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 Executive Summary 
 
 
 This report describes the MFIX (Multiphase Flow with Interphase eXchanges) computer 
model.  MFIX is a general-purpose hydrodynamic model that describes chemical reactions and 
heat transfer in dense or dilute fluid-solids flows, flows typically occurring in energy conversion 
and chemical processing reactors.  MFIX calculations give detailed information on pressure, 
temperature, composition, and velocity distributions in the reactors.  With such information, the 
engineer can visualize the conditions in the reactor, conduct parametric studies and what-if 
experiments, and, thereby, assist in the design process. 
 
 The MFIX model, developed at the Morgantown Energy Technology Center (METC), has 
the following capabilities:  mass and momentum balance equations for gas and multiple solids 
phases; a gas phase and two solids phase energy equations; an arbitrary number of species 
balance equations for each of the phases; granular stress equations based on kinetic theory and 
frictional flow theory; a user-defined chemistry subroutine; three-dimensional Cartesian or 
cylindrical coordinate systems; nonuniform mesh size; impermeable and semipermeable internal 
surfaces;  user-friendly input data file; multiple, single-precision, binary, direct-access, output 
files that minimize disk storage and accelerate data retrieval; and extensive error reporting. 
 
 This report, which is Volume 1 of the code documentation, describes the hydrodynamic 
theory used in the model: the conservation equations, constitutive relations, and the initial and 
boundary conditions.  The literature on the hydrodynamic theory is briefly surveyed, and the 
bases for the different parts of the model are highlighted. 
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 1  Introduction 
 
 
 Dense multiphase flow reactors are part of many energy conversion and chemical proc-
essing units.  In a circulating fluidized-bed combustor, for example, coal burns as it flows in a 
dense gas-solids mixture.  Another example is the Fluid Catalytic Cracking (FCC) riser, in which 
oil contacts rapidly circulating catalyst particles and is converted into gasoline.  Clearly, the 
hydrodynamics, heat transfer, reaction kinetics, and catalyst activity influence the performance 
of the reactor.  The design of such reactors traditionally relies on data from laboratory-scale 
batch reactors or continuous pilot-scale units.  Although many processes have been successfully 
scaled-up in this manner, some notable failures have occurred (Squires, Kwauk, and Avidan 
1985; Krambeck et al. 1987).  Also, in some cases the laboratory-scale units exhibit different 
hydrodynamic behavior than do large-scale units, and intermediate pilot-scale units are 
expensive to build and operate.  Hydrodynamic models based on fundamental laws of mass, 
momentum, energy, and species conservation have the potential to fill the data gaps in the results 
of laboratory- or pilot-scale experiments and, thereby, to aid in the design of industrial reactors.  
The MFIX computer model is such a general-purpose hydrodynamic model capable of 
describing chemical reactions and heat transfer in dense or dilute fluid-solids flows. 
 
 The theoretical and numerical foundations of MFIX are based on a hydrodynamic theory 
of fluidization.  Hydrodynamic models have been developed and applied to describe fluidization 
since the early 60's: Davidson (1961), Jackson (1963), Davidson and Harrison (1963), Murray 
(1965), Pigford and Baron (1965), Soo (1967), Anderson and Jackson (1967), Ruckenstein and 
Tzeculescu (1967), and Jackson (1970).  In those studies, the hydrodynamic models were used to 
study the stability of fluidization or to explore the details of bubble motion; no attempt was made 
to solve the rather formidable set of partial differential equations constituting the model. 
 
