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Background and Motivation (1)

• High yield and composition of raw oil are key, 
so commercial risk and economics depend 
on accurate performance predictions.

• Most available basic lab data are from 
bubbling fluidized bed reactors (FBRs).

• Good physics-based models are necessary 
for interpreting, scaling up lab experiments.

Thermochemical conversion of biomass based on fast pyrolysis
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Background and Motivation (2)
How should lab FBR data be interpreted/analyzed?

Bubble dynamics
• Bubbling regime

– gas/solid particle mixing intensity 
increases with fluidizing gas mass 
flow

• Slugging regime
– Gas and solid particles not mixed 

well
– Gas bypassing through bubbles

• Bubbling to Slugging Transition
– Mixture of bubbling and slugging 

Note: Bubble boundary depicted 
where void fraction > 0.65 

FB Hydrodynamics directly impact:

1. Particle residence time
2. Gas residence time
3. Particle heating rate
4. Particle attrition/fragmentation
5. Particle and ash elutriation
6. Particle segregation

All the above significantly impact 
raw oil yield and composition.

E. Ramirez, C.E.A. Finney, S. Pannala, C.S. Daw, J. Halow, Q. Xiong, Computational study of the bubbling-to-slugging transition in a 
laboratory-scale fluidized bed, Chemical Engineering Journal 308 (2017) 544-556. http://dx.doi.org/10.1016/j.cej.2016.08.113

http://dx.doi.org/10.1016/j.cej.2016.08.113
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Approach (1): MFIX simulations of FBR pyrolysis  

– Eulerian-Eulerian 
– Kinetic theory of granular flow
– 3D cylindrical mesh
– DLSODA ODEPACK chemistry solver

• First order irreversible Arrhenius rates
• Liden 1988 biomass pyrolysis kinetics
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Approach (2):Interpret MFIX Results with Low-Order Models

– Quantify impact of bubbles and bed 
solids circulation on biomass solids and 
py vapor RTDs

– Identify major reaction/mixing zones 
needed to understand/approximate 
performance trends

– Relate solids and gas RTDs to predict 
trends for how biomass particle 
properties and reaction chemistry impact 
overall yields

– Utilize low-order models for rapid studies 
of operating/design parameter sweeps
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Approach (3): Compare MFIX predictions for lab-scale FB 
pyrolysis reactor with literature and experiments
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• Key steps:
• Simulate expected particle and gas 

RTDs with MFIX including 
segregation and elutriation

• Are MFIX mixing patterns consistent 
with the literature?

• Can existing FB correlations capture 
MFIX predicted RTD trends?

• When chemistry is added, do 
predicted bio-oil yields agree with 
experiments?

• Are MFIX improvements needed?

RTD study
Berruti 1988
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Park and Choi 2013

H.C. Park, H.S. Choi, The segregation characteristics of char in a 
fluidized bed with varying column shapes, Powder Technology 246 
(2013) 561-571.

F. Berruti, A.G. Liden, D.S. Scott, Measuring and modelling residence 
time distribution of low density solids in a fluidized bed reactor of sand 
particles, Chemical Engineering Science 43 (1988) 739-748.
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Approach (4): NREL lab pyrolyzer details
• Target: Fluidized bed particle studies used to verify model
• Key steps:

• Reproduce exp. particle residence time distribution (RTDs)
• Relate impact of char elutriation and mixing on RTDs
• Reproduce impact of solids segregation on mixing

H.C. Park, H.S. Choi, The segregation characteristics of 
char in a fluidized bed with varying column shapes, 
Powder Technology 246 (2013) 561-571.

Property Units
Mixing Study  

Park & Choi 2013
RTD Study 

Berruti 1988 NREL Exper.

Particle diameter (Sand) m 387 × 10
-6

710 × 10
-6

500 × 10-6

Particle density (Sand) kg/m
3

2383 2470 2500

Particle diameter (Styrofoam/char) m 957 × 10
-6

450 × 10
-6

278 × 10
-6

Particle density(styrofoam) kg/m
3

- 82 -

Particle density(Char) kg/m
3

391 - 80

Temperature K 300 300 773

Pressure (inlet) kPa 101 101 133

Fluidizing N2 (range) m/s 0.14 - 0.19 0.554 0.13 - 0.47

Minimum fluidization m/s 0.14 0.30 0.0565

Coefficient of restitution - 0.9 0.9 0.9

Angle of repose ° 30 30 30

Friction coefficient - 0.1 0.1 0.1

F. Berruti, A.G. Liden, D.S. Scott, Measuring and modelling residence 
time distribution of low density solids in a fluidized bed reactor of sand 
particles, Chemical Engineering Science 43 (1988) 739-748.
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Preliminary MFIX Results(1): Biomass Particle RTD 

Axial slice of 3D bubbling bed simulation 
Residence time distribution (RTD) study

Comparison of simulation and experiment 
RTD (Berruti 1988)
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• Bubbles are the main 
mixing mechanism

• More bubbles, more 
char/sand mixing

• Char layer decreases 
with gas flow

• Simulated tracers track 
char/gas mixing and 
RTD’s

Comparison of simulation and experiment 
char mixing (Park and Choi 2013)

Axial slice of 3D bubbling 
bed simulation at 1.34 Umf

Preliminary MFIX Results(2): Biomass Particle Segregation
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Preliminary MFIX Results (3): Biomass Particle Elutriation

Particle size and density must be selected 
carefully such that elutriation will occur

Biomass particle densityBiomass particle size
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Preliminary MFIX Results (4): Biomass Particle Elutriation
As inlet gas flow increases, biomass particle RTD 

converges to a limit 
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Preliminary MFIX Results (5): Yield Convergence with Chemistry 

Liden lumped kinetics in MFiX reactor and low order reactor 
model predict tar experiment yields
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Preliminary Low-Order Results: Chemistry + MFiX
Hydrodynamics (Possible ‘Hybrid’ Modeling Approach)

2. Use zone model + Liden 
kinetics to predict yields

1. Use MFiX gas and biomass 
RTDs to create zone reactor 

model approximation
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E. Ramirez, Tingwen Li, Mehrdad Shahnam, C. Stuart Daw, Computational study on biomass fast pyrolysis: 
Hydrodynamic effects on the performance of a laboratory-scale fluidized bed reactor, Manuscript in preparation.
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How do the models compare with experimental data?
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Concluding remarks

• Quantifying the combined effects of hydrodynamics and 
chemistry is essential in utilizing lab-scale biomass pyrolysis 
reactor data for scale up 

• Biomass particle properties and fluidization intensity have 
major impacts on product yields

• A key question remains: Is there a single combination of 
biomass feed particle size and fluidization intensity where tar 
yield is maximized?

• Two-fluid codes like MFIX can yield useful details about 
pyrolyzer hydrodynamics and gas and solid RTDs but 
improvements to the physics are still needed

• Combining MFIX hydrodynamics with low-order chemistry 
models appears to offer potential benefits
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Questions?

Emilio Ramirez – eramire2@vols.utk.edu
https://www.ornl.gov/staff-profile/emilio-ramirez
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