MFIX results sensitivity to Fortran compilers1

J.-F. Dietiker
National Energy Technology Laboratory, Morgantown, WV, 26505, U.S.A.

West Virginia University Research Corporation, Morgantown, WV, 26505, U.S.A.

October 3", 2012

'Refer to this document as J.-F. Dietiker, MFIX results sensitivity to Fortran compilers, from URL
https://mfix.netl.doe.gov/documentation/MFIX_results_sensitivity_to_Fortran_compilers.pdf

Page 1 of 19



Introduction

The objective of this document is to provide evidence of MFIX results sensitivity to Fortran compilers
and grid partition for parallel runs. All simulations were conducted with the MFIX 2012-1 Release. The
same source code was compiled for serial and parallel (DMP) execution, in optimized and debug mode,
using the make_mfix makefile that is distributed with MFIX. All simulations were conducted on the NETL
cfd03 cluster. Three test cases were investigated: a single phase flow over a cylinder, and two gas/solids
flows including a central jet fluidized bed and a bubbling fluidized bed. The goal is not to assess the
accuracy of these simulations but to address the issue of repeatability among the choice of Fortran
compiler, the type of compilation (optimized versus debug), and the grid partition for parallel runs. The
observations reported herein serve as a starting point to either find and correct the source of
discrepancies or accept them and consider these variations as part of the simulation uncertainties.

Three Fortran compilers were used to compile MFIX. Environment variables were loaded through
modules before each run to ensure consistency. The version of each compiler is listed below:

e GNU 4.4.1 (gfortran)
e INTEL 11.1 (ifort)
e PGl 11.7 (pgfortran)

For parallel runs, two grid partitions were used, either in the y-direction with NODESJ=4 (referred to as
DMP 1x4), or x and y-directions with NODESI=NODESJ=2 (referred to as DMP 2x2). If we consider a serial
run as having one processor handling the entire domain, we can represent the grid partitioning as
follows:

e Serial : NODESI=1, NODESJ=1

e DMP 1x4 : NODESI=1, NODESJ=4

e DMP 2x2 : NODESI=2, NODESJ=2

Page 2 of 19



1. Vortex shedding behind a cylinder

This is a single phase flow over a cylinder at a Reynolds number of 200. After an initial transient, a
regular vortex shedding develops behind the cylinder and its frequency is used to assess the
repeatability of the runs. Figure 1.1 shows velocity magnitude contours at time t = 100 seconds (serial,
optimized mode). Results appear identical among compilers at this instant and remain visually
indistinguishable throughout the simulation. Figure 1.2 shows a time history of the y-component of the
velocity, extracted in the wake of the cylinder. All three compilers provide very similar results, but a
close-up view shows that they are not identical (Fig. 1.3). If the GNU results are arbitrarily taken as the
reference, the differences (INTEL-GNU) and (PGI-GNU) can be plotted versus time (Fig. 1.4). The
difference remains bounded over time, and the oscillations correspond to a slight shift in the time
series. Similar small discrepancies were observed between serial and parallel runs. Changing the grid
partition also provided different results. An unresolved error occurred with the PGl compiler, in parallel
debug mode and a grid partition of 2x2, and no comparison can be made for this particular run. Despite
the small discrepancies, all completed runs provided exactly the same vortex shedding frequency,
computed from FFT of the velocity signal, corresponding to a Strouhal number of 0.20 (Fig. 1.5). A
comparison of the CPU time is shown in Figure 1.6. For optimized runs, the INTEL compilers provided a
slightly better performance than the GNU and PGl compilers. The PGI debug executable was the slowest,
running about six times slower than the optimized code. For debug runs, the GNU compiler provided the
fastest runs.

