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ZThe U.S8. Department of Znezgy’s

Mozgantown Inergy Tachnclegy Center (DOZ/METC) simulaves fiuzidizaticn

such as sagzecation, elutziation, and solids mixing by desczidiag the differant

types of sclid particles as distincr particulats phases. To account oz ths

mementim traasisr berween the particulats phases due to collisions, the model

r=cuirss constitutive relations known as particla-particle drag terxms. in

diluts systams, such as pnewmatic convevors, the particle-particle drag has been
‘ ut

measurad ancd smpirical cocrelations have beasn developed. 3But similar

measurements ar2 not possible in dense svstams, such as fluidized beds. Eencs,
an expression for the particle-particle drag term was derived based on the
kizetic theory of dense gases. To test the accuracy of that exprassion, the
pradictions of the model were compared to experimental data. Yang and Keairzs
(1282) £fluidized unifom mixtures of dolomite and acrylic particles for varicus
Limes and measured the rate of separation of the dolomite particles., Tke
dolomita particles, being heavier and larger than the aczylic particles, wezrs
Zound to settle rapidly. The experimental data suggest that the rate of setzliin
is stroncly dependent upon the particle-particle drag and, hence, the simumlaticn
of these experiments is useful Zfor determining the accuracy ¢f the particle-
particle drag tarm. Computer simulations have shown that the model predicts the
initial rate of separation reascnably well. The predicted equilibrium
concentrations of dolomite particles in the upper layer of acrzylic parzticles,
howevar, do not acree with the experimental data. This is thought to be because
of the absence of granular stress from the model. Further zefinement of the

icle-particle drag term will be sought only after including granular stress

gy
i

the model.
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2.0 INTRODUCTION

The muiciparticls model of Ilvidizacion being davalcoped at METC uses multiphasa
£low aguations to describe the Zluid and the particulatss in a fluidized hed.
The mccdel can describe ths Iigw cf several d-Zfsrsnt particulate phases, =ach
particuliate plase being composed of parziclas of identizal demsities and sizes.

Because of this apility, che model can bhe used tTo study :-a.d.-at;cn ohenomera

o< practical importance, such as segracaticz, elutriacion, and selids mizing.

The muitiparticis model evolved from a singls particulate phass model of
Gidaspow and Zttehadish (1583). Their ecuations can be generalized for more
thao one particulate phase ¢tz obtain the set of continuity and mcmentum
ecuations presentsd in Table 1. Ia these ecuations, the subscrzipt 'k’ denotas
k“""-1 dhase and ranges Srem 1 to N, N being the total number of phases. Iz
addition to these eguaticns, several comstitutive relations are reguired to
complete the model: The Zluid-particla drag term, Fik {subscript 1 denoting the
fivid) i= ZTguation 2, desczibes the momentum traasfar between the fivid and the
k:h particulate phase. It has been the subject of many investigations (fox
exampla: Syamial and O“3rien, 1887). ?o::unatelj, in this case, accurats
axperiments can be conducted to detarmine the drag on a single sphezical
particle moving in a fluid, and these data can be gene:a;ized <o obtain the drag
on a cloud of particies. Alternatively, the drag can be calculatad from
empizical corrslations, such as the Exgun (1852) equation, which give the

pressure drop in a fluid £flowing through a packed bed of particles.

Like the fluid-parzicle drag tarms, particle-particle drag (PPD) terms aeed to

-

be inciuded in a mumltiparticle model. The term ? X3 describes the




Tzbhla 1. Governing Scuaticns of the Mulzigarzizle Mcdel
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momentum exchange between the k7T and §°7 pazticulate phases. Nakamura and

Capes (1875) and Arastooponrs, Lizn, and Gidaspew (19280) found that it was
necessary ©O introduce such & term to model the segracation In a pneumatic
convevor transporting a miztuzs of particles. Such z tamm will be even mors
important in dense systams, such as fliuidized beds.

