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Executive Summary: 

The MFIX Verification and Validation Manual is an ongoing documentation of verification tests 
and validation cases for the MFIX suite to capture the best practices for verification and 
validation as part of software quality assurance (SQA). The intent of the verification test cases 
documented is to perform systematic verification of features available in the code for correctness 
and numerical accuracy. This manual also serves as a guide for periodic and automated testing of 
the software by the developers. 
 
 

 

 

 

 

 

 

 

 

 

 

 

Disclaimer 
This report was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor any agency thereof, nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 
product, or process disclosed, or represents that its use would not infringe privately owned rights. 
Reference herein to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any agency thereof. The views 
and opinions of authors expressed herein do not necessarily state or reflect those of the United 
States Government or any agency thereof.  
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Chapter 1:  Introduction 

The MFIX Verification and Validation Manual, referred to herein as the V&V Manual, is an 
ongoing documentation of verification tests and validation cases for the MFIX suite to capture 
the best practices for V&V as part of software quality assurance (SQA). The goal of the 
verification test cases documented is to perform systematic verification of features available in 
the code for correctness and numerical accuracy. Future work will include validation cases to 
assess the suitability of the physical models implemented within MFIX. The V&V Manual also 
serves as a guide for periodic and automated testing of the software by the developers. 

1.1 Verification and Validation 

For the purpose of this manual, the terms verification and validation are defined as follows [1]: 

• Verification: The process of determining that a numerical model implementation accurately 
represents the developer's conceptual description of the model and the mathematical solution 
to the model. 

• Validation: The process of determining the degree to which a model is an accurate 
representation of the real world from the perspective of the intended uses of the model. 

Roache [2] succinctly describes verification as an assessment on “solving the equations right” 
whereas validation is “solving the right equations.” Figure 1-1 illustrates the relationship 
between verification and validation processes schematically. 

 
Figure 1-1: Verification and validation process [3, 4]. 

Verification deals with mathematics of the simulation and involves assessing the correctness of 
the computer code and numerical algorithms (i.e., code verification) as well as the accuracy of 
the numerical solution (i.e., solution verification). Validation deals with the physics of the 
problem and assesses whether the selected mathematical model satisfactorily predicts the physics 
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of interest. Roache [5] further noted the distinction between verification and validation as, 
“Verification is a mathematics issue; not a physics issue.” Hence, verification precedes 
validation. 

1.2 Verification Test Selection Criteria 

Verification test cases are selected based upon the following criteria: 
• Each test case should exercise one or more sub-models for a physical phenomenon 
• Simulations must be computationally inexpensive to facilitate regular testing 
• There should be minimal overlap between tests 

 
The preference and thereby quality of a test is assessed on the following criteria: 

• (Most preferable) Examination of numerical error between the exact solution and the 
numerical solution for problems where an analytical is available (i.e., verification using 
method of exact solutions) or a manufactured solution is obtainable. 

• (Less preferable) Comparison of numerical solutions to established results in literature 
(i.e., similar to validation, but using benchmark problems) 

• (Least preferable) Comparison of numerical solutions to results obtained from previous 
versions of the same code (i.e., regression test) or from another verified code (i.e., code 
comparison) 

1.3 Testing Frequency 

Cases presented within this document are tested at various intervals as part of the SQA process. 
Before 2014, code integrity in MFIX was tracked through a series of nightly regression tests 
based on an open source software testing framework called QMTest, which provided a single 
snapshot only daily basis [6]. This method was replaced by a continuous integration (CI) server 
for greater testing and archival flexibility. 

Cases that execute quickly are tested whenever modifications are committed to the source code 
repository to quickly detect any issues generated by the changes. However, computationally 
burdensome verification and validation cases are tested less frequency to prevent overwhelming 
the CI server. A summary table at the start of each chapter indicates the frequency at which each 
case is tested.  

1.4 Case files and datasets 

Case files and datasets for the tests outlined in this document are provided with the MFIX source 
code under the mfix/tests directory. All presented data is representative of results from the 
current MFIX release unless explicitly noted. 
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1.5 Organization 

Chapter 2 provides verification tests that use the Method of Manufactured Solution (MMS) to 
determine whether the observed order of error reduction with grid refinement matches the formal 
order. Order testing with MMS is considered to be a very rigorous procedure for code 
verification.   
 
Chapters 3 and 4 provide verification tests that use benchmark solutions of simple problems to 
test the two main models of the MFIX software suite: (1) Two-Fluid Model, and (2) Discrete 
Element Model. This process examines various aspects of the code but only for problems with 
significantly simplified physics. 
 
Figure 1-2 shows the scope of the V&V activity covered in this manual. 

 
Figure 1-2: Scope of MFIX verification and validation activity covered in this manual. (Greyed parts indicate 
future or ongoing activities not presented in the current version of this document.)   
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Chapter 2:  Method of Manufactured Solutions (MMS) 

The MMS test cases presented in this chapter are summarized in Table 2-1. These test cases have 
an increasing level of complexity in order to isolate any potential problems. Test cases have been 
selected based upon their ability to invoke various parts of the MFIX code. All cases are 
executed in serial mode unless explicitly noted. 
 

Table 2-1: Summary of MMS tests by feature 
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MMS01 M 2D             

MMS02 M 3D             
MMS03 M 3D             
MMS04 M 3D             
MMS05 M 3D             
MMS06 M 3D             

† C-Incorporated into the continuous integration server; 
M-Monthly; Q-Quarterly; D-Disabled; X-Manual 

2.1 Introduction 

Order of accuracy testing (or ‘order testing’) is considered a rigorous method for performing 
code verification. During order testing, the formal order of accuracy of the numerical scheme is 
compared to the observed order of accuracy. The observed order is the order at which the 
discretization error (which is the difference between the numerical solution to the discrete 
equations and the exact solution to the PDEs) decreases with systematic mesh refinement. 
However, the exact solution to the PDEs is unknown for most practical problems. In this 
scenario, the Method of Manufactured Solutions (MMS) [7] can be used where a selected 
analytical function (called a ‘manufactured solution’) is forced to be the exact solution by 
modifying the PDE through additional source terms. The procedure for using MMS to conduct 
order of accuracy test is summarized as follows [8, 9]: 

1. Select the governing equations (PDEs). 
2. Select the manufactured solutions (smooth, analytical functions). 
3. Substitute the manufactured solution into the governing equations to obtain analytical, 

MMS source terms. 
4. Add the MMS source terms to the source terms of the original governing equation; 

modify the boundary conditions to accommodate the manufactured solutions. 
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5. Run computational simulations on multiple, systematically-refined meshes. 
6. Evaluate the global discretization error for each mesh level. 
7. Determine whether the observed rate of global discretization error reduction matches the 

formal order expected for the implemented scheme. 
 

The discretization error for the MMS tests is defined as the difference between the solution to the 
discretized equations (𝑓𝑓𝑙𝑙) and the manufactured solution (𝑓𝑓MMS) 

DE𝑙𝑙 = 𝑓𝑓𝑙𝑙 − 𝑓𝑓MMS (2-1) 

where 𝑙𝑙 indicates the mesh level. The global discretization error can be evaluated using one or 
more of the following global norms: 

𝐿𝐿1 Norm = ‖DE𝑙𝑙‖1 =
∑�DE𝑙𝑙,𝑖𝑖𝑖𝑖𝑖𝑖�

𝑁𝑁
 (2-2) 

𝐿𝐿2 Norm = ‖DE𝑙𝑙‖2 = �∑�DE𝑙𝑙,𝑖𝑖𝑖𝑖𝑖𝑖�
2

𝑁𝑁
 (2-3) 

𝐿𝐿∞ Norm = ‖DE𝑙𝑙‖∞ = max�DE𝑙𝑙,𝑖𝑖𝑖𝑖𝑖𝑖� (2-4) 

Here, DE𝑙𝑙,𝑖𝑖𝑖𝑖𝑖𝑖is the discretization error at the 𝑖𝑖𝑖𝑖𝑖𝑖 cell location, and the summation and maximum 
operate over all 𝑁𝑁 cells comprising the domain. The 𝐿𝐿1 norm represents the average error, 𝐿𝐿2 
norm represents the RMS error, and 𝐿𝐿∞ norm represents the maximum error in the domain. 
Consequently, the 𝐿𝐿∞ norm is strictest of the three global norms while performing order tests. 
For problems involving complex geometries and flow phenomena, the 𝐿𝐿∞ norm often requires 
several grid levels to establish grid convergence. At the other extreme, the 𝐿𝐿1 norm, being the 
least strict of the three, can show good order convergence for several grid levels even when large 
local errors are present in the domain. The 𝐿𝐿2 norm is a useful indicator of observed order within 
reasonable number of grid levels. Here, we consider both 𝐿𝐿2 and 𝐿𝐿∞ norms during the order of 
accuracy tests to make our conclusions. When the 𝐿𝐿∞ norms reduce at, or reasonably at, the 
formal rate, and the 𝐿𝐿2 norms reduce at the formal rate, then the test is concluded to be 
successful. When either the 𝐿𝐿2 or 𝐿𝐿∞ norms perform poorly, then the test is concluded to be a 
failure and further investigation is required. 
 
The observed order, 𝑝𝑝, is obtained from the global discretization error on a coarse mesh level, 
DE𝑙𝑙+1, and a fine mesh level, DE𝑙𝑙. The ratio between the two mesh levels is termed the 
refinement factor, 𝑟𝑟 = ℎ𝑙𝑙+1/ℎ𝑙𝑙, where ℎ is a measure of the size of a typical grid cell. When 
exact or manufactured solution is available, the observed order is found as follows: 
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𝑝𝑝𝑙𝑙 = ln�
‖DE𝑙𝑙+1‖
‖DE𝑙𝑙‖

� ln(𝑟𝑟)�  (2-5) 

Thus by using five mesh levels, four observed order values can be obtained and used to 
determine if the grid refinement has reached the asymptotic range (i.e., the range where the 
higher order term of the truncation error series can be safely ignored). The plot of observed order 
with respect to the grid size measure is used to assess whether the given test case successfully 
passes the order test. The procedure is illustrated in Figure 2-1 where the refinement factor 
between subsequent mesh levels is 𝑟𝑟 = 2. 

 
Figure 2-1: Procedure for order of accuracy testing. 
 

2.2 MMS01: Single-phase, 2D, sinusoidal functions 

2.2.1 Description 

A sinusoidal divergence-free manufactured solution [10, 11] for the fluid pressure, 𝑃𝑃𝑔𝑔, and 𝑥𝑥 and 
𝑦𝑦 velocity components, 𝑢𝑢𝑔𝑔 and 𝑣𝑣𝑔𝑔, respectively, is used for the verification of steady-state, 
single-phase flows on a 2D grid. 

𝑢𝑢𝑔𝑔 = 𝑢𝑢𝑔𝑔0 sin2�2𝜋𝜋(𝑥𝑥 + 𝑦𝑦)� (2-6.a) 

𝑣𝑣𝑔𝑔 = 𝑣𝑣𝑔𝑔0 cos2�2𝜋𝜋(𝑥𝑥 + 𝑦𝑦)� (2-6.b) 

𝑃𝑃𝑔𝑔 = 𝑃𝑃𝑔𝑔0 cos�2𝜋𝜋(𝑥𝑥 + 𝑦𝑦)� (2-6.c) 

Figure 2-2 shows a color contour of the pressure field and velocity stream lines for the 
manufactured solution using constants 𝑃𝑃𝑔𝑔0 = 100 Pa, 𝑢𝑢𝑔𝑔0 = 5.0 m⋅sec−1, and , 𝑣𝑣𝑔𝑔0 =
5.0 m⋅sec−1. 
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Figure 2-2: Pressure contours and velocity streamlines for 2D, single-phase, simple sinusoidal manufactured 
solution for a 64x64 cell grid. 