 The advent of high-speed computers prompted attempts to solve these equations 
numerically.  In the late 70's, two projects funded by the U.S. Department of Energy (DOE) were 
initiated to develop computer models of coal gasifiers based on the hydrodynamic equations.  
The CHEMFLUB code, developed by Systems, Science, and Software Inc., solves continuum 
equations (much like the MFIX equations) to describe gas and solids flow in fluidized-bed 
gasifiers (Garg and Pritchett 1975; Schneyer et al. 1981; Blake and Chen 1981; Richner et al. 
1990).  The FLAG code, developed by JAYCOR Inc., solves continuum equations to describe 
gas flow, but uses a particle-tracking method to describe solids flow (Scharff et al. 1982).  
Somewhat in parallel to those efforts, Professor Gidaspow and coworkers at the Illinois Institute 
of Technology (IIT) began to develop computer codes for describing fluidized beds by adopting 
numerical techniques introduced by Harlow and Amsden (1975) and incorporated in the K-FIX 
program (Rivard and Torrey 1977), which describes water-steam flow.  The subject of such 
numerical modeling has been reviewed in detail by Gidaspow (1986). 
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 As a result of the studies described in the previous paragraph, much progress has been 
made toward developing comprehensive computer codes for describing fluidized beds.  Based on 
recent reports, the following is a list of institutions developing numerical models of fluidized 
beds that are similar to the MFIX code:  Babcock and Wilcox Inc., Alliance Research Center 
(Burge 1991), Argonne National Laboratory (Lyczkowski and Bouillard 1989), Illinois Institute 
of Technology (IIT) (Ding and Gidaspow 1990), and Twente University of Technology (Kuipers 
et al. 1993). 
 
 Two-phase hydrodynamic models treat the fluid and the solids as two interpenetrating 
continua; all the particles are considered to be identical, characterized by an effective diameter 
and identical material properties.  To describe phenomena such as particle segregation and 
elutriation, however, the models must account for at least two types of particles, where each 
particle type is characterized by a unique diameter and density.  Such a multiparticle code was 
developed at IIT (Syamlal 1985) from the single-particle code of Gidaspow and Ettehadieh 
(1983).  Following a suggestion of Soo (1967), each solids phase consists of the particles with 
identical particle density and diameter.  (See figure 1.)  For example, a mixture of two types of 
particles that differ in diameter or density or both is treated as composed of two distinct solids 
phases, each with its own set of governing hydrodynamic equations.  A mixture, characterized by 
a distribution of particle diameters or densities or both, is described in terms of a number of 
solids phases with diameters and densities obtained by discretizing the distribution function.  
The IIT code was used to simulate segregation in a fluidized bed (Syamlal 1985), material 
separation in an electrofluidized bed (Shi, Gidaspow, and Wasan 1987), and the explosive 
dissemination of particles (Gidaspow et al. 1984). 
 

Two-Phase Three-Phase

Solids-1

Solids-2

Fluid

 

Figure 1.  Multiphase Descriptions of a Fluid-Solids Mixture 
 
 The multiparticle code was further enhanced at METC by the addition of improved 
numerical algorithms, a solids pressure term, an improved drag correlation, and granular stress 
terms.  A version of the code with thermal energy equations is called the NIMPF (Non-
Isothermal MultiParticle Fluidization) code (Syamlal 1987a; O'Brien and Syamlal 1990).  The 
code has been used at METC since 1985 to predict the two-dimensional, non-isothermal, 
transient flows of the fluid and solids phases within a fluidized bed.  Initially, the code was used 
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to model fundamental fluidization phenomena, such as single-bubble injections, jet injections 
(Syamlal and O'Brien 1989), particle segregation (Syamlal and O'Brien 1988), and circulating 
fluidized-bed dynamics (O'Brien and Syamlal 1991; O'Brien and Syamlal 1993) -- all occurring 
in a nonreacting bed.  These predictions were compared with experimental data for code 
verification.  More recently, the code has been used to study increasingly complex and 
demanding fluidization conditions, including circulating fluidized-bed reactors, fluidized beds 
with immersed heat transfer tubes (Rogers and Boyle 1991), fluidized beds with a filter, and 
fluidized-bed reactors at high temperatures. 
 
 During its 6 years of METC service, the code continuously evolved to model these 
complex fluidization conditions.  As part of this evolution, a project was undertaken to provide 
several much-needed enhancements to the code, as well as to compile and document all previous 
code modifications.  The result of this project is the MFIX code, which has the following 
characteristics:  mass and momentum balance equations for gas and multiple solids phases; a gas 
phase and two solids phase energy equations; an arbitrary number of species balance equations 
for each of the phases; granular stress equations based on kinetic theory and frictional flow 
theory; a user-defined chemistry subroutine; three-dimensional Cartesian or cylindrical 
coordinate systems; nonuniform mesh size; impermeable and semipermeable internal surfaces; 
user-friendly input data file; multiple, single-precision, binary, direct-access, output files that 
minimize disk storage and accelerate data retrieval; and extensive error reporting.  In addition, 
two MFIX post-processor codes animate the results of the calculations and retrieve and 
manipulate data from the output files. 
 