Arastoopouzr, Wang, and Weil (1982) attempted to measure PED in a dilute system
in which the void fraction was greatar than 0.98. They measurad the velocily
0% an isolated ccarse particle flowing countercurrent to preumatically-conveved
fine paxticlaes. The Zforce exerted by the fine particles on the cocarse particl
was deduced Zrom a steady-stéte momentum balance and correlated with the
velocity difference between the firnes and the coarse particles. Frzom these
experiments, they developed the correlation

k4
<

k3 T O P31 T T3k

where the dimensionless constant C. = 0,7dk’0-145

(& in meters), subscript k
denotes the coarse partzicles and subscript j denotes the f£ine particles.

Arastoopour and Cutchin (1985) studied the cocurrent £low of coarse particles in

a pneumatic convavor of fine particlas and reported another correlation for the




22D. 3wz similar gpeastrsments a2 not possizls in dense systams, suck as the
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Sevarzl thascratical szpressicns Zor the PPD tarm In 2 di-u:g svstem, wiich wera
cdexived using sizmpls models of collision between Iwe radrasenctative particliss,
ar2 availabls iz the iitsrature (for examsle: Soo, 1967; Nzkamuzra and
1575; Doss, Szinivasan, and Raptis, 1988). They diffar from one ancther only by
2 numerical factozr. Syamial (1985) attemptad 2 similar derivation of the =22
T2 £or a dense bed. This resulted iz an expressisn similiar to that of

Nakamura and Capes (1579), except for a mulitiplicative factor. ILater ia this

tH

2ozt we will derive an expression for the P2D based on the kinetic theory oI

dense cases.

To cain conZfidance in such theors:ti exprassions, it is necessary to test

thei- accuracy. This can de done by comparing the solutions of the

i
h
H
B

del to axperimental data that ars sensitive to the 22D,
Settiing axperiments in fluidized beds are, in general, sensitive to the 22D.
When a bizary mizture of particiss is fluidized, under certain coxn icions the
denser and larger particles will settle. While settling, these particies
continually interact with the upward-moving £ine particles and, hence, the zate
of settliing strongly depends upon the PPD. Such data can be compared to the
numerical solutions’of the mmltiparticle model to determine the accuracy of the

theoratical expressions £or the 22D.




3.0 THE PARTICLE-PARTICLE DRAG TERM

The thecratical sxprassions for the PPD term have been derived by assuming that

the momentim transizr occuss primarily because cf binary collisions betwesn the

parcicles. Sizmple physical medels of the collision of two rzprasentative

particles are used in such derivations (for exampls: Svamial, 1985). Using suca

an appzoackh, Nakamura and Capes (1575) derived the exprassion

2
Ty = 3clirele pee ,g_(d.*ﬂj) vij (3)
3 37
2(pe e+ p.dj )
in the limit o very small particulate concentrations. They included g as an

adjustable parameter and found by £itting experimental data that its value was
ia the range ¢f 1.0-5.0. They argued that the adjustable parameter is gresater

than 1.0, because multiple collisions, which were not accounted for in the

derivation, teand to increase the PPD. Syamia® (1985) derived a similar
expression for a dense system and found that g is given by
1/3 /3
fod (t.ij) + 3tk-

3[8kj1/3 - (zk+'j)1/3

. (4)
I

The facto:z ekj’ which represents the maximum possible packing of the bkinary
mixturs, car be obtained from an empirical formcla, suck as the one given by

?edbrs and Landel (1979):
{(ok-oj) + (1-a) (1—ok)oj] (o + (1-oj)ok] X /0, + 2
foz xksok/ o + (1-0,) oj]

(l-a) [ok + (l-ok)oj] (l-xk) + ok
for xkzck/[ok + (l'ok)°j]



Zers 2 = v{c./<¢ ), k aad J Deizg assigned such that L2d.. O is the mazmimm
4 ¢ J E
volmme Iractica cf <he k7 single-particls systam, 222 Xk=:k/(ek+z4).
N 4

i 2 % Tamem e S . = e 3 = 2

The factor g, givan ¥ Ecuation (2), acts as a corzacticn tarm Sor lncrsased

particis congcentratlisn. Similar correctich terms are olten usaed I the kizeric
. s - . : = - -

Taeory oI danss cases. Tocr sxzample, the factor g bears a Io . ressmBlance to

The Zactor gz (whick came tTo b2 known as the zadial distrinution Sftaction at

ccntact) introduced by Chagman and Cowling (1670, .5.258). Thew state that x is

detarmined by two Opposing mechanisms. Fizst, in a denss system, b

(13
o
b
(1
o
o

Parziclis volume Is comparabls with the volumme occupied oy th

(1]
'
n
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effsct. Sacond, ia a denss systam the particles shield cae ancthar, raducing
The probability of collisicos. This effsct is nmot accouxnted for Iz Ecumation
(4). It is ciffiexmlt to izclude this'effact In the simple derxivation used o

2t Zcuaticas (3) and (4): it Is even mors difficxmit to izclude such an effscs

iz dexivations fox systems consisting of mors thaa two sarticulate phasses.