2.2.2 Setup 

Computational/Physical model 
2D, Steady-state, incompressible 
Single phase (no solids) 
No gravity 
Thermal energy equation is not solved 
Turbulence equations are not solved (Laminar) 
Uniform mesh 
Superbee and Central discretization schemes 
 

Geometry 
Coordinate system Cartesian  
x-length 1.0 (m) 
y-length 1.0 (m) 

   
Material†   

Fluid density, 𝜌𝜌𝑔𝑔 1.0 (kg·m-3) 
Fluid viscosity, 𝜇𝜇𝑔𝑔 1.0 (Pa·s) 

   
Initial Conditions   

Pressure (gauge), 𝑃𝑃𝑔𝑔 0 (Pa) 
x-velocity, 𝑢𝑢𝑔𝑔 5.0 (m·sec-1) 
y-velocity, 𝑣𝑣𝑔𝑔 5.0 (m·sec-1) 

   
Boundary Conditions‡   

All boundaries Mass inflow  
   
† Material properties selected to ensure comparable contribution from convection and diffusion terms. 
‡ The manufactured solution is imposed on all boundaries (i.e., Dirichlet specification). 
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2.2.3 Results 

Numerical solutions were obtained using both Superbee and Central discretization schemes for 
8x8, 16x16, 32x32, 64x64, and 128x128 grid meshes. The Superbee scheme order of accuracy 
tests show a first-order rate of convergence for pressure under the 𝐿𝐿∞ norm as illustrated in 
Figure 2-3(a), whereas the formal order for this scheme is two. The largest errors in pressure are 
local to boundary cells along the West (y=0) and South (x=0) edges of the domain as shown in 
Figure 2-4(a). This is an artifact of the staggered grid implementation in MFIX where only a 
single ghost cell layer is present along West and South boundaries, reducing higher-order upwind 
schemes to first-order. This effect also occurs along the Bottom (z=0) edge of the domain for 
three-dimensional simulations. Further investigation is needed to determine to what extent the 
errors introduced at the boundary propagate into the domain interior. 
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Figure 2-3: Observed orders of accuracy for 2D, single-phase, sinusoidal manufactured solution. (a) Superbee 
scheme, (b) Central scheme.  

 

 
Figure 2-4: Errors in pressure for 2D, single-phase, sinusoidal manufactured solution for grid resolution 
(64x64). (a) Superbee scheme, (b) Central scheme 

The Central scheme results, depicted in Figure 2-3(b), show second order accuracy for all 
variables. The formal order for the Central scheme is recovered because no up-winding is 
performed, thereby averting solution deterioration at the boundaries. The errors in pressure near 
the boundaries are consistent with the scheme’s formal order as can be seen from Figure 2-4(b). 

2.2.4 Notes 

During initial testing, it was discovered that the strain-tensor cross terms for the momentum 
equations were not calculated within steady-state sub-iterations which leads to large errors (not 
shown). These errors do not appear in cases with zero shear at the boundaries. Transient 
simulations recalculate these cross-terms at the start of each time-step making it difficult to 
determine the effect on the solution. The significance of this simplification (likely done to reduce 
computational expense) on real-world application problems is unknown and should be 



19 
 

investigated. For MMS tests, this issue was circumvented by recalculating the cross-terms of the 
strain-tensor at each sub-iteration. 

2.3 MMS02: Two-phase, 3D, curl-based functions with constant volume fraction 

2.3.1 Description 

Assuming that gas and solid volume fractions (i.e., 𝜀𝜀𝑔𝑔 and 𝜀𝜀𝑠𝑠) remain constant, we can see from 
gas and solid continuity equations that both fluid and solid velocity fields are required to be 
divergence-free (for constant density of fluid and solids). A manufactured solution for the fluid-
phase velocity field is defined using the curl-based approach developed in [10]. For the solid-
phase velocity field, a set of simple sinusoidal functions is selected (similar to those shown in 
Eq. (2-6.a,b,c). The manufactured solutions for scalar quantities (pressure, gas temperature, and 
solid temperature) can be purely general sinusoidal functions. The selected functions for all 
concerned variables are shown over a 3D domain in Figure 2-5-Figure 2-7. The mathematical 
form of the manufactured solutions is discussed in Appendix A. 

 
Figure 2-5: Gas phase momentum equation manufactured solutions for 3D, steady-state, two-phase flow 
verification test case.  

 

 
Figure 2-6: Solids phase momentum equation manufactured solutions for 3D, steady-state, two-phase flow 
verification test case.  
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Figure 2-7: Scalar field manufactured solutions for 3D, steady-state, two-phase flow verification test case.  

2.3.2 Setup 

Computational/Physical model 
3D, Steady-state, incompressible 
Two-phase 
No gravity 
Drag model is turned off 
Friction model is turned off 
Thermal energy equations are solved 
Granular energy equation is not solved 
Turbulence equations are not solved (Laminar) 
Central scheme 

 
Geometry 

Coordinate system Cartesian  
Domain length, 𝐿𝐿  (x) 1.0 (m) 
Domain height, 𝐻𝐻 (y) 1.0 (m) 
Domain width, 𝑊𝑊 (z) 1.0 (m) 

   
Material†   

Fluid density, 𝜌𝜌𝑔𝑔 1.0 (kg·m-3) 
Fluid viscosity, 𝜇𝜇𝑔𝑔 1.0 (Pa·s) 
Fluid specific heat, 𝐶𝐶𝑝𝑝𝑝𝑝 0.05 (J·kg-1·K-1) 
Fluid thermal conductivity, 𝑘𝑘𝑔𝑔 1.0 (J·kg-1·K-1·s-1) 
Solids density, 𝜌𝜌𝑠𝑠 2.0 (kg·m-3) 
Solids viscosity, 𝜇𝜇𝑠𝑠 2.0 (Pa·s) 
Solids specific heat, 𝐶𝐶𝑝𝑝𝑝𝑝 0.1 (J·kg-1·K-1) 
Solids thermal conductivity, 𝑘𝑘𝑠𝑠 2.0 (J·kg-1·K-1·s-1) 

   
Initial Conditions   

Pressure (gauge), 𝑃𝑃𝑔𝑔 0.0 (Pa) 
Fluid x-velocity, 𝑢𝑢𝑔𝑔 10.0 (m·sec-1) 
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Fluid y-velocity, 𝑣𝑣𝑔𝑔 10.0 (m·sec-1) 
Fluid z-velocity, 𝑤𝑤𝑔𝑔 10.0 (m·sec-1) 
Solids x-velocity, 𝑢𝑢𝑠𝑠 5.0 (m·sec-1) 
Solids y-velocity, 𝑣𝑣𝑠𝑠 5.0 (m·sec-1) 
Solids z-velocity, 𝑤𝑤𝑠𝑠 5.0 (m·sec-1) 
Fluid temperature, 𝑇𝑇𝑔𝑔 350 (K) 
Solids temperature, 𝑇𝑇𝑠𝑠 300 (K) 
Gas volume fraction, 𝜀𝜀𝑔𝑔 0.7 -- 

   
Boundary Conditions‡   

All boundaries Mass inflow   
 

† Material properties selected to ensure comparable contribution from convection and diffusion terms. Specified 
values are constant to avoid the introduction of constitutive laws. 

‡ The manufactured solution is imposed on all boundaries (i.e., Dirichlet specification). 
 

2.3.3 Results 

Numerical solutions were obtained using the Central discretization scheme for 8x8, 16x16, 
32x32, 64x64, and 128x128 grid meshes. The observed order is confirmed to be approaching 
second order for both 𝐿𝐿2 and 𝐿𝐿∞ norms using the Central scheme, as shown in Figure 2-8. This 
indicates that the numerical discretization terms have been implemented correctly for all 
derivative terms within the gas momentum equations, solid momentum equations, gas pressure 
correction equation, gas energy equation, and solid energy equation. 

 
Figure 2-8: Observed orders of accuracy for 3D, two-phase, flows (constant volume fraction) using (a) 𝑳𝑳𝟐𝟐 
norms, and (b) 𝑳𝑳∞ norms of the discretization error.  
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2.4 MMS03: Two-phase, 3D, curl-based functions with variable volume fraction 

2.4.1 Description 

The volume fraction is selected as a function with sufficient variation in all directions while 
ensuring that the packed bed volume fraction (𝜀𝜀𝑔𝑔 = 0.42) is not reached. The velocity 
manufactured solutions are now selected to satisfy the continuity equations (and not divergence-
free velocity conditions as in Section 2.3). The resulting manufactured solutions for gas volume 
fraction and fluid velocity variables are shown in Figure 2-9. The mathematical form of the 
manufactured solutions is discussed in Appendix A. 
 

 
Figure 2-9: Manufactured solutions for 3D, variable volume fraction, two-phase verification.  

 

2.4.2 Setup 

Computational/Physical model 
3D, Steady-state, incompressible 
Two-phase 
No gravity 
Drag model is turned off 
Friction model is turned off 
Thermal energy equations are solved 
Granular energy equation is not solved 
Turbulence equations are not solved (Laminar) 
Non-uniform mesh 
Central scheme 

 
Geometry 

Coordinate system Cartesian  
Domain length, 𝐿𝐿  (x) 1.0 (m) 
Domain height, 𝐻𝐻 (y) 1.0 (m) 
Domain width, 𝑊𝑊 (z) 1.0 (m) 

   
Material†   

Fluid density, 𝜌𝜌𝑔𝑔 1.0 (kg·m-3) 
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Fluid viscosity, 𝜇𝜇𝑔𝑔 1.0 (Pa·s) 
Fluid specific heat, 𝐶𝐶𝑝𝑝𝑝𝑝 0.05 (J·kg-1·K-1) 
Fluid thermal conductivity, 𝑘𝑘𝑔𝑔 1.0 (J·kg-1·K-1·s-1) 
Solids density, 𝜌𝜌𝑠𝑠 2.0 (kg·m-3) 
Solids viscosity, 𝜇𝜇𝑠𝑠 2.0 (Pa·s) 
Solids specific heat, 𝐶𝐶𝑝𝑝𝑝𝑝 0.1 (J·kg-1·K-1) 
Solids thermal conductivity, 𝑘𝑘𝑠𝑠 2.0 (J·kg-1·K-1·s-1) 

   
Initial Conditions   

Pressure (gauge), 𝑃𝑃𝑔𝑔 MMS  
Fluid x-velocity, 𝑢𝑢𝑔𝑔 10.0 (m·sec-1) 
Fluid y-velocity, 𝑣𝑣𝑔𝑔 10.0 (m·sec-1) 
Fluid z-velocity, 𝑤𝑤𝑔𝑔 10.0 (m·sec-1) 
Solids x-velocity, 𝑢𝑢𝑠𝑠 5.0 (m·sec-1) 
Solids y-velocity, 𝑣𝑣𝑠𝑠 5.0 (m·sec-1) 
Solids z-velocity, 𝑤𝑤𝑠𝑠 5.0 (m·sec-1) 
Fluid temperature, 𝑇𝑇𝑔𝑔 350 (K) 
Solids temperature, 𝑇𝑇𝑠𝑠 300 (K) 
Gas volume fraction, 𝜀𝜀𝑔𝑔 MMS  

   
Boundary Conditions‡   

All boundaries Mass inflow   
 

† Material properties selected to ensure comparable contribution from convection and diffusion terms. Specified 
values are constant to avoid the introduction of constitutive laws. 

‡ The manufactured solution is imposed on all boundaries (i.e., Dirichlet specification). 

2.4.3 Results 

Numerical solutions were obtained using the Central discretization scheme for 8x8, 16x16, 
32x32, 64x64, and 128x128 grid meshes.  Iterative convergence could not be achieved when 
continuity equations were solved with variable volume fraction field. To achieve convergence, 
the continuity variables (𝜀𝜀𝑔𝑔, 𝜌𝜌𝑔𝑔′ , and 𝑃𝑃𝑔𝑔) are kept fixed by specifying the fields for these variables 
using the manufactured solution in the initial conditions routine, and discarding their iterative 
solution within the main solver routine. Thus, the continuity and pressure equations are not 
solved in this case which restricts us from making any observations about the accuracy of these 
equations. The observed order of accuracy matches the formal order as shown in Figure 2-10 for 
the velocity variables as well as for the energy variables. 
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Figure 2-10: Observed orders of accuracy for 3D, two-phase, flows (variable volume fraction) using (a) 𝑳𝑳𝟐𝟐 
norms, and (b) 𝑳𝑳∞ norms of the discretization error.  