 Hydrodynamic modeling has the remarkable ability to synthesize data from various, 
relatively simple experiments (for example, the drag on an isolated sphere or the volatilization 
rate measured using a single layer of coal particles) and, thereby, to describe the time-dependent 
distribution of fluid and solids volume fractions, velocities, pressure, temperatures, and species 
mass fractions in industrial reactors, where measurement of such quantities might be all but 
impossible.  Such calculations, therefore, allow the designer to visualize the conditions in the 
reactor, to understand how performance values change as operating conditions are varied, to 
conduct what-if experiments, and, thereby, to assist in the design process. 
 
 With such power also come several limitations that the user must bear in mind.  First, the 
accuracy of the model's predictions may be limited for a variety of reasons: incomplete 
formulation of the governing equations, insufficient knowledge of the constitutive relations, 
unsatisfactory numerical treatment of the governing partial differential equations, insufficient 
information on initial and boundary conditions, and the impracticality of using a large number of 
nodes to resolve all the fine details of the flow.  This implies the need for much caution when 
designing simulations and interpreting results.  Often, trends predicted by the model are more 
useful than absolute values of various quantities. 
 
 A second limitation of hydrodynamic modeling is that an expert user is needed to conduct 
simulations and to analyze results.  To assist the user, the present code resolves many of the 
difficulties in setting up simulations by using a special NAMELIST format in the input data file 
that reports input errors and allows comment lines.  There is no limitation on the number of 
initial and boundary conditions.  The code also does much run-time error reporting and has a 
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graphical post-processor.  In addition, these manuals describe the theory and use of the code in 
detail, so that with their help, someone with experience in computational fluid dynamics could 
become an expert user in about 3 months. 
 
 A third limitation is that hydrodynamic modeling requires significant computer resources, 
although supercomputer facilities are not required.  The availability of faster and cheaper com-
puters has made hydrodynamic modeling more affordable.  Workstations costing under $30,000 
have been sufficient for METC's simulation studies.  Nonetheless, the user must clearly define 
the results expected from the simulation and avoid needless refinements that increase 
computational time.  Of course, the ultimate determinant should be the cost effectiveness of the 
approach. 
 
 This report describes the hydrodynamic theory used to formulate the code:  the governing 
equations, constitutive relations, and the initial and boundary conditions.  Other information is 
available from the authors, including descriptions of the procedure to set up simulations, to write 
input data files, to retrieve and visualize output data, and to interpret simulation results; some 
examples of typical applications; the procedure to numerically solve the governing equations; 
and the FORTRAN implementation of the numerical solution scheme. 
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 2  Hydrodynamic Theory 
 
 
   Assuming that the different phases can be mathematically described as interpenetrating 
continua, two distinct approaches can be used to derive the multiphase flow equations:  the 
averaging approach and the mixture theory approach.  In the averaging approach, the equations 
are derived by space, time, or ensemble averaging of the local, instantaneous balances for each 
of the phases (Anderson and Jackson 1967; Drew and Segel 1971; Ishii 1975; Joseph and 
Lundgren 1990).  In the mixture theory approach, equations that are generalizations of single-
phase equations are postulated (Bowen 1976; Passman, Nunziato, and Walsh 1983; Bedford and 
Drumheller 1983).  Both approaches yield a similar set of balance equations that must be closed 
by specifying several constitutive relations, such as a fluid-phase equation of state, fluid-solids 
and solids-solids momentum transfer and heat transfer, and fluid and solids phase stress tensors.  
The principle of material frame-indifference, the second axiom of thermodynamics, material 
symmetry, and over-all balance equations for the mixture yield several useful restrictions on 
such constitutive relations (Bowen 1976). 
 
 To proceed further toward solving practical problems of interest, it is necessary to supply 
specific constitutive relations.  This challenging task is accomplished by using a variety of 
approaches, ranging from empirical information to kinetic theory.  Most of the differences 
between multiphase theories originate from such closure assumptions, some of which are the 
subject of much debate.  The governing equations developed here are based on various sources, 
as has been described in this section, but the pervading influence of Professor Jackson's work is 
evident. 
 