These difficuities can be cverceme by using the formal methods cf the kineti
theoxy of dense gases to derive an expression for the PPD. Latexz, we will see

that the factor g giver by Ecuaticn (4) is, indeed, the zadial distzibution

function at conzact of a mixture of hard spheres. The fem of the radial
distzibution function has been well studied, and based on the kinetic theory cof

danse gases, several amalytical sxpressicns are available in the litsratura.

p

so in this approach the assumpticns are more pracisely scated and it is sasier

rt

o visualize the generalizations TO Systams consisting ¢f more tlan two
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parzigcuiate phases. Hence we will dexive the 22D tarm usizng the xethods cf ths

he fpilowing derivaticn we Zollcw the steps used by Lun, et al. (1984).
Refar to Tigure 1 for a diacram of t2e collisions. At the iastant of a typical
callision, a ™3™ parcicie isg lpcated at r and a "k" particle is located at r-cb,
wherse b is the unit vector in the dirsction of the line connecting the centecs
cf the particiss and ¢ = (d.+dj)/2. The probabls number of collisions, such
that the ceater of the Fj" particie is in the volume dr and the parzticle

velocities S and cj and b lie witchin ranges dck, dc., and cdb, is
3

2 (2) . . - g
-4 (ckj‘b)f (r-cb,ck, r,cj, ) db dck dcj dr dt | (%)

where ij = Ck - Cj.

"k particle

o=(d+d;) /2

particle

FIGORE 1. COLLISION OF TWO PARTICLES
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The collisional paiz-distrihvsion fumacsion :'(2),

is such that ‘(2) Sx. dr.dc cc

k"™ zarzicls iz 2 volxxe dz. arsend T .r;:::

its velccity Ia the range of ¢, a2d °g+dck and a "i" parzizle in a volimme 4r.
around r. with its velocity in ths range of cj angd c +cic,
4

as "k" and "3j®". Consideziag only

;o . Duziag a gcpllisicen,
-
Am is the mcmentim transfsrrad between particl
sazticlaes chat are about to collide (ie. takiag ¢ ..b > 0), we £iad that the
; 3

collisional zate of momentua transfar per unit velume is given by

L" o2 I.«.m (€ 5-D) ‘(2)(r-cb e i cs %) db dede, I3
c .b>0
%3

Tollowing Savage aad Jeffray (1S8l), we assume that £ 2 can be expressed as a
roduct cf the radial distribution function gk and the singlet velocity

distsizution functions, f(‘), £or esach particle:

(2) = (1) (1)
< gkjk ‘3 (8)

Assuming that all the pazticles of sackh type have identical velocities, the
singlet velocity distzibution functions may be expressed, using Dirzac delta

functions, as

£ = s, - v/’ %)
and

1) 3

£, = ge.5(c. ~ v.)/rd, 10

3 sHARS TS Wt I 0
wheze Vi and vj are the velocities of the particulate phases. To use more
realistic singlet veleccity distzibution functions, it will be necessary to
solve ®"granular temperatura® equations as done by Lun, et al. (1984). Note that

1
as requized by its definitionm, £ has been formulated such that the numbexr




-

gensizy of the particlies is chtained when A intagrated over the sntirs
sange of velocizies. Alsc mote that we asstme that I (2} Gerarmined at r is
app:cxim;:—ely ecual to zhe recuirs fk 2 at r~ob. 2 discussiocn of the form oI
gkj will e defarred mtil the complisticn of the derivation:; we ¢o not n=2ed o

know its fo== to perzicrm tie necsessary Iategrations.