2.5 MMS04: No-slip wall BC, single-phase, 3D, curl-based functions 

2.5.1 Description 

The no-slip wall boundary condition in MFIX is verified using the techniques described in [10];  
the manufactured solution is selected such that it satisfies both the divergence-free constraint and 
the no-slip wall boundary condition. Specifically, the no-slip wall boundary condition requires 
that the velocity at the (stationary) no-slip wall is zero. The manufactured solution is generated 
using the curl-based derivation to ensure divergence-free velocity fields [10] along with the 
technique given in [12] to ensure that the velocity component functions approach the value of 
zero at the boundary being tested. The manufactured solution for the velocity field used for the 
verification of no-slip wall is given as [13] 

𝑉𝑉�⃗ = 𝑆𝑆2�∇��⃗ × 𝐻𝐻��⃗ � + 2𝑆𝑆�∇𝑆𝑆 × 𝐻𝐻��⃗ � (2-7) 

where, 𝑉𝑉�⃗  is the velocity field vector, 𝑆𝑆 is the mathematical equation of the boundary being tested, 
and 𝐻𝐻��⃗  is a general vector field consisting of sinusoidal expressions. The pressure manufactured 
solution is selected as a general sinusoidal function since there are no constraints for pressure to 
be tested for this boundary condition. 

2.5.2 Setup 

This case is setup for single-phase flows on a domain with unit dimensions; the boundary being 
tested is the West boundary (i.e., 𝑥𝑥 = 0). 

Computational/Physical model 
3D, Steady-state, incompressible 
Single-phase (no solids) 
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No gravity 
Turbulence equations are not solved (Laminar) 
Non-uniform mesh 
Central scheme 

 
Geometry 

Coordinate system Cartesian  
Domain length, 𝐿𝐿  (x) 1.0 (m) 
Domain height, 𝐻𝐻 (y) 1.0 (m) 
Domain width, W (z) 1.0 (m) 

   
Material†   

Fluid density, 𝜌𝜌𝑔𝑔 1.0 (kg·m-3) 
Fluid viscosity, 𝜇𝜇𝑔𝑔 1.0 (Pa·s) 

   
Initial Conditions   

Pressure (gauge), 𝑃𝑃𝑔𝑔 MMS  
Fluid x-velocity, 𝑢𝑢𝑔𝑔 5.0 (m·sec-1) 
Fluid y-velocity, 𝑣𝑣𝑔𝑔 5.0 (m·sec-1) 
Fluid z-velocity, 𝑤𝑤𝑔𝑔 5.0 (m·sec-1) 

   
Boundary Conditions‡   

West boundary No-slip wall  
All other  boundaries Mass inflow (MMS)  

 

† Material properties selected to ensure comparable contribution from convection and diffusion terms. 
‡ The manufactured solution is imposed on all boundaries (i.e., Dirichlet specification). 

2.5.3 Results 

Numerical solutions were obtained using the Central discretization scheme for 8x8, 16x16, 
32x32, 64x64, and 128x128 grid meshes. Iterative convergence could not be achieved for this 
case when pressure was solved. Hence, the pressure variable (𝑃𝑃𝑔𝑔) was fixed by specifying 
pressure using the manufactured solution in the initial conditions routine and discarding the 
pressure solution in the main solver routine. The observed order of accuracy matches the formal 
order as shown in Figure 2-11 for the velocity variables. 
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Figure 2-11: Observed orders of accuracy for no-slip wall verification (3D, single-phase flows) using 𝑳𝑳𝟐𝟐 and 𝑳𝑳∞ 
norms of the discretization error.  

2.6 MMS05: Free-slip wall BC, single-phase, 3D, curl-based functions 

2.6.1 Description 

The free-slip wall boundary condition in MFIX is verified using the techniques described in [10] 
where the manufactured solution is selected such that it satisfies both the divergence-free 
constraint and the free-slip wall boundary condition. Specifically, the normal component of the 
velocity vector is zero at the (stationary) free-slip wall while the tangential component of the 
velocity vector near the boundary is set equation to that in the ghost cell. This results in a zero 
gradient condition normal to the free-slip wall for the tangential velocity components only. The 
manufactured solution for the velocity field used for the verification of a free-slip wall is given 
as [13] 

𝑉𝑉�⃗ = 𝑉𝑉�⃗ 0 + 𝑆𝑆3�∇��⃗ × 𝐻𝐻��⃗ � + 3𝑆𝑆2�∇𝑆𝑆 × 𝐻𝐻��⃗ � (2-8) 

where, 𝑉𝑉�⃗  is the velocity field vector, 𝑉𝑉�⃗ 0 = {0, 𝑣𝑣0,𝑤𝑤0}𝑇𝑇 consists of non-zero scalar constants for 
𝑣𝑣0 and 𝑤𝑤0, 𝑆𝑆 is the mathematical equation of the boundary being tested (i.e., 𝑆𝑆 ≡ 𝑥𝑥 = 0), and 𝐻𝐻��⃗  
is a general vector field consisting of sinusoidal expression. The pressure manufactured solution 
is selected as a general sinusoidal function since there are no constraints for pressure to be tested 
for this boundary condition. 

2.6.2 Setup 

This case is setup for single-phase flows on a domain with unit dimensions; the boundary being 
tested is the West boundary (i.e., 𝑥𝑥 = 0). 

Computational/Physical model 
3D, Steady-state, incompressible 
Single-phase (no solids) 
No gravity 
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Turbulence equations are not solved (Laminar) 
Non-uniform mesh 
Central scheme 
 

Geometry 
Coordinate system Cartesian  
Domain length, 𝐿𝐿  (x) 1.0 (m) 
Domain height, 𝐻𝐻 (y) 1.0 (m) 
Domain width, W (z) 1.0 (m) 

   
Material†   

Fluid density, 𝜌𝜌𝑔𝑔 1.0 (kg·m-3) 
Fluid viscosity, 𝜇𝜇𝑔𝑔 1.0 (Pa·s) 

   
Initial Conditions   

Pressure (gauge), 𝑃𝑃𝑔𝑔 MMS  
Fluid x-velocity, 𝑢𝑢𝑔𝑔 5.0 (m·sec-1) 
Fluid y-velocity, 𝑣𝑣𝑔𝑔 5.0 (m·sec-1) 
Fluid z-velocity, 𝑤𝑤𝑔𝑔 5.0 (m·sec-1) 

   
Boundary Conditions‡   

West boundary Free-slip wall  
All other  boundaries Mass inflow (MMS)  

 

† Material properties selected to ensure comparable contribution from convection and diffusion terms. 
‡ The manufactured solution is imposed on all boundaries (i.e., Dirichlet specification). 

2.6.3 Results 

Numerical solutions were obtained using the Central discretization scheme for 8x8, 16x16, 
32x32, 64x64, and 128x128 grid meshes. Iterative convergence could not be achieved for this 
case when pressure was solved. Hence, the pressure variable (𝑃𝑃𝑔𝑔) was fixed by specifying 
pressure using the manufactured solution in the initial conditions routine and discarding the 
pressure solution in the main solver routine. The observed order of accuracy matches the formal 
order as shown in Figure 2-12 for the velocity variables. 
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Figure 2-12: Observed orders of accuracy for free-slip wall verification (3D, single-phase flows) using 𝑳𝑳𝟐𝟐 and 
𝑳𝑳∞ norms of the discretization error.  

2.7 MMS06: Pressure outflow BC, single-phase, 3D, curl-based functions 

2.7.1 Description 

The pressure outflow boundary condition in MFIX is verified using the techniques described in 
[10] where the manufactured solution is selected such that it satisfies both, the divergence-free 
constraint and the pressure outflow condition. Specifically, this boundary condition requires that 
the pressure and all velocity components at the outflow have zero gradients normal to the wall at 
the boundary. For the verification of pressure outflow condition, the manufactured solution for 
the velocity field is given by Equation (2-9) while that for pressure is given by Equation (2-10) 
[13]. 

𝑉𝑉�⃗ = 𝑉𝑉�⃗ 0 + 𝑆𝑆3�∇��⃗ × 𝐻𝐻��⃗ � + 3𝑆𝑆2�∇𝑆𝑆 × 𝐻𝐻��⃗ � (2-9) 

𝑃𝑃 = 𝑃𝑃0 + 𝑆𝑆2𝑃𝑃1 (2-10) 

Here, 𝑉𝑉�⃗  is the velocity field vector, 𝑆𝑆 is the mathematical equation of the boundary being tested 
(here, 𝑆𝑆 ≡ 𝑦𝑦 = 1), 𝑃𝑃0 is a non-zero scalar constant, 𝑃𝑃1 represents the sinusoidal terms of the 
general manufactured solution, and 𝐻𝐻��⃗  is a general vector field consisting of sinusoidal 
expressions. 

2.7.2 Setup 

This case is setup for single-phase flows on a domain with unit dimensions; the boundary being 
tested is the North boundary (i.e., 𝑦𝑦 = 1). 

Computational/Physical model 
3D, Steady-state, incompressible 
Single-phase (no solids) 
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No gravity 
Turbulence equations are not solved (Laminar) 
Non-uniform mesh 
Central scheme 
 

Geometry 
Coordinate system Cartesian  
Domain length, 𝐿𝐿  (x) 1.0 (m) 
Domain height, 𝐻𝐻 (y) 1.0 (m) 
Domain width, W (z) 1.0 (m) 

   
Material†   

Fluid density, 𝜌𝜌𝑔𝑔 1.0 (kg·m-3) 
Fluid viscosity, 𝜇𝜇𝑔𝑔 1.0 (Pa·s) 

   
Initial Conditions   

Pressure (gauge), 𝑃𝑃𝑔𝑔 0.0 (Pa) 
Fluid x-velocity, 𝑢𝑢𝑔𝑔 5.0 (m·sec-1) 
Fluid y-velocity, 𝑣𝑣𝑔𝑔 5.0 (m·sec-1) 
Fluid z-velocity, 𝑤𝑤𝑔𝑔 5.0 (m·sec-1) 

   
Boundary Conditions‡   

North boundary Pressure outflow  
All other  boundaries Mass inflow (MMS)  

 

† Material properties selected to ensure comparable contribution from convection and diffusion terms. 
‡ The manufactured solution is imposed on all boundaries (i.e., Dirichlet specification). 
 

2.7.3 Results 

Numerical solutions were obtained using the Central discretization scheme for 8x8, 16x16, 
32x32, 64x64, and 128x128 grid meshes. The observed order of accuracy matches the formal 
order as shown in Figure 2-13 for both the velocity variables and the pressure. Unlike the test 
cases verifying the no-slip and free-slip boundary conditions, no convergence issues were 
encountered since the problem has a physically-realistic outflow boundary. 
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Figure 2-13: Observed orders of accuracy for pressure outflow verification using 𝑳𝑳𝟐𝟐 and 𝑳𝑳∞ norms of the 
discretization error.  
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Chapter 3:  Two-Fluid Model Verification Test Cases 

The tests cases presented in this chapter for the MFIX-TFM are summarized in Table 3-1. Test 
cases have been selected based the criteria for verification test selection outlined in Chapter 1. 
All cases are executed in serial mode unless explicitly noted. 
 