2. Central jet fluidized bed

The second test case is a fluidized bed with a central jet. A steady pulsatile jet develops which dominant
frequencies can be computed from an FFT of the pressure drop across the bed. Figure 2.1 shows
snapshots of the void fraction for the serial, optimized runs. Early in the simulation (t=0.5 s), all
compilers provide similar results, but as the solution proceeds, the jet behaviors start to deviate, and it
becomes clearly noticeable that the transient solutions differ (t=2.0 s). The time history of the pressure
drop shows that although transient results are different, a similar pattern can be observed (Fig. 2.2). FFT
analysis of the time series (Fig. 2.3) shows that all compilers predict about the same frequency content
for serial optimized codes. The larger spikes identify two characteristic frequencies, around 4 and 22 Hz.
The same observation can be made from the parallel runs with both grid partitions (Figs. 2.4 and 2.5). A
summary of the results show a larger discrepancy for the lower frequency (Fig. 2.6) than for the higher
frequency (Fig. 2.7). The relatively short 30-second simulation may explain why the higher frequency
shows less variance than the lower frequency. Comparison of time-averaged pressure drop across the
bed shows good consistency among all modes of execution (Fig. 2.8). The CPU time for each run (Fig.
2.9) shows the same trend as the previous single-phase case.

Page 3 of 19



3. Bubbling fluidized bed

In this test case, a uniform gas velocity is specified at the bottom of the bed, resulting in a bubbling
fluidized bed. Void fraction or pressure can be analyzed at a given location in the bed to determine the
local bubble frequency. Figure 3.1 shows snapshots of the void fraction. Initially, the bubble pattern
looks identical with all compilers (t=1.0 s), and as the solution proceeds, each compiler provides a
distinct pattern (t=2.0 sec), and the transient pressure signals become different (Fig. 3.2). FFT analysis of
the signal over 180 seconds reveals that a single dominant frequency cannot be as clearly identified as in
the previous cases. After applying a smoothing Bezier operator, a main frequency can be identified for
all compilers, around 4.5 Hz, for serial and parallel runs (Figs. 3.3 to 3.5). Some variation is observed due
to the noisy nature of the signal. At this point, it should be noted that special care should be exercised
when comparing results between compilers, and a representative sample must be chosen. Analyzing the
signal over too short a period (10 seconds), reveals a wider variance among compilers. Figure 3.6 shows
the FFT of the signal between 120 and 130 seconds, and Fig. 3.7 between 180 and 190 seconds, i.e., two
different 10-second windows. The smoothed curved show large discrepancies, and should not be falsely
interpreted as a lack of consistency. This only indicates that a longer sampling period is necessary to
extract the frequency content. Figures 3.8 and 3.9 show the time-averaged void fraction and solids
velocity across the bed. Time-average was performed over 20 minutes of simulations, and fairly
consistent results are obtained will all compilers (DMP 1x4 optimized). This long averaging window was
necessary to obtain near-symmetric averaged profiles. Running very long simulations may not be
practical for large systems and some statistical uncertainties will arise due to short simulation time. For
example, averaging over only one minute of simulation (Figs, 3.10 and 3.11) gives the erroneous
impression of large discrepancies between compilers that are in reality due to improper signal
processing. The asymmetrical profiles are another indication of inadequate averaging time.

Page 4 of 19



4. Optimized versus Debug mode

As seen in previous sections, all compilers provided different transient results in optimized mode. For
each compiler, the serial, DMP 1x4 and DMP 2x2 provided separate results as well. For any compiler,
and any grid partition (serial or parallel), we can also compare results with optimized and debug
executables. The GNU and PGl provided identical results in optimized and debug mode for all cases, in
serial and parallel (Table 1). The INTEL compiler had identical results in serial mode only, and different
results in parallel mode. This may indicate too aggressive optimization flags with the INTEL compiler. It
should also be noted that all optimized codes compiled with INTEL had an issue when writing output
files. This is a known and recurrent issue specific to some versions of the INTEL compiler, where the
number of species NMAX is improperly written in output files. MFIX is distributed with a small utility
(fix_RES_file) that can reset the value of NMAX in the output files. The blank cell in Table 1 corresponds
to the failed PGI run.

Case Mode GNU | INTEL | PGI
Serial
Vortex shedding DMP 1x4
DMP 2x2
Serial
Central jet fluidized bed DMP 1x4
DMP 2x2
Serial
Bubbling fluidized bed DMP 1x4
DMP 2x2

Table 1. Repeatability between optimized and debug runs
(green indicates same results, red indicates discrepancies).