 Using the averaging approach to derive equations that describe interpenetrating continua, 
the point variables are averaged over a region that is large compared with the particle spacing 
but much smaller than the flow domain.  New field variables, the phasic volume fractions, are 
introduced to track the fraction of the averaging volume occupied by various phases.  These are 
denoted by εg for the fluid phase (also known as the void fraction) and εsm for the mth solids 
phase.  These volume fractions are assumed to be continuous functions of space and time.  By 
definition, the volume fractions of all of the phases must sum to one: 

  1 g s m +  
M

  
m = 1

 =  1   ,ε ε∑

where M is the total number of solids phases.  The effective (macroscopic) density of the gas 
phase is  

 ′g g g =    ρ ε ρ  2 
 
and that of the solids phase is 

 ′s m s m s m =      ,ρ ε ρ  3 
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which, for a two-phase system, is the same as the bulk density.  Just as the actual (microscopic) 
densities appear in single-phase equations, these effective densities appear in all of the multi-
phase equations. 
 
2.1 Conservation of Mass 
 
 The continuity equation for the gas phase is  

 
∂
∂

∇ • ∑t
 ( )  +    ( v )  =  Rg g g g g

n=1

N

gn
g

   .ε ρ ε ρ r  4 

There are M solids-phase continuity equations, each of the form 

 ( ) ( )∂
∂

∇ • ∑t
      +             v   =  Rsm sm sm sm sm

n=1

N
smn

sm
   .ε ρ ε ρ r  5 

The first term on the left in equations (4) and (5) accounts for the rate of mass accumulation per 
unit volume, and the second term is the net rate of convective mass flux.  The term on the right 
accounts for interphase mass transfer because of chemical reactions or physical processes, such 
as evaporation.  (See section 2.4.) 
 
2.1.1 Equation of State 
 
 The fluid phase can be modeled as a gas obeying the ideal gas law, 

 g
g

g
 =  P  Mw

R T
   ,ρ  6 

or as an incompressible fluid with a constant density.  The user may specify any other equation 
of state by modifying the equation of state subroutine (EOSG). 
 
2.2 Conservation of Momentum 
 
 The gas-phase momentum balance is expressed as 

 ( ) ( )∂
∂

∇ • ∇ • ∑t
      v   +        v   v   =    S  +     g -  fg g g g g g g g g g

m=1

M

gm  +  ,
gε ρ ε ρ ε ρr r r r r r

I  7 

where gS  is the gas-phase stress tensor, IΠgm is an interaction force representing the momentum 

transfer between the gas phase and the mth solids phase, and g
r
f is the flow resistance offered by 

internal porous surfaces.  (See section 2.6.5.)  The momentum equation for the mth solids phase is 
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( ) ( )∂
∂

∇ • ∇ •

+

≠

∑

t
      v   +        v   v   =    S  +     g 

-  
=1

M

m ,

sm sm sm sm sm sm sm sm sm sm

gm
l
l m

lI I

ε ρ ε ρ ε ρr r r r

r r 8
 

where smS is the stress tensor for the mth solids phase.  The term IΠlm is the interaction force 
between the mth and lth solids phases.  The first term on the left in these momentum equations 
represents the net rate of momentum increase.  The second term on the left represents the net rate 
of momentum transfer by convection.  The first term on the right represents normal and shear 
surface forces, while the second term represents body forces (gravity in this case).  The next term 
in equation 7 represents the momentum transfer between the fluid and solids phases; the final 
term represents the momentum transfer between the fluid and a rigid porous structure.  The last 
two terms in equation 7 represent the momentum exchange between the fluid and solids phases 
and between the different solids phases, from left to right. 
 
2.2.1 Fluid-Solids Momentum Transfer 
 
 In the momentum conservation equations, 7 and 7, the term Igm accounts for the 
interaction force, or momentum transfer, between the gas phase and the mth solids phase.  The 
mechanisms and formulation of interaction forces have been reviewed in detail by Johnson, 
Massoudi, and Rajagopal (1990).  From studies on the dynamics of a single particle in a fluid, 
several different mechanisms have been identified: drag force, caused by velocity differences 
between the phases; buoyancy, caused by the fluid pressure gradient; virtual mass effect, caused 
by relative acceleration between phases; Saffman lift force, caused by fluid-velocity gradients; 
Magnus force, caused by particle spin; Basset force, which depends upon the history of the 
particle's motion through the fluid; Faxen force, which is a correction applied to the virtual mass 
effect and Basset force to account for fluid-velocity gradients; and forces caused by temperature 
and density gradients. 
 
