operating Results for a Range of 

Limestones 
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