Table 3-1: Summary of MFIX-TFM tests by feature 
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TFM01 C A 2D                   
TFM02 C A 1D                   
TFM03 C P 2D                   
TFM04 C A 2D                   

† C-Incorporated into the continuous integration server; M-Monthly; Q-Quarterly; X-Manual; D-Disabled 
‡ A-Analytical solution; P-Published benchmark data; R-Regression data from previous code versions 
 

3.1 TFM01: Single-phase, 2D, plane Poiseuille flow 

3.1.1 Description 

Plane Poiseuille flow is a laminar flow of a viscous fluid between two parallel plates separated 
by a distance 𝐻𝐻 caused by a pressure gradient across the length of the plates, 𝐿𝐿. The result is a 
2D parabolic velocity profile symmetric about the horizontal mid-plane as illustrated in Figure 
3-1 

 
Figure 3-1: Plane Poiseuille flow between two flat plates of length L, separated by a distance H. 
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In this problem, the Navier-Stokes equations reduce to a second order linear ordinary differential 
equation (ODE), 

𝜇𝜇𝑔𝑔
𝑑𝑑2𝑢𝑢𝑔𝑔
𝑑𝑑𝑦𝑦2

=
𝑑𝑑𝑃𝑃𝑔𝑔
𝑑𝑑𝑑𝑑

, (3-1) 

where 𝜇𝜇𝑔𝑔 and 𝑃𝑃𝑔𝑔 are the fluid viscosity and pressure, respectively, and 𝑢𝑢𝑔𝑔 and 𝑣𝑣𝑔𝑔 are the 𝑥𝑥 and 𝑦𝑦 
velocity components, respectively. Furthermore, it is assumed that gravitational forces are 
negligible, the pressure gradient is constant, i.e., 𝑑𝑑𝑃𝑃𝑔𝑔/𝑑𝑑𝑑𝑑 = 𝐶𝐶, and the velocity components are 
zero at the channel walls. The resulting analytical solution is given as 

𝑢𝑢𝑔𝑔(𝑦𝑦) = −
𝑑𝑑𝑃𝑃𝑔𝑔
𝑑𝑑𝑑𝑑

1
2𝜇𝜇𝑔𝑔

𝑦𝑦(𝐻𝐻 − 𝑦𝑦). (3-2) 

3.1.2 Setup 

Computational/Physical model 
2D, Steady-state 
Single phase (no solids) 
No gravity 
Thermal energy equation is not solved 
Turbulence equations are not solved (Laminar) 
Uniform mesh 
Superbee discretization scheme 
 

Geometry 
Coordinate system Cartesian  Grid partitions 
Channel length, 𝐿𝐿  (x) 0.2 (m) 32 
Channel height, 𝐻𝐻 (y) 0.01 (m) 32 

   
Material   

Fluid density, 𝜌𝜌𝑔𝑔 1.0 (kg·m-3) 
Fluid viscosity, 𝜇𝜇𝑔𝑔 0.001 (Pa·s) 

   
Initial Conditions   

Pressure (gauge), 𝑃𝑃𝑔𝑔 101325 (Pa) 
x-velocity, 𝑢𝑢𝑔𝑔 10.0 (m·sec-1) 
y-velocity, 𝑣𝑣𝑔𝑔 0.0 (m·sec-1) 

   
Boundary Conditions   

South boundary 0.0 (m·s-1) No-Slip wall 
North boundary 0.0 (m·s-1) No-Slip wall 
Cyclic West-East boundary with  
pressure drop, Δ𝑃𝑃𝑔𝑔 240.0 (Pa) 
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3.1.3 Results 

The numerical solution for x-velocity, 𝑢𝑢𝑔𝑔, agrees well with the analytical solution as shown in 
Figure 3-2. The absolute error between the analytical and numerical solution is bounded above 
by 0.015 m⋅sec−1. Pressure, 𝑃𝑃𝑔𝑔, varies linearly along the length of the plates and y-velocity, 𝑣𝑣𝑔𝑔, 
is zero over the entire domain. As a result, the second order scheme Superbee calculates 𝑃𝑃𝑔𝑔 and 
𝑣𝑣𝑔𝑔 without any numerical error. 

 
Figure 3-2: Rectangular channel flow. For x-velocity: (Left) numerical solution vs analytical solution, and 
(right) absolute error between the analytical and numerical solutions. 

3.2 TFM02: Steady-state, 1D heat conduction 

3.2.1 Description 

Steady-state, one-dimensional heat conduction occurs across a rectangular plane slab of length 𝐿𝐿 
with constant material properties. As shown in Figure 3-3, two opposing slab boundaries are 
maintained at constant temperatures. All other faces are perfectly insulated such that the heat 
flux along these boundaries is zero. Without heat generation, heat transfer through the 𝑥𝑥 = 0 face 
must be equal to that through the 𝑥𝑥 = 𝐿𝐿 face. 

 
Figure 3-3: Plane slab with constant material properties and no internal heat generation is shown with 
constant temperatures specified on opposing faces. The slab is assumed to be perfectly insulated along all 
other faces. 

𝑇𝑇2 

𝑇𝑇1 

𝑥𝑥 

𝑇𝑇 

𝐿𝐿 
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For this problem, the energy equation reduces to a second order ODE with Dirichlet boundary 
conditions as given by Eq. (3-3). The analytic solution for temperature distribution within the 
slab follows a linear variation as given by Eq. (3-4). 

𝑑𝑑2𝑇𝑇
𝑑𝑑𝑥𝑥2

= 0;     𝑇𝑇(𝑥𝑥 = 0) = 𝑇𝑇1;     𝑇𝑇(𝑥𝑥 = 𝐿𝐿) = 𝑇𝑇2 (3-3) 

𝑇𝑇(𝑥𝑥) = 𝑇𝑇1 +
(𝑇𝑇2 − 𝑇𝑇1)

𝐿𝐿
𝑥𝑥 (3-4) 

3.2.2 Setup 

Computational/Physical model 
1D, Steady-state 
Single phase (no solids) 
No gravity 
Momentum equations are not solved 
Thermal energy equation is solved 
Uniform mesh 
Superbee discretization scheme 
 

Geometry 
Coordinate system Cartesian  Grid partitions 
Slab length, 𝐿𝐿  (x) 0.2 (m) 2 
Slab height, 𝐻𝐻 (y) 0.5 (m) 40 

   
Initial Conditions   

Temperature, 𝑇𝑇𝑔𝑔 350.0 (K) 
   

Boundary Conditions   
West boundary 400.0 (K) Constant temperature 
East boundary 320.0 (K) Constant temperature 
North/South boundaries 0.0 (J·s-1·m-2) Constant heat flux 

   
 

3.2.3 Results 

The numerical results accurately capture the linear variation of the temperature distribution 
within the plane slab as shown by Figure 3-4. The relative error between the numerical and the 
exact solution is less than 1% indicating good agreement between the analytic and numerical 
solutions. 
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Figure 3-4: Steady-state, 1D heat-conduction. (Left) numerical solution vs analytical solution, and (right) 
absolute error between the analytical and numerical solutions. 

3.3 TFM03: Steady-state, lid-driven square cavity 

3.3.1 Description 

Lid-driven flow in a 2D square cavity in the absence of gravity is illustrated in Figure 3-5. The 
problem definition follows the work of Ghia et al. [14] where the domain is bounded on the three 
sides with stationary walls while one wall, the lid, is prescribed a constant velocity. The cavity is 
completely filled with a fluid of selected viscosity and the flow is assumed to be incompressible 
and laminar. 

 
Figure 3-5: Schematic of the lid-driven square cavity. 

3.3.2 Setup 

Computational/Physical model 
2D, Steady-state, incompressible 
Single phase (no solids) 
Turbulence equations are not solved (i.e., Laminar) 
Uniform mesh 
Superbee discretization scheme 
 

𝑥𝑥 

moving boundary 𝑦𝑦 

induced 
fluid motion 

fixed 
walls 
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Geometry 
Coordinate system Cartesian  Grid partitions 
Cavity length, 𝐿𝐿  (x) 1.0 (m) 128 
Cavity width, 𝑊𝑊 (y) 1.0 (m) 128 

   
Material   

Fluid density, 𝜌𝜌𝑔𝑔 1.0 (kg·m-3) 
Fluid viscosity, 𝜇𝜇𝑔𝑔 varied (Pa·s) 

   
Initial Conditions   

x-velocity, 𝑢𝑢𝑔𝑔 0.1 (m·s-1) 
y-velocity, 𝑣𝑣𝑔𝑔 0.0 (m·s-1) 
   

Boundary Conditions   
North boundary 1.0 (m·s-1) No-slip wall 
East, West, South boundaries 0.0 (m·s-1) No-slip wall 

   
 

3.3.3 Results 

Numerical solutions were obtained for Reynolds numbers of 100 and 400 by specifying fluid 
viscosities of 0.01 and 0.0025, and compared against the numerical results of Ghia et al. [14] for 
a 128x128 grid mesh. The horizontal velocity at the vertical centerline (𝑥𝑥 = 0.5) and for the 
vertical velocity at the horizontal centerline (𝑦𝑦 = 0.5) are compared with literature data in Figure 
3-6 and Figure 3-7. It can be seen that the MFIX results match with the numerical results of Ghia 
et al. [14] satisfactorily. 

 
Figure 3-6: Comparison of velocities at the vertical (x=0.5) and horizontal centerlines (y=0.5) of the cavity with 
Ghia et al. [14] for Reynolds number of 100 (128x128 grid). 
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Figure 3-7: Comparison of velocities at the vertical (x=0.5) and horizontal centerlines (y=0.5) of the cavity with 
Ghia et al. [14] for Reynolds number of 400 (128x128 grid). 

The numerical solution for a Reynolds numbers of 1000 (a fluid viscosity of 0.001) obtained on a 
512x512 grid mesh is shown in Figure 3-8. Although the MFIX results agree with the published 
data, this case setup is reserved for demonstration purposes. That is, due to the high mesh count 
and long convergence time (several hours), this particular case setup is not suitable for frequent 
testing.  

 
Figure 3-8: Comparison of velocities at the vertical (x=0.5) and horizontal centerlines (y=0.5) of the cavity 
with Ghia et al. [14] for Reynolds number of 1000 (512x512 grid). 

3.4 TFM04: Gresho vortex problem 

3.4.1 Description 

The Gresho vortex problem [15] involves a stationary rotating vortex for which the centrifugal 
forces are exactly balanced by pressure gradients. The angular velocity and pressure distribution 
varies with only the radius as given by Eq. (3-5) [16] while the radial velocity is zero everywhere 
and the density is one everywhere. 
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𝑢𝑢𝜙𝜙(𝑟𝑟) = �
5𝑟𝑟

2 − 5𝑟𝑟
0

, 𝑝𝑝(𝑟𝑟) = �
5 + 25

2� 𝑟𝑟2

9 − 4 ln 0.2 + 25
2� 𝑟𝑟2 − 20𝑟𝑟 + 4 ln 𝑟𝑟

3 + 4 ln 2

,
0 ≤ 𝑟𝑟 < 0.2

0.2 ≤ 𝑟𝑟 < 0.4
0.4 ≤ 𝑟𝑟

 (3-5) 

 

 
Figure 3-9: Exact solution for the Gresho vortex problem (shown for (𝒙𝒙,𝒚𝒚) ∈ (𝟎𝟎.𝟓𝟓,𝟏𝟏) × (𝟎𝟎.𝟓𝟓,𝟏𝟏)) 

This problem is setup as a time-independent solution to the incompressible, homogeneous Euler 
equations. The exact solution is symmetric about the horizontal and the vertical axes and is 
shown for the quadrant of (𝑥𝑥,𝑦𝑦) ∈ (0.5,1) × (0.5,1) in Figure 3-9, where (0.5,0.5) is the center 
of the vortex. The simulation is initialized with the exact solution and periodic conditions on all 
boundaries of a 2D domain of unit dimensions (i.e., (𝑥𝑥,𝑦𝑦) ∈ (0,1) × (0,1))). Different numerical 
schemes in MFIX are used to find the numerical solution after three seconds which are then 
compared with exact solution to assess the quality of the results. 

3.4.2 Setup 

Computational/Physical model 
2D, Unsteady, incompressible 
Single phase (no solids) 
No gravity 
Turbulence equations are not solved (i.e., laminar flow) 
Viscosity is zero (i.e., inviscid flow) 
Uniform mesh  
Different discretization schemes:  
FOUP, Smart, Superbee, Quickest, VanLeer, Muscl, Minmod, Central 
Grid: (imax=40, jmax=40) 
 

Geometry 
Coordinate system Cartesian  
Domain length, 𝐿𝐿  (x) 1.0 (m) 
Domain width, 𝑊𝑊 (y) 1.0 (m) 

   
Time-stepping 

Initial time 0.0 (s) 



39 
 

Final time 3.0 (s) 
Time step 0.01 (s) 
Variable time-stepping disabled.   