 Several other factors need to be considered when the formulas for single particle systems 
are generalized to describe interaction forces in realistic multiparticle systems with chemical 
reactions. 
 
 One, the effect of the proximity of other particles must be accounted for.  This most 

important effect implies that the drag force is a function of the solids volume fraction, in 
addition to the particle Reynolds number, and must be described by formulas deduced 
from experimental data, as discussed in the following paragraphs. 

 
 Two, the single-particle interaction force must be corrected to account for the effect of 

mass transfer between the phases, as in the case of coal devolatilization or combustion, 
for example (Bird, Stewart, and Lightfoot 1960, p.658; Montlucon 1975). 

 
 Three, the momentum transfer accompanying such mass transfer must be included in the 

interaction force. 
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 Four, the above formulations for fluid-solids drag deal with uniform, smooth, spherical 
particles, whereas practical fluid-solids systems contain rough, non-spherical particles of 
different sizes.  A narrow particle-size distribution may be characterized by an average 
size based on particle surface area; a broad particle-size distribution must be discretized 
into two or more size fractions, each characterized by an average particle size.  Efforts to 
study the effect of nonsphericity (e.g., Leith 1987; Ganser 1993) and roughness (e.g., 
Crawford and Plumb 1986) on drag is ongoing, and there are no well-accepted ways of 
treating such effects. 

 
 Five, it may be necessary to explicitly account for the effect of particle interactions on the 

fluid-solids interaction force, although equation 7 contains the implicit assumption that 
fluid-particle and particle-particle forces can be separated into two terms.  For example, 
the averaging required to approximate the particles as a granular continuum renders the 
hydrodynamic equations incapable of resolving the wake-dominated micro-
hydrodynamics near the particles that under certain favorable conditions cause the 
particles to form clusters.  O'Brien and Syamlal (1993) argued that the effect of such 
aggregates must be explicitly accounted for in the fluid-solids interaction constitutive 
relation. 

 
 In the present work, however, we account only for the buoyancy, the drag force, and 
momentum transfer due to mass transfer, since those are the most significant forces and 
satisfactory formulations of the other effects do not exist.  Thus, the fluid-solids interaction force 
is written as 

 ( ) [ ]gm sm g gm sm g 0m 0m sm 0m g =  -    P  -  F    v  -  v   +    R       v   +     v    ,r r r r r
I ε ξ ξ∇  9 

where the first term on right side describes the buoyancy force, the second term describes the 
drag force, and the third term describes the momentum transfer due to mass transfer.  R0m is the 
mass transfer from the gas phase to solids phase-m, where 

  10 0m
0m

0m
 =    

1    for R   <   0
0    for R     0

ξ
≥





and 0m 0m =  1  -   ξ ξ . 

 
 When buoyancy is included, as in equation 7, the resulting hydrodynamic equations 
possess imaginary characteristics, and the initial-value problems based on such equations are ill-
posed.  Any consistent numerical scheme for these equations is unconditionally unstable, i.e., for 
any constant ratio ∆t/∆x, geometrically growing instabilities will always appear if ∆x is made 
sufficiently small (Gidaspow 1974; Lyczkowski et al. 1978; Stewart and Wendroff 1984).  
Although questions about the ill-posed equations remain unsettled, ill-posed equations are 
widely used in practical, multiphase-flow computations (and other areas such as backward heat 
conduction and porous media flows) and yield usable results.  Physical damping due to the 
momentum exchange term, numerical damping due to donor cell differencing (Stewart 1979), 
and the presence of a solids-stress term (Gidaspow and Ettehadieh 1983) have been suggested as 
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mitigating effects that make such computations possible.  To obtain well-posed equations, 
Bouillard et al. (1989) dropped the fluid-pressure gradient term in the solids-momentum 
equation.  This formulation ignores buoyancy and, therefore, is not a satisfactory model for gas-
solids and liquid-solids flows.  Accounting for buoyancy by writing the body force term as (ρs -
 ρg)g is not satisfactory either, because such a term will only account for the effect of the fluid-
pressure gradient caused by the body force (gravity).  Therefore, such a modification of the 
theory is not used here, although the corresponding change in the code is minor. 
 