Page 5 of 19



Conclusions and future work

MFIX transient results show sensitivity to the choice of compiler, and parallel grid partitions. The GNU
and PGl provided identical optimized and debug results both for parallel and serial runs. The INTEL
compiler showed variance between optimized and debug versions for parallel runs only. Although
transient data cannot be considered truly repeatable, averaged quantities and dominant frequencies
exhibit little or no variation from one run to another. Careful attention must be taken when analyzing
transient data, and when proper sampling periods are selected, any run can be considered reliable.

The goal of this study was not to identify the source of the observed discrepancies, but merely to
document them. If these observed variations are acceptable, the choice of compiler or grid partition
could be considered part of the overall uncertainty of a CFD run. The merit of including it in current
MFIX Uncertainty Quantification (UQ) efforts would need to be addressed. If these variations are
deemed unacceptable, further investigation is required to identify their source and mitigate or eliminate
their effect. Possible sources or discrepancies may be, in no particular order of likelihood:

1) Bug(s) in MFIX. This would be bug(s) that are not detected by any of the three compilers even in
debug mode. This could include non-initialized variables, unmatched arguments in functions or
subroutines. Finding such bug(s) is very tedious and difficult, but once detected it is very
straightforward to fix.

2) Bug(s) in a given Fortran compiler. This could be ruled out by trying several versions of each
compiler. If a specific issue is found for a given version of a compiler, it should be documented
such that MFIX developers and users avoid it.

3) General differences in how floating point operations are treated among Fortran compilers
(floating point truncation rule, floating point arithmetic, evaluation of transcendental functions,
etc.). This source of discrepancies would be impossible to eliminate.

4) Too aggressive optimization flags. This could be the case for INTEL since results in optimized and
debug mode differ for the parallel build, but is unlikely for GNU and PGl since they provide
identical results between optimized and debug mode.

5) Variations observed between serial and parallel runs with different grid partitions may be
explained by the different order in which data reduction (dot product in the linear equation
solver) is performed. This source of discrepancies would be impossible to eliminate.

6) Variable time step. MFIX uses an adaptive time step to attempt to speed up the computations.
This is not the source of discrepancies, but may amplify initial divergences. When transient
results start to differ, the number of iterations per time step varies and the time step is adjusted
at a different rate. Once two simulations run with different time step, it is impossible to
guarantee identical results. In practice, using a constant time step is not feasible for gas/solids
flows. Reducing the maximum time step may help at the expense of longer CPU times.

Page 6 of 19



Y-Velocity (m/s)

Time: 100.00 s Time: 100.00 s Time: 100.00 s
Figure 1.1. Vortex shedding behind a cylinder: velocity magnitude around the cylinder

0.01

0.008
0.006
0.004

0.002 r

-0.002
-0.004
-0.006

-0.008
0

(serial, optimized).

Gas y-velocity - Serial Optimized

GNU ——
INTEL ——
PGl ——

50 100 150 200 250 300
Time (second)

Figure 1.2. Vortex shedding behind a cylinder: time history of y-component of velocity

(entire simulation).

Page 7 of 19



Gas y-velocity - Serial Optimized

0.003 : :
GNU ——
INTEL ——
0.0028 | alcl 1
@
£ oooes | 1
=
O
8
> 24
Z 000
0.0022 | ]
0.002 : : ‘ ‘
190 192 194 196 198 200

Time (second)
Figure 1.3. Vortex shedding behind a cylinder: time history of y-component of velocity
(close-up view).

Gas y-velocity - Serial Optimized

0.0004 : : , :
INTEL.GNU ——
0:0003 PGI-GNU —— 1
0.0002 ]
Q)
E  0.0001 |
Q
2
o 0
8
> -0.0001
‘©
8
2 -0.0002
>_
-0.0003 ]
-0.0004 .
-0.0005 ‘ ‘ ‘ ‘ ‘
0 50 100 150 200 250 300

Time (second)
Figure 1.4. Vortex shedding behind a cylinder: velocity difference among compilers, taking GNU as
reference (serial, optimized).