   
Material   

Fluid density, 𝜌𝜌𝑔𝑔 1.0 (kg·m-3) 
Fluid viscosity, 𝜇𝜇𝑔𝑔 0.0 (Pa·s) 

   
Initial Conditions   

x-velocity, 𝑢𝑢𝑔𝑔 (set using Eq. (3-5)) 
y-velocity, 𝑣𝑣𝑔𝑔 (set using Eq. (3-5)) 
Pressure, 𝑝𝑝𝑔𝑔 (set using Eq. (3-5)) 
   

Boundary Conditions   
All boundaries Cyclic BC  

   
 

3.4.3 Results 

The results from MFIX simulations for different schemes are compared against the exact 
solution using the following two error measures: 

a) Δ𝑇𝑇𝑇𝑇𝐸𝐸% or percentage error in total kinetic energy, and 
b) Δ𝑝𝑝%������ or 𝐿𝐿1 norm (average) of the percentage error in pressure  

For these measures, the errors observed after three seconds for different discretization schemes 
are tabulated below: 

 Δ𝑇𝑇𝑇𝑇𝐸𝐸% Δ𝑝𝑝%������ 
FOUP 68.1 1.21 
Smart 2.5 0.07 
Superbee 8.0 0.15 
QUICKEST 30.2 0.55 
VanLeer 6.0 0.12 
Muscl 4.0 0.08 
Minmod 15.6 0.29 
Central 0.2 0.13 

The FOUP (First Order Up-Wind) scheme performs poorly compared to the second order 
schemes. Central, Smart, Muscl, VanLeer and Superbee schemes, all give acceptable results, 
whereas Minmod and QUICKEST do no show satisfactory performance. The poor results of 
FOUP, Minmod, and QUICKEST schemes can also be inferred from the prediction of vorticity 
as shown in Figure 3-10. FOUP clearly fails to capture the vorticity distribution over the entire 
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domain; Minmod and QUICKEST fail to accurately capture this distribution in the region of 
0.1 m ≤ 𝑟𝑟 ≤ 0.3 m (e.g., 0.6𝑚𝑚 ≤ 𝑥𝑥 ≤ 0.8𝑚𝑚 along 𝑦𝑦 = 0). 

 

Figure 3-10: Comparison of vorticity as predicted by different numerical schemes with the exact solution (at 
𝑻𝑻 = 𝟑𝟑 𝒔𝒔). 
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Chapter 4: MFIX-DEM Cases 

The tests cases presented in this chapter for the MFIX-DEM are summarized in Table 4-1. Test 
cases have been selected based the criteria for verification test selection outlined in Chapter 1. 
All cases are executed in serial mode unless explicitly noted. 
 

Table 4-1: Summary of MFIX-DEM tests by feature 
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DEM01 C A 1D                
DEM02 C A 1D                
DEM03 C A 1D                
DEM04 C A 1D                
DEM05 C P 2D                
DEM06 C A 1D                

† C-Incorporated into the continuous integration server; M-Monthly; Q-Quarterly; X-Manual; D-Disabled 
‡ A-Analytical solution; P-Published benchmark data; R-Regression data from previous code versions 
 

4.1 DEM01: Freely-falling particle 

This case serves to verify the MFIX-DEM linear spring-dashpot collision model as well as the 
accuracy of the time-stepping methods. This case is based on the work of Chen et al. [17] and the 
MFIX-DEM case was originally reported in [18]. 

4.1.1 Description 

A smooth (frictionless), spherical particle falls freely under gravity from an initial height, ℎ0, and 
bounces upon collision with a fixed wall. The translational motion of the particle is described in 
three stages as depicted in Figure 4-1: free fall, contact and rebound. An analytic expression for 
particle motion during each stage is obtained. 
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Figure 4-1: A particle with radius 𝒓𝒓𝒑𝒑 falling onto a fixed wall from an initial height of 𝒉𝒉𝟎𝟎 where 𝒈𝒈 is the 
gravitational force, 𝑭𝑭𝑪𝑪 is repulsive particle-wall collision force, 𝒗𝒗𝒄𝒄 is the pre-collision particle velocity, and 𝒗𝒗𝒓𝒓 
is the post-collision particle velocity. 

Stage 1: Free fall 

A force balance on the particle provides an expression for particle motion during free fall, 

𝑑𝑑2𝑦𝑦
𝑑𝑑𝑡𝑡2

− 𝑔𝑔;    𝑦𝑦(0) = ℎ0;   
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

(0) = 0 (4-1) 

where 𝑦𝑦 is the center position of the particle with respect to the wall and 𝑔𝑔 is the acceleration due 
to gravity. The particle is initially at rest with a center distance of ℎ0 above the wall. The 
instantaneous velocity, 𝑣𝑣, and particle center position are given by 

𝑣𝑣(𝑡𝑡) = −𝑔𝑔𝑔𝑔 (4-2) 

𝑦𝑦(𝑡𝑡) = ℎ0 −
1
2
𝑔𝑔𝑡𝑡2 (4-3) 

Sage 2: Contact 

The free fall stage ends and the contact stage begins when the particle center position equal to 
the particle radius. The particle-wall collision is treated using the linear spring-dashpot model 
such that the force balance on the particle during contact gives 

𝑑𝑑2𝑦𝑦
𝑑𝑑𝑡𝑡2

+ 2𝛽𝛽𝜔𝜔𝑜𝑜
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝜔𝜔𝑜𝑜2𝑦𝑦 = 𝜔𝜔𝑜𝑜2𝑟𝑟𝑝𝑝 − 𝑔𝑔;    𝑦𝑦(0) = 𝑟𝑟𝑝𝑝;   
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

(0) = −�2𝑔𝑔�ℎ0 − 𝑟𝑟𝑝𝑝� (4-4) 

where 𝛽𝛽 = 𝜂𝜂𝑛𝑛/�2�𝑘𝑘𝑛𝑛𝑚𝑚𝑝𝑝� and 𝜔𝜔𝑜𝑜 = �𝑘𝑘𝑛𝑛/𝑚𝑚𝑝𝑝. Here, 𝑘𝑘𝑛𝑛 and 𝜂𝜂𝑛𝑛 are the normal spring constant 
and damping coefficient for the particle-wall collision, and 𝑚𝑚𝑝𝑝 is the particle mass. The initial 
particle velocity is obtained from combining (4-2) and (4-3) when the particle center position is 
equal to its radius. The instantaneous velocity and particle center position during contact for an 
underdamped system, 𝛽𝛽 < 1, are given by 

ℎ0 
𝑔𝑔 

 𝑦𝑦 

𝑔𝑔 

 𝑦𝑦 

𝑟𝑟𝑝𝑝 

𝐹𝐹𝐶𝐶 

𝑣𝑣𝑐𝑐 𝑔𝑔 

 𝑦𝑦 

𝑟𝑟𝑝𝑝 

 𝑣𝑣𝑟𝑟 

Stage 2 
Contact 

Stage 3 
Rebound 

Stage 1 
Free fall 
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𝑣𝑣(𝑡𝑡) =

⎣
⎢
⎢
⎡
−�2𝑔𝑔�ℎ0 − 𝑟𝑟𝑝𝑝� cos ��1 − 𝛽𝛽2𝜔𝜔𝑜𝑜𝑡𝑡�

+
𝛽𝛽𝜔𝜔𝑜𝑜�2𝑔𝑔�ℎ0 − 𝑟𝑟𝑝𝑝� − 𝑔𝑔

𝜔𝜔𝑜𝑜�1 − 𝛽𝛽2
sin ��1 − 𝛽𝛽2𝜔𝜔𝑜𝑜𝑡𝑡�

⎦
⎥
⎥
⎤
exp(−𝛽𝛽𝜔𝜔𝑜𝑜𝑡𝑡) 

(4-5) 

𝑦𝑦(𝑡𝑡) =

⎣
⎢
⎢
⎡ 𝑔𝑔
𝜔𝜔𝑜𝑜2

cos ��1 − 𝛽𝛽2𝜔𝜔𝑜𝑜𝑡𝑡�             

+   
−�2𝑔𝑔�ℎ0 − 𝑟𝑟𝑝𝑝� −

𝛽𝛽𝛽𝛽
𝜔𝜔𝑜𝑜

𝜔𝜔𝑜𝑜�1 − 𝛽𝛽2
sin ��1 − 𝛽𝛽2𝜔𝜔𝑜𝑜𝑡𝑡�

⎦
⎥
⎥
⎤
exp(−𝛽𝛽𝜔𝜔𝑜𝑜𝑡𝑡) + �𝑟𝑟𝑝𝑝 −

𝑔𝑔
𝜔𝜔𝑜𝑜2
� 

(4-6) 

Stage 3: Rebound 

The contact stage ends and the rebound stage begins when the particle center position is again 
equal to the particle radius. A force balance on the particle again leads to an expression for the 
particle motion, 

𝑑𝑑2𝑦𝑦
𝑑𝑑𝑡𝑡2

− 𝑔𝑔;    𝑦𝑦(0) = 𝑟𝑟𝑝𝑝;   
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

(0) = 𝑣𝑣𝑐𝑐 . (4-7) 

The velocity at the start of the rebound stage is equal to the velocity at the end of the contact 
stage, 𝑣𝑣𝑐𝑐, and is obtained by solving equation (4-6) for the time when the particle center position 
is equal to the particle radius and substituting the result into equation (4-5). The instantaneous 
velocity, v, and particle center position are given by 

𝑣𝑣(𝑡𝑡) = 𝑣𝑣𝑐𝑐 − 𝑔𝑔𝑔𝑔 (4-8) 

𝑦𝑦(𝑡𝑡) = 𝑟𝑟𝑝𝑝 + 𝑣𝑣𝑐𝑐𝑡𝑡 −  
1
2
𝑔𝑔𝑡𝑡2 (4-9) 

4.1.2 Setup 

Computational/Physical model 
1D, Transient 
Granular Flow (no gas) 
Gravity 
Thermal energy equation is not solved 
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Geometry 

Coordinate system Cartesian  
x-length 1.0 (m) 
z-length 1.0 (m) 
y-length 1.0 (m) 

   
Solids Properties   

Normal spring constant, 𝑘𝑘𝑛𝑛 varied (N·m-1) 
Restitution coefficient, 𝑒𝑒𝑛𝑛 varied ( - ) 
Friction coefficient, 𝜇𝜇 0.0 ( - ) 
   

Solids 1 Type DEM  
Diameter, 𝑑𝑑𝑝𝑝 0.2 (m) 
Density, 𝜌𝜌𝑠𝑠 2,600 (kg·m-3) 
   

Boundary Conditions   
All boundaries Solid Walls  

4.1.3 Results 

Simulations of a freely-falling particle dropped from an initial height of 0.5m were conducted for 
four normal spring constants, [1.0, 2.5, 5.0, 10.0] × 104 N·m-1, and five restitution coefficients, 
[0.6, 0.7, 0.8, 0.9, 1.0]. The test using a normal spring constant of 104 N·m-1 and restitution 
coefficient 0.6 were unsuccessful because this combination leads to the particle center crossing 
the fixed boundary such that the particle is located outside the domain. The following results 
were obtained using the Euler time stepping method.  

 
Figure 4-2: Comparison of analytic solution and DEM results for a freely-falling particle using the Euler time-
stepping method for varying restitution coefficient, normal spring constant, 𝒌𝒌𝒏𝒏 = 𝟏𝟏𝟎𝟎𝟒𝟒 N•m-1. (Left) Particle 
center position; analytic solutions shown as continuous lines, MFIX-DEM results as points. (Right) Percent 
absolute relative error between the analytical and MFIX-DEM particle center positions. 