for a collisicn between two smootl, inelastic, sphezical particles of diametars
cik and ¢d. and of masses = and :nj the conservation of linear momentum can be

J
writtan as

:nkck' =z.c - J (1)

ané
.c.” =3;.Cc. - 12
mjc:3 :ujcj J, (12)

whera S and <:j are the velocities before collisiozn, ck’ and cj' ars the
velocitias aftar colliision, and J is the impulsive force between the parrticles.
For inelastic collisions, we assume that the relative velocity S %3 in the
dizection of b is changed duzing a collision such that

b":kj’ = -a(b.c ) - (13)

\.J.

whare e is the coefficient of restitution. Equations {(11), (12), and (13)
determine the component of J in the direction of b,

b.J = -(ZL‘-'E)I:.ckj / L/m, + 1/mj)_. (14)
Assuming that the particles slide duzing a collision, the com::onent of Jin a
direction t normal to b (or tangential to the sliding surfaces) can be rslated
to b.J by Coulomb’s law of £riction as

. = p(b.3), (13)
where p is the coefficient of friction. Now the impulsive force J can be

written as




(b.J) (b + pty. (19)
Phe direction ¢f t can be obrtained 5y noting that it mest be perpendicular to b
and also lie in the plane formed by b and ckj (3hmad? and Shahinpcor, 1383).

Thus it can ba weit%an as

£ = b=z (ckj z b) _ ckj = (ckj-b)b
|b z (ckj X b} lckj - (ckj.b)bj

Using this expression for J in Equation {11), we can get the change in momentum:

-(i+te)m. m. (b.c. .) ; = (G .:-b)b
am= m(q’-c) =-J= | <3 <J [b*’n %5 " % } (18}
(mk?mj) lckj = (ckj'b)bl

. (17)

0
5
a
[N
ot
i
[
13
ot

ing this in equation (7), we get

= - 2 % —a - 2 - - 3
I = %33 (5.,) B0 STy J.(ckj.b) (B3E)s (g-vy) & (c;=v.)ab dede; (19)
TS (metmy) S 5P>0

Integrating over dck and dcj, ckj is replaced by vkj by virtue of the del:a

th

unctions. The integration over db can be performed (Chapman and Cowling, 1570;

U

. 318) to get

2 2 2,3
Tes = =366 (1+e) (x/2+ux /8)mkmjakzjgkj[vkjlvkj /=7 dj3 (mk+mj)] (20)

ins fefinsi+s ==F -
s e by definition Hj :kjvkj' we get

®

2 20 2.3.3
k3 = =366" (1+e) (x/24ux /B)mkmjekejgkjlvkj[ / Iz dk dj (mk+mj)] (21)

and, expressing the 'mass of the particles in temms of their densities and

diameters (mk= xdk3pk/6 and mj= xdj3pj/6), we obtain

s - N 2 2 3 3 !
Freg = 3(1te) (=/24ux /8)zkpkejpj(dk+dj) gkj!vkjl [ [2x(p & ” + Psdsl. (22
Setting p equal to zero and comparing this to Equation (3), it can be seen that

the constant g of Nakamura and Capes (1976) and the factor g of Syamlal (1985),
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defined by Zcuation (4), are ecuivalsnt to half the radial distribusiecn funeticn

at contact (i.e., gkj/2)-

Although this derivation has rsguirsed several simpiifying assumptions, it has
allowed the association of g with the radial distribution function at contac:t.
This funccion is more rigorzcusly derived in the litsrature on the kinstic theocw
of dense gases and can be adopted IZrzom cthers for use in Equation (22). For a
mixture of hard spherss, Lebowitz(1864) sclved a generalized Percus-Yevick

equation to obtain the formula

Gy = L/e + I3 =¥

2
i___zai/di)dkdj]/e (dk+dj)' (23)
‘where € ic the void fraction given by

e=e; =1 (= e, (24)

Noze that in Eguations (23) and (24) we exciude i=l, since, by conventionr, i=l1
danotes the fluid. In Figure 2, the radial distribution function gkj for a
binary mixture of particlss of diameters 0.127cm and 0.057cm as givenr by Egua-
tion (23) is compared to the function g of Syamlal (1985), given by Equation
(4) . As expected, both of the functions increase monotonically with increasing
solids volume fraction. The function ¢ is in general greater than gkj ané, for a
densely packed system consisting mainly of one of the components, it is an ozrder
of macnitude larger than gkj’ To determine which of these magnitudes is more
realistic, it is necessary to compare numerical rasults to relevant exzperimental
cdata as we do in the next section. Meanwhile, however, some of the mathematical

features of gkj can be found to be more physically realistic.