Page 8 of 19



Strouhal number

CPU Time (s)

Strouhal number

0.3
GNU s
INTEL m—
0.25 PG|
0.2
0.15 |
01+
0.05
0
Serial (Opt) Serial (Dbg) Dmp 1x4 (Opt) Dmp 1x4 (Dbg) Dmp 2x2 (Opt) Dmp 2x2 (Dbg)
Figure 1.5. Vortex shedding behind a cylinder: Strouhal number.
CPU Time (s)
120000
GNU
INTEL
100000 | PGl
80000
60000
40000 +
20000 |

Serial (Opt) Serial (Dbg) Dmp 1x4 (Opt) Dmp 1x4 (Dbg) Dmp 2x2 (Opt) Dmp 2x2 (Dbg)
Figure 1.6. Vortex shedding behind a cylinder: CPU time.

Page 9 of 19




Pressure Drop (kPa) - Serial Optimized

‘ M J‘,, i ’\. i

Time (second)



()l

Y ()l

1.2e+06

FFT - Serial Optimized

1e+06

800000

600000

400000

200000

Figure 2.3. Central jet fluidized bed: FFT of pressure drop across the bed (serial optimized).

1.2e+06

GNU ——
INTEL ——
PGl ——

" i o K . bk b LAA

20 30 40
Frequency (Hz)

FFT - DMP Optimized 1x4 partition

50

1e+06

800000 r

600000 r

400000

200000

Figure 2.4. Central jet fluidized bed: FFT of pressure drop across the bed (DMP 1x4 optimized).

GNU ——
INTEL ——
PGl ——

| ak L )

10 20 30 40
Frequency (Hz)

Page 11 of 19

50



()l

Frequency (Hz)

FFT - DMP Optimized 2x2 partition
1.2e+06 T T :

GNU ——
INTEL ——
1e+06 PGl ——

800000 r

600000 ¢

400000

200000

A .b Db it it o A,

20 30 40
Frequency (Hz)
Figure 2.5. Central jet fluidized bed: FFT of pressure drop across the bed (DMP 1x4 optimized).

First Dominant Frequency (Hz)

50

6
GNU s
INTEL I
5} PG| 1
4 | _
3t |
2t |
1. =
0

Serial (Opt) Serial (Dbg) Dmp 1x4 (Opt) Dmp 1x4 (Dbg) Dmp 2x2 (Opt) Dmp 2x2 (Dbg)
Figure 2.6. Central jet fluidized bed: first dominant frequency for all runs.

Page 12 of 19




Frequency (Hz)

Pressure drop (kPa)

30

Second Dominant Frequency (Hz)

25 r

20

15

10

25

1.5

0.5

GNU
INTEL
PGl

Serial (Opt) Serial (Dbg) Dmp 1x4 (Opt) Dmp 1x4 (Dbg)

Dmp 2x2 (Opt)

Dmp 2x2 (Dbg)

Figure 2.7. Central jet fluidized bed: second dominant frequency for all runs.

Pressure drop (kPa)

GNU
INTEL
PGl .

Serial (Opt) Serial (Dbg) Dmp 1x4 (Opt) Dmp 1x4 (Dbg)
Figure 2.8. Central jet fluidized bed: time-averaged pressure drop across bed.

Page 13 of 19

Dmp 2x2 (Opt)

Dmp 2x2 (Dbg)




CPU Time (s)

140000

120000

100000

80000

60000

40000

20000

CPU Time (s)

Serial (Opt) Serial (Dbg) Dmp 1x4 (Opt) Dmp 1x4 (Dbg) Dmp 2x2 (Opt) Dmp 2x2 (Dbg)
Figure 2.9. Central jet fluidized bed: CPU time.