The particle center position for cases using a normal spring constant of 104 N·m-1 are shown in 
Figure 4-2. These cases demonstrate the largest errors in particle center position during the 
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contact stage. This is primarily attributed to the particle center position approaching the fixed 
boundary, 𝑦𝑦 → 0, during the contact stage leading to near-zero values used in the absolute 
relative error calculations. In all other cases, the absolute percent relative error remains below 
3% with errors decreasing with increasing normal spring constant. 

The particle velocity for cases using a slightly stiffer normal spring constant of 105 N·m-1  are 
shown in Figure 4-3. Again, the large errors are primarily attributed to near-zero values used in 
the relative error calculations. The initial spike in error arises at the peak of the contact stage 
when the particle trajectory reverses, passing through zero. Similarly, large relative errors occur 
at the peak of the rebound stage when the particle trajectory again reverses.  

 
Figure 4-3: Comparison of analytic solution and DEM results for a freely-falling particle using the Euler time-
stepping method for varying restitution coefficient, normal spring constant, 𝒌𝒌𝒏𝒏 = 𝟏𝟏𝟎𝟎𝟓𝟓 N•m-1. (Left) Particle 
velocities; analytic solutions shown as continuous lines, MFIX-DEM results as points. (Right) Percent absolute 
relative error between the analytical and MFIX-DEM particle velocities. 

Analysis of the time-stepping methods is limited to the free-fall stage to exclude errors arising 
from the collision model. Pre- and post-collision results using the Euler and Adams-Bashforth 
methods using a normal spring constant of 105 N·m-1  are shown in Figure 4-3. During the free 
fall stage (pre-collision), the Euler method shows a linear accumulation of error in particle 
position whereas the particle velocity is zero. The Adams-Bashforth shows no (zero) error for 
both particle position and velocity. These results are consistent across all cases. 
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Figure 4-4: Difference between analytical solution and MFIX-DEM results for a freely-falling particle with 
varying restitution coefficient and normal spring constant, 𝒌𝒌𝒏𝒏 = 𝟏𝟏𝟎𝟎𝟓𝟓 N•m-1. Euler method shown as solid line. 
Adams-Bashforth method shown as dashed lines. (Left) Difference in particle position. (Right) Difference in 
particle velocity. 

4.2 DEM02: Bouncing particle 

This case provides a comparison between the MFIX-DEM linear spring-dashpot collision model 
and the hard sphere model where collisions are instantaneous. The hard sphere model can be 
seen as the limiting case where the normal spring constant is large, 𝑘𝑘𝑛𝑛 → ∞. This case was 
originally reported in [18]. 

4.2.1 Description 

A smooth (frictionless), spherical particle falls freely under gravity from an initial height, ℎ0, and 
bounces upon collision with a fixed wall (see Figure 4-1). Assuming that the collision is 
instantaneous, the maximum height the particle reaches after the first collision (bounce), ℎ1max, is 
given by 

 ℎ1max = �ℎ0 − 𝑟𝑟𝑝𝑝�𝑒𝑒𝑛𝑛2 (4-10) 

where 𝑟𝑟𝑝𝑝 is the particle radius, and 𝑒𝑒𝑛𝑛 is the restitution coefficient. A general expression for the 
maximum height following the 𝑘𝑘𝑡𝑡ℎ bounce is 

ℎ𝑘𝑘max = �ℎ0 − 𝑟𝑟𝑝𝑝�𝑒𝑒𝑛𝑛2𝑘𝑘 + 𝑟𝑟𝑝𝑝. (4-11) 

4.2.2 Setup 

Computational/Physical model 
1D, Transient 
Granular Flow (no gas) 
Gravity 
Thermal energy equation is not solved 
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Geometry 
Coordinate system Cartesian  
x-length 1.0 (m) 
z-length 1.0 (m) 
y-length 1.0 (m) 

   
Solids Properties   

Normal spring constant, 𝑘𝑘𝑛𝑛 varied (N·m-1) 
Restitution coefficient, 𝑒𝑒𝑛𝑛 varied ( - ) 
Friction coefficient, 𝜇𝜇 0.0 ( - ) 
   

Solids Type DEM  
Diameter, 𝑑𝑑𝑝𝑝 0.2 (m) 
Density, 𝜌𝜌𝑠𝑠 2,600 (kg·m-3) 

   
Boundary Conditions   

All boundaries Solid Walls  
 

4.2.3 Results 

Simulations of a freely-falling particle dropped from an initial height of 0.5m were conducted for 
three normal spring constants, [0.5, 5.0, 50.0] × 105 N·m-1, and six restitution coefficients, [0.5, 
0.6, 0.7, 0.8, 0.9, 1.0]. All simulations employed the Adams-Bashforth time-stepping method. 
The maximum height attained after the kth collision for all cases are shown in Figure 4-5. 

 
Figure 4-5: Comparison between the analytic solution from a hard-sphere model (solid lines) and MFIX-
DEM (symbols) of the maximum height reached after the kth wall collision for a freely falling particle. Three 
values for the normal spring constant are used (left to right) with six restitution coefficient. 

Figure 4-6 illustrates the percent relative difference between the analytic solution for a hard-
sphere model and the MFIX-DEM simulation. In the limit of the hard-sphere model (shown left 
to right by an increasing spring constant), the difference between the two collision models 
decreases.  
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Figure 4-6: Percent relative difference between the analytic solution for a hard-sphere model and MFIX-DEM 
of the maximum height reached after the kth wall collision for a freely falling particle. Three values for the 
normal spring constant are used (left to right) with six restitution coefficient. 

4.3 DEM03: Two stacked, compressed particles 

This case serves to verify the MFIX-DEM linear spring-dashpot collision model through analysis 
of a multi-particle, enduring collision. This test case is based on the work of Chen et al. [17] and 
the MFIX-DEM test case was originally reported in [18]. 

4.3.1 Description 

Two particles of equal radius, 𝑟𝑟𝑝𝑝, are stacked between two fixed walls such that the particles are 
compressed. The lower and upper walls are located at 𝑦𝑦𝑙𝑙 = 0.0 and 𝑦𝑦𝑤𝑤 = 3.6𝑟𝑟𝑝𝑝 and the particle 
centers are initially located at 𝑦𝑦10 = 0.25𝑦𝑦𝑤𝑤 and 𝑦𝑦20 = 0.75𝑦𝑦𝑤𝑤. This configuration, illustrated in 
Figure 4-7, ensures that the particles remain in contact and compressed. 

 
Figure 4-7: Two smooth spherical particles stacked between two fixed walls so that the system is always 
under compression. A sketch of the problem mechanics is provided along with force balances for the lower 
and upper particles. 

An expression for the acceleration of the lower particle (particle 1) is 
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𝑑𝑑2𝑦𝑦1
𝑑𝑑𝑡𝑡2

= −𝑔𝑔 −
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� 
(4-12) 

where 𝑦𝑦1 and 𝑦𝑦2 are the particle center positions measured from the lower wall, 𝑔𝑔 is the 
acceleration due to gravity, 𝑘𝑘𝑛𝑛𝑛𝑛 and 𝑘𝑘𝑛𝑛12 are the particle-wall and particle-particle spring 
coefficients, 𝜂𝜂𝑛𝑛1𝑤𝑤 and 𝜂𝜂𝑛𝑛12 are the particle-wall and particle-particle damping coefficients, and 
𝑚𝑚1 is the mass of particle 1. Similarly, acceleration of upper particle (particle 2) is given by 

𝑑𝑑2𝑦𝑦2
𝑑𝑑𝑡𝑡2

= −𝑔𝑔 −
𝑘𝑘𝑛𝑛𝑛𝑛
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𝑚𝑚2
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𝑑𝑑𝑑𝑑

                                          

+
𝑘𝑘𝑛𝑛12
𝑚𝑚2

�2𝑟𝑟𝑝𝑝 − (𝑦𝑦2 − 𝑦𝑦1)� +
𝜂𝜂𝑛𝑛12
𝑚𝑚2

�
𝑑𝑑𝑦𝑦1
𝑑𝑑𝑑𝑑

−
𝑑𝑑𝑦𝑦2
𝑑𝑑𝑑𝑑

� 
(4-13) 

where 𝜂𝜂𝑛𝑛2𝑤𝑤 is the particle-wall damping coefficient for the upper particle, and 𝑚𝑚2 is the mass of 
the upper particle. 

4.3.2 Setup 

Computational/Physical model 
1D, Transient 
Granular Flow (no gas) 
Gravity 
Thermal energy equation is not solved 
 

Geometry 
Coordinate system Cartesian  
x-length 1.0 (m) 
z-length 0.0010 (m) 
y-length 0.0018 (m) 

   
Solids Properties   

Normal spring constant, 𝑘𝑘𝑛𝑛 103 (N·m-1) 
Restitution coefficient, 𝑒𝑒𝑛𝑛 varied ( - ) 
Friction coefficient, 𝜇𝜇 0.0 ( - ) 
   

Solids 1 Type DEM  
Diameter, 𝑑𝑑𝑝𝑝 0.001 (m) 
Density, 𝜌𝜌𝑠𝑠 20,000 (kg·m-3) 

   
Solids 2 Type DEM  

Diameter, 𝑑𝑑𝑝𝑝 0.001 (m) 
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Density, 𝜌𝜌𝑠𝑠 10,000 (kg·m-3) 
   
Boundary Conditions   

All boundaries Solid Walls  
 

4.3.3 Results 

Analytical solutions to equations (4-12) and (4-13) describing the motion of the particles are 
readily obtainable for perfectly elastic (𝜂𝜂𝑛𝑛12 = 𝜂𝜂𝑛𝑛1𝑤𝑤 = 𝜂𝜂𝑛𝑛2𝑤𝑤 = 1.0) particles of equal mass 
(𝑚𝑚1 = 𝑚𝑚2). This is not the case for inelastic particles of different mass, therefore a fourth-order 
Runge-Kutta method is used to calculate a secondary numerical solution which is considered to 
be the analytic solution during the analysis.  
 
Simulations were conducted for six friction coefficients, [0.5, 0.6, 0.7, 0.8, 0.9, 1.0], using the 
Adams-Bashforth time-stepping method. Figure 4-8 shows the motion of the lower (left) and 
upper (right) particles as well as the absolute relative error for a restitution coefficient of 1. The 
percent relative difference in results remains below 0.1% for this case. This is the largest 
observed difference across all cases with the difference decreasing with decreasing restitution 
coefficient.  
 

 
Figure 4-8: Comparison between the fourth-order Runge-Kutta solution (solid line) and MFIX-DEM 
simulation (open symbols) for the center position of two stacked particles compressed between fixed walls for 
a restitution coefficient of 1. The absolute percent relative errors are shown as dashed lines.  

4.4 DEM04: Slipping on a rough surface 

This case serves to verify the MFIX-DEM soft-spring collision model through the analysis of the 
rolling friction model. This test case was originally reported in [18]. 
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4.4.1 Description 

A spherical particle of radius 𝑟𝑟𝑝𝑝, finite translation velocity, 𝑢𝑢0, and zero angular velocity, 𝜔𝜔0, is 
placed on a rough surface as illustrated in Figure 4-9. The particle begins to roll while the 
translational velocity decreases because of rolling friction attributed to slip between the particle 
and the rough surface at the point of contact (𝑢𝑢 ≠ 𝜔𝜔𝑟𝑟𝑝𝑝). Rolling friction ceases to act such that 
the particle continues to move with constant translational and rotational velocities once there is 
no longer slip at the contact point. 

 
Figure 4-9: A spherical particle with finite translational velocity and zero angular velocity is placed on a 
rough surface. Forces acting on the particle are indicated. 