 Drag correlations for a single-solids phase, when generalized to multiple-solids phases, 
should satisfy the following condition (Syamlal 1985).  A solids phase consisting of identical 
particles can be represented either as a single-solids phase of volume fraction εs or as M distinct 
solids phases (although of identical particle diameter and density), whose respective volume 
fractions (εsm) would sum to εs.  In the former case, only one set of solids-phase momentum 
equations exists, whereas M sets of momentum equations exist in the latter case.  We require that 
the drag relations be generalized in such a way that the M momentum equations correctly sum to 
the single momentum equation of the former case. 
 
 Two types of experimental data can be used to develop fluid-solids drag formulas. One 
type, valid for high value of the solids volume fractions, is packed-bed pressure drop data 
expressed in the form of a correlation, such as the Ergun (1952) equation.  Such a correlation 
must be supplemented with a drag correlation for low values of the solids volume fractions 
(Gidaspow 1986).  The other type of data is available as correlations for the terminal velocity in 
fluidized or settling beds, expressed as a function of void fraction and Reynolds number 
(Richardson and Zaki 1954).  Syamlal and O'Brien (1987) derived the following formula for 
converting terminal velocity correlations to drag correlations: 

 gm
sm g g

rm
2

pm
Ds

m

rm
sm gF  =  

3      

4   V   d
  C   Re

V
   v  -  v    ,

ε ε ρ 







r r  11 

where Vrm is the terminal velocity correlation for the mth solids phase.  Vrm can be calculated 
from the Richardson and Zaki (1954) correlation only numerically; an explicit formula cannot be 
derived.  However, a closed formula for Vrm can be derived from a similar correlation developed 
by Garside and Al-Dibouni (1977),  

 ( )rm m
2

m m
2V  =  0.5  A -  0.06  Re  +   0.06 Re   +  0.12  Re  (2 B- A)  +  A    ,



  12 

where 

  13 A =    ,g
4.14ε

 

  14 B =  
 
 
 

0.8      if   0.85

     if  >  0.85
   ,

g
1.28

g

g
2.65

g









≤ε ε

ε ε
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and the Reynolds number of the mth solids phase is given by 
 

Here, C  is the single-sphere drag function.  Of the numerous expressions 
available for C

(Ds m rm Re / V )
Ds (see Khan and Richardson 1987), we chose the following simple formula 

proposed by Dalla Valle (1948): 

 m
pm sm g g

g
Re  =  

d v  -  v
  .

r r ρ

µ
 15 

 

 DsC  (Re)  =   0.63 +  4.8
Re

  .

2






 16 

To use this formula in equation 7, note that Re must be replaced with Rem/Vrm. 
 
2.2.2 Solids-Solids Momentum Transfer 
 
 Compared to fluid-solids momentum transfer, much less is known about solids-solids 
momentum transfer.  It is safe to assume that the major effect is the drag between the phases 
because of velocity differences.  Arastoopour, Lin, and Gidaspow (1980) observed that such a 
term is necessary to correctly predict segregation among particles of different sizes in a 
pneumatic conveyor.  Arastoopour, Wang, and Weil (1982) studied this effect experimentally in 
a pneumatic conveyor.  Equations to describe such interactions have been derived or suggested 
by several researchers: Soo (1967), Nakamura and Capes (1976), Syamlal (1985, 1987b), and 
Srinivasan and Doss (1985). 
 
 In the present work the solids-solids momentum transfer, Iml, is represented as 

 ( ) [ ]ml sml sl sm ml ml sl ml smI  = - F     v   -   v   +    R      v   +     v     ,r r r r rξ ξ  17 

where Rml is the mass transfer from solids phase-m to solids phase-l, 

  18 ml
ml

ml
 =    

1    for R   <   0
0     for R     0

ξ
≥





and ml ml =  1  -   ξ ξ . 