INTEL

Time: 1.00s Time: 1.00s

INTEL

Time: 2.00s Time: 2.00s Time: 2.00s
Figure 3.1. Bubbling fluidized bed: Snapshots of the void fraction.
Page 14 of 19



0000000

0000000

Mt
W W \4”\*{”?“\(."%‘W*{"ﬁ I ‘p’l\'“\\/wt\;,‘f"'

Time (second

)

1
Figure 3.2. Bubbling fluidized bed: pressure signal inside the bed.

000000

PGl Bezier

Figure 3.3. Bubbling fluidized bed: FFT of pressure signal (serial, optimized), over 180 seconds

Page 15 of 19




FFT - DMP Optimized 1x4 partition

100000 T T
GNU ——
INTEL ——
80000 PG| —— | |
GNU Bezier =
INTEL Bezier ==
PGl Bezier
60000 1
S~
40000 1
20000 1
™ al Y A m e
0 ” - e
0 5 10 15 20 25

Frequency (Hz)
Figure 3.4. Bubbling fluidized bed: FFT of pressure signal (DMP 1x4, optimized), over 180 seconds.

FFT - DMP Optimized 2x2 partition

100000 T T
GNU ——
INTEL ——
80000 PG| —— | |
GNU Bezier =
INTEL Bezier ==
PGl Bezier
60000 1
=
40000 1
20000 1
0 —
0 5 10 15 20 25

Frequency (Hz)
Figure 3.5. Bubbling fluidized bed: FFT of pressure signal (DMP 2x2, optimized), over 180 seconds.

Page 16 of 19



FFT - Serial Optimized (t=120 to 130 sec)

20000
GNU ——
INTEL ——
PGl ——
15000 | GNU Bezier ——
INTEL Bezier =

PGI Bezier
€ 10000 |

MMM&&M
%N %WVWWW‘WA@AAA R T L. S

0 5 10
Frequency (Hz)
Figure 3.6. Bubbling fluidized bed: FFT of pressure signal (serial, optimized), over 10 seconds,
fromt=120stot=130s.

FFT - Serial Optimized (t=180 to 190 sec)
20000 .

GNU

INTEL

PGl

GNU Bezier
INTEL Bezier
PGI Bezier

15000 |

£ 10000 |

5000

Frequency (Hz)
Figure 3.7. Bubbling fluidized bed: FFT of pressure signal (serial, optimized), over 10 seconds,
fromt=180stot=190s.

Page 17 of 19



Void Fraction (-)

Vs (m/s)

Void Fraction profile (averaged over 1200 s) - DMP 1x4 Optimized

0.54 . . . . . ,
GNU ——

0.52 INTEL —— |
PGl ——

0.5 J
0.48 | |
0.46 + 1
0.44 | 1
0.42 1

0.4 : : ' : - : ' ; :

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
X (m)
Figure 3.8. Bubbling fluidized bed: 20 minute-time-averaged void fraction across the bed
(DMP 1x4, optimized).
Solids velocity profile (averaged over 1200 s) - DMP 1x4 Optimized
0.1 Ff GNU —— ﬁ
INFEL. s
PGl ——
0.05 ]
O R =
-0.05 | |
01+ 1
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
x (m)

Figure 3.9. Bubbling fluidized bed: 20 minute-time-averaged solids velocity across the bed
(DMP 1x4, optimized).

Page 18 of 19



Void Fraction (-)

Vs (m/s)

Void Fraction profile (averaged over 60 s) - DMP 1x4 Optimized

0.54 . . . . . ,
GNU ——

0.52 INTEL —— |
PGl ——

0:5: F _
0.48 | |
0.46 + ]
0.44 | 1
0.42 + 1
0.4 : : : : : ‘ : : :

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
x (m)
Figure 3.10. Bubbling fluidized bed: 1 minute-time-averaged void fraction across the bed
(DMP 1x4, optimized).
Solids velocity profile (averaged over 60 s) - DMP 1x4 Optimized
0.1 GNU —— |
INTEL. =
~<PCL ——
0.05 | \ ]
0 L 4
-0.05 _
01+ J
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
x (m)

Figure 3.11. Bubbling fluidized bed: 1 minute-time-averaged solids velocity across the bed
(DMP 1x4, optimized).

Page 19 of 19