First, the function g has the same form for the conditions of an excess of fine

particles as for an excess of c¢oarse particles. The function gkj’ on the other

hand, increases with increasing fines concentration. This implies that the




!

Lebouwitz (19864}
Syamlal (1985)

]

0.31 0.82
TOTAL SOLIDS VOLUME FRACTION

FIGURE 2. A COMPARISON OF THE RADIAL DISTRIBUTION FUNCTIONS




-13-

resistance cffared by an excess of fines on 2 small amount of ccarse sarticlies

.

is larger than that by an axcess -0f ccarss parzizlias on a sma2ll amount ol Iinmss.

This is r=ascnabls, since fines can Zlow mora =asi

throuch the void space

}-+
(23]

betwean denseiy-packsd coarse particies whila the converse is not trus.

Second, the functicn S Bas a mathematical form that satisfies a necessary

3
adéitivity conéition. Using a multiparticls model, a binary mizxturs of
parzicles R and 3 can be described in tarms of pazticulate phases in several

4

;ays. TFor exampls, consider two cases, one in which the particles ars descriled
aslPhase—A and Phase=-3 and another in which theyv ars described as Phase-3,
Phase-31, ancd Phase-B2. Regardless of how we choose to represent the B
parcicles, their effsct on the A particles should zemain unchanged. This
implies that, in our example, the sum of the ij’s of Phase-Bl and Phase-B2 must
be scual to the ij of Phase-3. It can be easily verified that this is the case
when ij is civen by Equations (22) and (23) and that it is not the case when

F, . is given by EZcuations (3) and (4).

Finally, it can be seen from Equation (23) that gkj correctly accounts Ior the
L od ) -
effact of particles other than the k™ and the j‘h particles in a multiparticie

th

: . . .t . -
mixture on the collisions between the k™ and the j“h pazrticles, whereas the =

expression for g does not include the properties of particles other than the k™
and the j~~. Because of the above-mentioned reasons, we can conclude that the
factor g obtained from a simple dexivation lacks the physically realistic

mathematical fsatures of gkj derived usirg the more rigorous methods of the

kinetic theory of dense gases.




4.0 SIMOULATION OF YANG AND KEAIRNS’S

To dsrsrmine T2 accursly o< The 222
computar simuizticne based on The settliing sxpezinents oI Yang and Xsairn

{1S82) were conductasd. Yang and Realrns (1882) studisd the zate of sepazation

cf doligmites parzicles in a fluidized bed ccntelining & mixturs of acrylic

Siuvidization velocity was smaller than thelr minimem fluidizatiea velocity. s
the dolomits particles settls, they continwally collide with the upward moviag
acryvlic particlies. Thus, the zate cf seztling is strongly depencdent upon the
PPD betwsen the acxylic and dolcmite particiss. 2lsc, the monotonmicity of the

experimental rate cf sertling curves Ior small fluwidization velocitias suggests

chat the mizinc caused Ty bubbles or sclids circulation Im the bed are proiaZly
of lsssar ixpcortance than the mizing cauvsed by paxticle-particle colliisioms.
cx thasa reasons, the simulation of Yang and Xeairns’s (1982) experinments is

usalul for detsrmining the accuracy ol The F2D term.

The swperimental procedurz of Yang and Xeairns (1982) comsisted of fluldizing a

4

uniform mizture of dolomite and acxylic particles Zcr a chort time, then

£

Ceficidizing the bed and measuring the particla coacentrations at vazious zzial
loczzions to obtain-dolomite-concentration prolfiiss. 3By repeating the T =
ezperiments Zoxr various durations, they obtained tha dolomite-concentration

proZiles as a functica of tixe.