Kinetic friction is the only translational force acting on the particle and is given by  

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝑑𝑑2𝑥𝑥
𝑑𝑑𝑡𝑡2

= −𝜇𝜇𝜇𝜇. (4-14) 

where 𝑔𝑔 is the acceleration due to gravity, and 𝜇𝜇 is the coefficient of friction. Similarly, the 
angular velocity is given by 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝜇𝜇𝜇𝜇𝜇𝜇𝑟𝑟𝑝𝑝
𝐼𝐼

 (4-15) 

where 𝐼𝐼 = 2𝑚𝑚𝑟𝑟𝑝𝑝2/5 and 𝑚𝑚 are the particle moment of inertia and mass, respectively. Integrating 
equations (4-14) and (4-15) with initial conditions 𝑢𝑢0 and 𝜔𝜔0, the an expression for the time 
when rolling friction ceases (𝑢𝑢 = 𝜔𝜔𝑟𝑟𝑝𝑝) is obtained, 

𝑡𝑡𝑠𝑠 =
2𝑢𝑢0
7𝜇𝜇𝜇𝜇

 (4-16) 

4.4.2 Setup 

Computational/Physical model 
1D, Transient 
Granular Flow (no gas) 
Gravity 
Thermal energy equation is not solved 
 

Geometry 
Coordinate system Cartesian  

𝑔𝑔 

𝑦𝑦 

𝑟𝑟𝑝𝑝 
𝐹𝐹𝜇𝜇 
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force balance 
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x-length 1.0 (m) 
z-length 1.0 (m) 
y-length 1.0 (m) 

   
Solids Properties   

Normal spring constant, 𝑘𝑘𝑛𝑛 104 (N·m-1) 
Restitution coefficient, 𝑒𝑒𝑛𝑛 1.0 ( - ) 
Friction coefficient, 𝜇𝜇 varied ( - ) 

   
Solids 1 Type DEM  

Diameter, 𝑑𝑑𝑝𝑝 0.001 (m) 
Density, 𝜌𝜌𝑠𝑠 10,000 (kg·m-3) 

   
Boundary Conditions   

All boundaries Solid Walls  
 

4.4.3 Results 

Simulations were conducted for nine restitution coefficients, [0.2, 0.3, 0.4, 0.4, 0.6, 0.7, 0.8, 0.9 
1.0], using the Adams-Bashforth time-stepping method with the results shown in Figure 4-10. 
The absolute relative percent error between the MFIX-DEM and analytical value for the non-
dimensionalized time when rolling friction ceases, 𝑡𝑡𝑠𝑠/(𝜇𝜇𝜇𝜇/𝑢𝑢0), is less than 1% for all reported 
conditions. Similarly, the absolute relative percent error between the MFIX-DEM and analytical 
value for the non-dimensionalized tangential and angular velocities is less than 0.1% for all 
reported conditions. Error between the MFIX-DEM and analytical values can be further reduced 
(not shown) by increasing the normal spring constant, 𝑘𝑘𝑛𝑛, which decreases the DEM solids time-
step size. 

 
Figure 4-10: Comparison between the analytical solution (solid line) and MFIX-DEM simulation (open 
symbols) of a particle with radius 𝒓𝒓𝒑𝒑 slipping on a rough surface for various friction coefficients. (left) 
Dimensionless slip time end and (right) dimensionless equilibrium tangential, 𝒖𝒖, and angular, 𝝎𝝎, velocities. 
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4.5 DEM05: Oblique particle collision 

This case serves to verify the normal and tangential components of both the linear spring-dashpot 
and Hertzian collision models in MFIX DEM. This case is based on the modeling work of Di 
Renzo and Di Maio [19] and utilizes the experimental data of Kharaz, Gorham, and Salman [20]. 

4.5.1 Description 

In the experiments of Kharaz, Gorham, and Salman [20], a spherical particle is dropped from a 
fixed height such that it collides with a rigid surface at a known velocity. The angle of the ridged 
surface is varied to test impact angles ranging from normal to glancing. The rebound angle, post-
collision angular velocity, and observed tangential restitution coefficient were reported.  

In the experiment, the particle strikes an angled anvil as illustrated in Figure 4-11(a). Rather than 
modeling an angled surface, the wall is kept level (flat) and the particle is given an initial 
trajectory corresponding to the angle found in the experiment as shown in Figure 4-11(b). The 
particle is initially positioned close to the wall and gravity is suppressed in the simulations to 
eliminate the effects of the rotated geometry with respect to the experimental apparatus. 

 
Figure 4-11: (a) Experimental setup of Kharaz, Gorham, and Salman [20] of a particle striking a fixed, angled 
anvil. (b) Simulation setup whereby the particle is given an initial velocity to replicate the particle striking an 
angled surface. 

4.5.2 Setup 

Computational/Physical model 
3D, Transient 
Granular Flow (no gas) 
No gravity 
Thermal energy equation is not solved 
 

Geometry 
Coordinate system Cartesian  
x-length 0.5 (m) 
z-length 0.5 (m) 
y-length 0.1 (m) 
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Solids Phase 1 DEM  

Diameter, 𝑑𝑑𝑝𝑝 0.005 (m) 
Density, 𝜌𝜌𝑠𝑠 5,000 (kg·m-3) 
   

Solids Phase 2 DEM  
Diameter, 𝑑𝑑𝑝𝑝 0.005 (m) 
Density, 𝜌𝜌𝑠𝑠 5,000 (kg·m-3) 
   

Boundary Conditions   
All boundaries No Slip Walls  

The mechanical properties for the particle (solids phase 1) and the anvil (solids phase 2 and wall)  
are provided for both the linear spring-dashpot and Hertzian collision models. The second solids 
phase is given the same properties as the anvil for verification of both the particle-particle and 
particle-wall collision model implementations.  

Solids Phase 1 Linear Hertzian 
Normal spring constant, (N·m-1) 1.72×107 ― 
Restitution coefficient, (N·m-1) 1.48×107 ― 
Young’s modulus, (Pa) ― 380×109 
Poisson ratio ― 0.23 
Friction coefficient 0.092 0.092 
   

Solids Phase 2 & Wall   
Normal spring constant, (N·m-1) 1.72×107 ― 
Restitution coefficient, (N·m-1) 1.48×107 ― 
Young’s modulus, (Pa) ― 70×109 
Poisson ratio ― 0.25 
Friction coefficient 0.092 0.092 

 

4.5.3 Results 

Simulations were conducted using the linear spring-dashpot and Hertzian collision models. Each 
simulation contained a total of 93 particles. The particle-particle and particle-wall collision 
models were tested by varying the initial collision angles between 0 (normal) and 65 degrees 
(glancing). Gravity was suppressed in the simulations to eliminate the effects of the rotated 
geometry with respect to the experimental apparatus. 

The rebound angle, observed tangential restitution coefficient, and post-collision angular velocity 
for particle-wall collisions are given in Figure 4-12 with particle-particle collision results shown 
in Figure 4-13. There is good agreement between the simulation results and experimental data 
for the rebound angle and post-collision angular velocity. Although both models over predict the 
observed tangential coefficient for steep (near-normal) collision angles, better agreement is 
observed with the linear spring-dashpot model for the parameters used. 
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Figure 4-12: Particle-wall oblique collision results for the linear spring-dashpot model (solid line), Hertzian 
model (dashed line), and experimental data (symbols) of Kharaz, Gorham, and Salman [20]. 

 
Figure 4-13: Particle-particle oblique collision results for the linear spring-dashpot model (solid line), 
Hertzian model (dashed line), and experimental data (symbols) of Kharaz, Gorham, and Salman [20]. 

 

4.6 DEM06: Single particle, terminal velocity 

This case investigates the interphase coupling of momentum equations though the gas-solids 
drag force. The original case was reported in [18] and has been expanded to test additional 
coupling schemes. 

4.6.1 Description 

A single particle initially at rest is released in a uniform gas stream as illustrated in Figure 4-14 
where the gravitational and gas-solids drag forces are the dominant forces acting on particle. The 
velocity of the particle increases until it reaches its terminal velocity where the gravitational 
force is equal to the gas-solids drag force. 
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Figure 4-14: A single spherical particle initially at rest is released in a uniform, vertical air flow. The dominant 
forces acting on the particle is the gas-solids drag, 𝑭𝑭𝒅𝒅, and the gravitational force, 𝒈𝒈. 

For a sufficiently small particle, the evolution of the particle velocity is given by  

𝑑𝑑2𝑦𝑦
𝑑𝑑𝑡𝑡2

=
𝑑𝑑𝑣𝑣𝑝𝑝
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=
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𝜌𝜌𝑝𝑝
−

3
4
𝜌𝜌𝑔𝑔�𝑣𝑣𝑝𝑝 − 𝑣𝑣𝑔𝑔�2

𝑑𝑑𝑝𝑝𝜌𝜌𝑝𝑝
𝐶𝐶𝑑𝑑;    𝑦𝑦(0) = ℎ0;   

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

(0) = 0 (4-17) 

where 𝑦𝑦 is the particle center position measured from the bottom wall, 𝑣𝑣𝑝𝑝 and 𝑣𝑣𝑔𝑔 are the particle 
and gas velocities, 𝜌𝜌𝑝𝑝 and 𝜌𝜌𝑔𝑔 are the particle and gas densities, 𝑑𝑑𝑝𝑝 is the particle diameter, ℎ0 is 
the initial height of the particle, 𝑔𝑔 is the acceleration due to gravity, and 𝐶𝐶𝑑𝑑 is the drag 
coefficient. The drag coefficient is estimated here using the Schiller and Naumann [21] 
correlation for a single particle in an unbounded medium, 

𝐶𝐶𝑑𝑑 =
24

NRe
(1 + 0.15𝑁𝑁Re0.687) (4-18) 

where 𝑁𝑁Re is the Reynolds number based on the slip velocity between the particle and gas and is 
defined as 

𝑁𝑁Re =
𝜌𝜌𝑔𝑔�𝑣𝑣𝑝𝑝 − 𝑣𝑣𝑔𝑔�2𝑑𝑑𝑝𝑝

𝜇𝜇𝑔𝑔
 (4-19) 

4.6.2 Setup 

Computational/Physical model 
1D, Transient, incompressible 
Multiphase flow (gas-solids) 
Gravity 
Thermal energy equation is not solved 
 

Geometry 
Coordinate system Cartesian  
x-length 0.01 (m) 
z-length 0.10 (m) 
y-length 0.01 (m) 

   
Solids Properties   

Normal spring constant, 𝑘𝑘𝑛𝑛 10-1 (N·m-1) 

𝑣𝑣𝑔𝑔 𝑔𝑔 

𝐹𝐹𝑑𝑑 

𝑦𝑦 
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Restitution coefficient, 𝑒𝑒𝑛𝑛 1.0 ( - ) 
Friction coefficient, 𝜇𝜇 0.0 ( - ) 
   

Solids 1 Type DEM  
Diameter, 𝑑𝑑𝑝𝑝 10-4 (m) 
Density, 𝜌𝜌𝑠𝑠 2,000 (kg·m-3) 

   
Boundary Conditions   

South face (XZ-plane; y=0.00m)  Gas Mass Inflow  
Pressure (gauge) 0.00 (Pa) 
Gas velocity, 𝑣𝑣𝑔𝑔 0.40 (m·s-1) 

North face (XZ-plane; y=0.10m) Pressure Outflow  
Pressure (gauge) 0.00 (Pa) 

Top, Bottom, East, West faces Free Slip Walls  
 

4.6.3 Results 

A fourth-order Runge-Kutta method is used to calculate the solution to (4-17) which is used for 
comparisons with the seven MFIX-DEM simulations outline below. The first set of simulations 
are one-way coupled such that only the gas phase volume fraction is affected by the presence of 
the particle. Specifically, gas-solids drag force is omitted from the gas phase momentum 
equations. This case best describes the above problem description where a single particle is 
freely falling through a uniform gas field. In the second group of tests the gas and solids are fully 
coupled to assess the gas solids coupling. Three interpolation methods are used with both the 
one-way and fully coupled tests. 
 

Interpolation Scheme Coupling Filter Size 
Centroid one-way ― 

Garg_2012 one-way ― 
DPVM_Square one-way 2.0×10-3 

Centroid full ― 
Garg_2012 full ― 

DPVM_Square full 3.0×10-3 
DPVM_Square full 4.0×10-3 

Figure 4-15 illustrates a typical comparison of the particle velocity evolution obtained by (4-17) 
and the numerical solution. A comparison of the absolute percent relative difference between the 
solutions is shown in Figure 4-16. The numerical solution from simulations employing one-way 
coupling (left) compare well with (4-17) with the maximum absolute relative difference bounded 
above by 5 × 10−3% for the three cases. Conversely, the maximum absolute relative difference 
for cases with full coupling is bounded from above by 5%.  
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Figure 4-15: Comparison of the particle velocity evolution obtained by equation (4-17) and MFIX-DEM. 