The esquaticns prassnted ia Table 1 were used to develop a muitiparticle computex




alsawhars (Svamial,

ars sumerized iIn Table 2.

computer simmlation cozdition

< - -, S - k ST e 5
It was found that the Ziuvidi=zed

Tapie 2. Compuzer Simulation Conditions
Parzicles: ck {(cm) pk (g/c=3) Weight Fractica
Dolcmita 0.1272 2.5% 0.6
2exyiic 0.0571 1.1 0.4
Tluid Air
Superficial Tluid Velocities 40, 350 cu/s
3ed Dimensions Diamezax = 7 cm
Heicht =1l
Call Sizes Radizl: 0.5 ¢z, 3xial: 1.0 cm
Time Step 0.0005 s

bDad zaached

carried out

2% -
Aall o2r

the comp

Zriction, p, ecgual to zero.

a stzady state in 5-10 seconds.

It can be seen from Eg

Hence the ccmputer simmlatiorns

wers

fox 2 duration of 10 seconds.

simvpliations were perfcrmed by setting the coefficient of

tion (22) that this

approximation will change the magnitude of P®D at most by a factor of 2, since
the value of p is close to 1.0. The conclusions of this preliminary stucdy will

not be affected by such a change in the
wers carried out using Syamlial’s (1983)

that

P2D. Some initial computser simulations

PPD tarm. These simulations indicated

the rate of separation is very small and that the two particulate phases

remaiped well mixed; at the end of 3 seconds of simulation with 40 cm/s

superficial air velocity, the predicted weight fraction of dolomits at the t

of the bed was Zound to be around 0.5 (ses Figure 3).

experimental observation of very rapid settling. Because of this, and

This is contrary to



Fractlon

_Dolomite Wi,

FIGURE 3.

O Data (Yang & Keairns)

Sk; used in simulatiocns
—— Lebouwitz (1964}
------ Syamlal (1985) -
—_— ngzl.O

(@)
K! ]J‘/I\—‘\Lm;—'—ﬁne-—é.—_ﬂ;_q)
2 4 1) 8 10
Time., s
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coasicdering the mexs realistic mathematical properties of the function =

discussed iz the previous section, subsecuent simulaticns wers carzised cut using

[\1]

Gy 25 daxrived by Lebowitz (1884). TFor compazison, sSimuiatiogns wera zlso
P

carried out by settiag gkj=l'

-

Iz Tigure 3, sxpeximerntally observed (Yang and Reairns, 1582) and numericalily-
sim:Tacted dolemite concentrations at the top of the bed ars plottad as 2
Zunction of time for a period of 10 seconds whan the superficial aix velocity is

40 c/s. The zats of initial separation is stroncly inflvenced by the magnitude

o

(W]

¢ the PPD. TFor the present set of experimental data, the extent of resolution
Dossibla for the initial xzate of separation is given by the line cornecting the
a3 pciats at £=0 and t=3 seconds. II the numerically-simulatad separation
cuzves are balow this line, the predicted initial rate of separation is possibly
comparable to the experimental data. The simulation results using the gkj of
Lebowitz (1364) indicate a very rapid initial separation phase (-1.5 sec.) that
satisfies this condition. Thus, the predicted initial rate of separation, usiag
gkj’ is comparable to the experimental data. However, the equilibrium weight
fraction of dolomite in this case does not agree with the experimental data
which indicats a monotonic reduction iz the dolémite'weight fraction that
ultimataly leaves a top layer £ree «of dolomite particles. An examination of the
predicted velocity fields of the two particulate phases indicates that the
excessive mixing of the particles is caused by the solids circulation in the
bed. This may be because of the absence of particulate-phase viscous stresses .

in the present model. Thus, we conjecture that the inclusion of viscous

strasses may lead to the correct pradiction of the equilibrium deolomite weight

fracrtieorms.
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Also shewn Iz Tiguze 3 Is zhe pradicted settling ourTe when . . is saz agmal o

1. In this cazsse, an even mors T2pid iadsial rate of ssrtling is precicted, Sut

the eculilidrium dolomits concentrzation at the top of the bad is comparabls o

The experimental data. This, of couxse, only illuszzates the effact cf a wazker

-

22D and Is aot a demonstration that gkj should be scual to 1. That coaditicn

would imply (as iz the cass o ideal gases in the kinetic thesry) that ths

presence oI one parcicle at scme location in the bed does not afiact the

Prodadbility of Iinding anothexr particle close te it. This is certainiy not troue

ia a dansa bed.

Another raascn for our objactions to the condition gkj = 1 can b2 found in
Tigure 4, in which the simularion results for a fluidization velocity of 30 /s
re given. The data of Yanc aand Xeairns (1982) indicate that the settling
behavior has znot chanced significantly £rom the pravious case (f{luidization
valccicy = 40 ém/s). Bowever, the simulation results for gkj=l indicace that

the ecuilibrium dolomite concantration at the top of the bed is not comparadle

©2 the ezperimantal data.  Thus, even with gkj=1, the increased fluidization
valocity increases the solids cizculation and, hence, the mizing. The simulaticn
results, using the gkj of Lebowitz (1964), indicate that the eguilibrium
dolemite concentration at the top of the bed has increased to 0.4, which is
again because of thé increased solids circuliation. Note, however, that the
initial rate cf separation is still comparable to the experimental data in the
sense discussed previously. Heance it can be concluded that the 22D term models
the initial zate of separation r=zasonably well, dut the predicted egquilibrium

weight fraction of dolomite does not compare with experimental data because of

the overprediction of the intensity of solids circulation. Bence, further
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refinement of the PPD texm can be scuch: caly afrer including realisti b

strass tarms I the mulitiparticlis medel.
-0 CONCLUSIONS

2 dexivatioz usiag the metlcds of the kinetic theory of dense cases has shown

that a factor appearing in the particle-particle drag term is the radial

distzidution function for hard spherss at contace, Ty~ The major assumpticn

a in
2 11

N

ko]
pos

rt

e derivation i1s tizat all tihe particlss at a spatial location move at

the continuux velocity. Waen arn expression fox gkj given by Syamilal (19383)
used for simulatiozs, the predictad Initial rate of separaticn ia a Sinidized
bed is Zcund to be not accteptadls cempazrsd to a set of experimental data of
Yang and Xsairzms (1982). Whezn an expression Zor gkj given by Lebowitz (1964) is
used, aﬁ Inizial rate of settling cemparable to the experimental data is
cbtained. 32lso, since Lebowitz’s (1264) expression has mathematical featuwss
that ars mecre physically rsalistic it 15 racommended as the apprepriate zadial
distribution function. The equilib:iun;weight fractions predicted when this
zadial distribution function is used, however, ¢o not ag:ee well with the
experimental data. The reason Zor this is thought to be the excessive solids
circmlation within the bed. Simmlations carried out by setting the zadial
distribution function equal to 1 reinforce this conclusion. It is conjectuzed
that the absence of the viscous strass terms in the present model lsads to the
pradicrtion of excessive sclids circulaticrn. 3Hence, further r

y—

zicle drag term can be sought only after including realistic

particle-

{¢)

ular stress texms in the mulrtizarticle model.




€.0 NOMENCLATURE

b Impact parametsr, or the dizection of the line joiniﬁg The centers ¢
TwC colliding particies.

S Velocity of k partisles in.the microscopic sense.

qkj = ck-cj

dk Diametar of k™2 pazrticle.

e Coefficient of restizution.

=2 Singlat velocity distzibution function.

=(2) Pair velocity distridburion function.

?kj Coefiicient of gnte:phase mcmentum transfer for phases k and j.

g Function defined by Zguation (4).

g Body forces such as gravity.

gkj Radial distridution function at contact for k and j particles.

J Impulse of the force of collisicon.

= Mass o a k particle = xdkBpk/G.

N Total number of phases.

2 Pressurs.

?s Solids 2rsssura.

r Position vector.

t Time.

t A nozmal direction to the iﬁpact parameter b.

Ve Velocity of’the KR phase in the continuum sense.

ij = Vk- 3

GREEX SYMBOLS

€ Void fraction.

39 Volume fraction of the k2 Shase. .

k3 The maximum particulate volume fraction in a random mixture of

particulate phases k and 3.

-
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o, The mazizmm particgiate volume fraction of the particulate phase k.
B © Coefficient of Zxiction.
: . - . th
Py Derszty of the k™ phase.
c Distance between the centers of two colliding particies, eg. (dk+d4)/2
J
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