The large difference in results for the fully coupled cases should not be interpreted as error 
because the assumption of a uniform gas velocity used to establish (4-17) is no longer valid when 
the gas-solids drag is allowed to effect the gas velocity as is the case in the fully coupled 
simulations. The suitability of this assumption, or lack thereof, is apparent from inspecting the 
results from different coupling schemes. The centroid method concentrates the gas-solids drag 
force in the fluid cell containing the particle center. As a result the gas velocity is impacted the 
most as when compared to the other methods available. The divided particle volume method 
(DVPM) diffuses the gas-solids drag force over an area based on the filter width providing better 
agreement. Finally, the GARG_2012 scheme shows the best agreement as it diffuses the gas-
solids drag force over the greatest area providing greater consistency with uniform flow field 
assumption. 

 
Figure 4-16: Absolute percent relative difference between particle velocity evolution obtained by equation 
(4-17) and MFIX-DEM. (left) Simulations with one-way gas-solids coupling. (right) Fully coupled simulations. 
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Appendix A: Manufactured Solution Mathematical Forms 

(Note: All solution variables are in SI units.) 

A.1 Baseline 3D Manufactured Solutions 

The baseline manufactured solution selected for the verification study is a combination of sine 
and cosine functions and takes the following general form [22, 23] 

𝜙𝜙(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = 𝜙𝜙0 + 𝜙𝜙𝑥𝑥𝑓𝑓𝜙𝜙𝜙𝜙 �
𝑎𝑎𝜙𝜙𝜙𝜙𝜋𝜋𝜋𝜋
𝐿𝐿

� + 𝜙𝜙𝑦𝑦𝑓𝑓𝜙𝜙𝑦𝑦 �
𝑎𝑎𝜙𝜙𝜙𝜙𝜋𝜋𝜋𝜋
𝐿𝐿

� + 𝜙𝜙𝑧𝑧𝑓𝑓𝜙𝜙𝜙𝜙 �
𝑎𝑎𝜙𝜙𝜙𝜙𝜋𝜋𝜋𝜋
𝐿𝐿

�

+ 𝜙𝜙𝑥𝑥𝑥𝑥𝑓𝑓𝜙𝜙𝜙𝜙𝜙𝜙 �
𝑎𝑎𝜙𝜙𝜙𝜙𝜙𝜙𝜋𝜋𝜋𝜋𝜋𝜋

𝐿𝐿2
� + 𝜙𝜙𝑦𝑦𝑦𝑦𝑓𝑓𝜙𝜙𝜙𝜙𝜙𝜙 �

𝑎𝑎𝜙𝜙𝜙𝜙𝜙𝜙𝜋𝜋𝜋𝜋𝜋𝜋
𝐿𝐿2

�

+ 𝜙𝜙𝑧𝑧𝑧𝑧𝑓𝑓𝜙𝜙𝜙𝜙𝜙𝜙 �
𝑎𝑎𝜙𝜙𝜙𝜙𝜙𝜙𝜋𝜋𝜋𝜋𝜋𝜋

𝐿𝐿2
� 

(A-1) 

where, 𝐿𝐿 is a characteristic length (herein, selected equal to the domain length or 𝐿𝐿 = 1), and 

𝜙𝜙 = �𝑃𝑃𝑔𝑔,𝑢𝑢𝑔𝑔, 𝑣𝑣𝑔𝑔,𝑤𝑤𝑔𝑔,𝑢𝑢𝑠𝑠, 𝑣𝑣𝑠𝑠 ,𝑤𝑤𝑠𝑠,𝑇𝑇𝑔𝑔,𝑇𝑇𝑠𝑠�
𝑇𝑇
 represents the set of primitive variables being tested for 

order of accuracy. The sinusoidal functions (𝑓𝑓𝜙𝜙𝜙𝜙, 𝑓𝑓𝜙𝜙𝜙𝜙, etc.) selected are shown in the table below 

Variable, 𝜙𝜙 𝑓𝑓𝜙𝜙𝜙𝜙 𝑓𝑓𝜙𝜙𝜙𝜙 𝑓𝑓𝜙𝜙𝜙𝜙 𝑓𝑓𝜙𝜙𝜙𝜙𝜙𝜙 𝑓𝑓𝜙𝜙𝜙𝜙𝜙𝜙 𝑓𝑓𝜙𝜙𝜙𝜙𝜙𝜙 
𝑢𝑢𝑔𝑔 sin cos cos cos sin cos 
𝑣𝑣𝑔𝑔 sin cos cos cos sin cos 
𝑤𝑤𝑔𝑔 cos sin cos sin sin cos 
𝑃𝑃𝑔𝑔 cos cos sin cos sin cos 
𝑇𝑇𝑔𝑔 cos cos sin cos sin cos 
𝑇𝑇𝑠𝑠 cos cos sin cos sin cos 
𝜀𝜀𝑠𝑠 cos cos sin -- -- -- 

The frequency constants (𝑎𝑎𝜙𝜙𝜙𝜙, 𝑎𝑎𝜙𝜙𝜙𝜙, 𝑎𝑎𝜙𝜙𝜙𝜙𝜙𝜙, etc.) and the amplitude constants (𝜙𝜙0, 𝜙𝜙𝑥𝑥, 𝜙𝜙𝑥𝑥𝑥𝑥, etc.) 
are selected to ensure functions that are smooth but show reasonable periodicity and magnitude 
within the domain. The frequency constants selected are shown in the following table. 

Variable, 𝜙𝜙 𝑎𝑎𝜙𝜙𝜙𝜙 𝑎𝑎𝜙𝜙𝜙𝜙 𝑎𝑎𝜙𝜙𝜙𝜙 𝑎𝑎𝜙𝜙𝜙𝜙𝜙𝜙 𝑎𝑎𝜙𝜙𝜙𝜙𝜙𝜙 𝑎𝑎𝜙𝜙𝜙𝜙𝜙𝜙 
𝑢𝑢𝑔𝑔 0.5 0.85 0.4 0.6 0.8 0.9 
𝑣𝑣𝑔𝑔 0.8 0.8 0.5 0.9 0.4 0.6 
𝑤𝑤𝑔𝑔 0.85 0.9 0.5 0.4 0.8 0.75 
𝑃𝑃𝑔𝑔 0.4 0.45 0.85 0.75 0.7 0.8 
𝑇𝑇𝑔𝑔 0.75 1.25 0.8 0.65 0.5 0.6 
𝑇𝑇𝑠𝑠 0.5 0.9 0.8 0.5 0.65 0.4 
𝜀𝜀𝑠𝑠 0.4 0.5 0.5 -- -- -- 
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The amplitude constants selected are shown in the following table. 

Variable, 𝜙𝜙 𝜙𝜙0 𝜙𝜙𝑥𝑥 𝜙𝜙𝑦𝑦 𝜙𝜙𝑧𝑧 𝜙𝜙𝑥𝑥𝑥𝑥 𝜙𝜙𝑦𝑦𝑦𝑦 𝜙𝜙𝑧𝑧𝑧𝑧 
𝑢𝑢𝑔𝑔 7 3 -4 -3 2 1.5 2 
𝑣𝑣𝑔𝑔 9 -5 4 5 -3 2.5 3.5 
𝑤𝑤𝑔𝑔 8 -4 3.5 4.2 -2.2 2.1 2.5 
𝑃𝑃𝑔𝑔 100 20 -50 20 -25 -10 10 
𝑇𝑇𝑔𝑔 350 10 -30 20 -12 10 8 
𝑇𝑇𝑠𝑠 300 15 -20 15 -10 12 10 
𝜀𝜀𝑠𝑠 0.3 0.06 0.1 0.06 -- -- -- 

 

A.2 Two-Phase, 3D, Manufactured Solutions 

The baseline manufactured solutions presented above are used to generate manufactured 
solutions for the two-phase flow test cases. As an example, the manufactured solution for the test 
case presented in Section 2.3 is provided next. 

The manufactured solutions for the scalar variables (𝑃𝑃𝑔𝑔, 𝑇𝑇𝑔𝑔, and 𝑇𝑇𝑠𝑠) are simply obtained from Eq. 
(A-1) and by substituting the appropriate functions and constants described above. For example, 
for the pressure variable (𝑃𝑃𝑔𝑔), this function is as follow: 

𝑃𝑃𝑔𝑔 = 100 + 20 cos(0.4𝜋𝜋𝜋𝜋) − 50 cos(0.45𝜋𝜋𝜋𝜋) + 20 sin(0.85𝜋𝜋𝜋𝜋)

− 25 cos(0.75𝜋𝜋𝜋𝜋𝜋𝜋) − 10 sin(0.7𝜋𝜋𝜋𝜋𝜋𝜋) + 10 cos(0.8𝜋𝜋𝜋𝜋𝜋𝜋) 
(A-2) 

The manufactured solutions for velocity components of the gas phase are obtained by taking the 
curl of the baseline velocity vector field, i.e., 

𝑉𝑉�⃗𝑔𝑔 = 𝑢𝑢𝑔𝑔𝚤𝚤̂ + 𝑣𝑣𝑔𝑔𝚥𝚥̂ + 𝑤𝑤𝑔𝑔𝑘𝑘�  = ��

𝚤𝚤̂ 𝚥𝚥̂ 𝑘𝑘�
𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕
𝜕𝜕𝑦𝑦

𝜕𝜕
𝜕𝜕𝜕𝜕

𝜙𝜙(𝑢𝑢𝑔𝑔) 𝜙𝜙(𝑣𝑣𝑔𝑔) 𝜙𝜙(𝑤𝑤𝑔𝑔)

�� (A-3) 

where, for example, 𝜙𝜙�𝑢𝑢𝑔𝑔� is the baseline manufactured solution obtained from Eq. (A-1), the 
functions, and the constants described above for the variable 𝑢𝑢𝑔𝑔. This results in a divergence free 
velocity field because ∇ ⋅ (∇ × 𝐻𝐻��⃗ ) is identically zero for any vector field, 𝐻𝐻��⃗ . Thus, the 
manufactured solution for 𝑢𝑢𝑔𝑔 is given as: 



64 
 

𝑢𝑢𝑔𝑔 = −𝜋𝜋𝜋𝜋 cos(0.4𝜋𝜋𝜋𝜋𝜋𝜋) + 2.5𝜋𝜋 sin(0.5𝜋𝜋𝜋𝜋) + 2.1𝜋𝜋𝜋𝜋 sin(0.6𝜋𝜋𝜋𝜋𝜋𝜋)

−  0.88𝜋𝜋𝜋𝜋 cos(0.4𝜋𝜋𝜋𝜋𝜋𝜋) +  3.15𝜋𝜋 cos(0.9𝜋𝜋𝜋𝜋)

+ 0.68𝜋𝜋𝜋𝜋 cos(0.8𝜋𝜋𝜋𝜋𝜋𝜋) 

(A-4) 

Similarly, the manufactured solution for 𝑣𝑣𝑔𝑔 and 𝑤𝑤𝑔𝑔 can be derived. 

Finally, the manufactured solution for velocity components of the solids phase is selected as 
simply the following divergence free field: 

𝑢𝑢𝑠𝑠 = 5 sin2�0.5𝜋𝜋(𝑥𝑥 + 𝑦𝑦 + 𝑧𝑧)� (A-5) 

𝑣𝑣𝑠𝑠 = 5 cos2�0.5𝜋𝜋(𝑥𝑥 + 𝑦𝑦 + 𝑧𝑧)� (A-6) 

𝑤𝑤𝑠𝑠 = 5 (A-7) 

Manufactured solutions for other MMS test cases presented are derived using the baseline 
manufactured solutions and appropriate constraints (divergence free field, boundary conditions, 
etc.). For a complete look at the MMS function and MMS source terms, please see the 
MMS_MOD.f file under the respective test case of the MFIX distribution.  
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