 
 A simplified version of kinetic theory was used by Syamlal (1987b) to derive an 
expression for the drag coefficient Fsml,  
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( ) ( ) ( )
( )sml

lm flm
2

sl sl sm sm
2

pl pm 0 sl sm

sl pl
3

sm pm
3

F  =  
3  1 +  e    / 2  +  C   / 8         d  +  d   g v - v  

2    d  +   d  
,lm

π π ε ρ ε ρ

π ρ ρ

r r

 19 

 
where elm and Cflm are the coefficient of restitution and coefficient of friction, respectively, 
between the lth and mth solids-phase particles.  The radial distribution function at contact, , is 

that derived by Lebowitz (1964) for a mixture of hard spheres: 
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2.2.3 Fluid-Phase Stress Tensor 
 
 The stress tensor for the fluid phase, either gas or liquid, is given by 

 g g gS  = - P   I +     ,τ  21 

where Pg is the pressure.  The viscous stress tensor, gτ , is assumed to be of the Newtonian form 

 ( )g g g g g g g =  2       D  +      tr   D    I   ,τ ε µ ε λ  22 

where I  is the identity tensor and gD  is the strain rate tensor for the fluid phase, given by 

 ( )g g
T

gD  =  1
2

      v  +     v       .∇ ∇





r r  23 

 
2.2.4 Solids-Phase Stress Tensor 
 
 In some of the earlier studies the solids phase was assumed to be inviscid, which is a 
reasonable assumption for a fully fluidized bed.  In such models only the hydrostatic part of the 
stress tensor (solids pressure) need be specified, to ensure that the void fraction does not become 
less than that in a packed bed.  This solids pressure term was specified as an arbitrary function of 
void fraction that becomes very large as the void fraction approaches the packed-bed void 
fraction (Pritchett, Blake, and Garg 1978; Gidaspow and Ettehadieh 1983).   As pointed out by 
Massoudi et al. (1992), the solids pressures used in various studies differ by orders of magnitude. 
 The actual magnitude of the term itself is not of importance in the theory, so long as it prevents 
the void fraction from becoming unphysically small.  An alternative approach, which avoids the 
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need to specify a solids pressure function and strictly prevents the void fraction from becoming 
less than the packed-bed void fraction, is to treat the granular media as an incompressible fluid at 
a certain critical void fraction (Syamlal and O'Brien 1988).  In such a formulation, a solids 
pressure is calculated so as to keep the void fraction from becoming less than the packed-bed 
void fraction.  This pressure becomes zero when the void fraction becomes greater than the 
packed-bed void fraction. 
 
 A more detailed description of the solids phase stresses is made possible by adopting 
appropriate theories proposed in the literature for describing granular flows.  The unusual 
behavior of granular materials is well reviewed in an article by Jaeger and Nagel (1992): 
 
 "Granular materials display a variety of behaviors that are in many ways different from 

those of other substances.  They cannot be easily classified as either solids or liquids.  
This has prompted the generation of analogies between the physics found in a simple 
sandpile and that found in complicated microscopic systems, such as flux motion in 
superconductors or spin glasses." 

 
As shown in figure 2, granular flows can be classified into two distinct flow regimes: a viscous 
or rapidly shearing regime, in which stresses arise because of collisional or translational transfer 
of momentum, and a plastic or slowly shearing regime, in which stresses arise because of 
Coulomb friction between grains in enduring contact (Jenkins and Cowin 1979). 

Two entirely different approaches are used to describe the stresses in these flow regimes.  
Johnson and Jackson (1987) proposed a model to describe shearing granular flows, combining 
the theories of viscous and plastic flow regimes, by simply adding the two formulas.  In MFIX, 
the theories are combined by introducing a "switch" at a critical packing, εg

*, the packed-bed 
void fraction at which a granular flow regime transition is assumed to occur: 

Plastic flow
- slowly shearing
- enduring contacts
- frictional transfer of

momentum

Viscous flow
- rapidly shearing
- transient contacts
- translational or

collisional transfer of
momentum

 

Figure 2.  Slowly and Rapidly Shearing Granular Flows 
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where Psm is the pressure and smτ  is the viscous stress in the mth solids phase.  The superscript p 
stands for plastic regime and v for viscous regime.  In fluidized-bed simulations, εg

* is usually 
set to the void fraction at minimum fluidization. 
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 Stress formulations for the rapid flow regime have been reviewed in detail by Savage 
(1984), Jenkins (1987), Boyle and Massoudi (1989).  In a pioneering work, Bagnold (1954) 
derived expressions for granular stress by considering the momentum transfer because of particle 
collisions.  That approach was further extended and refined by several researchers:  Ogawa, 
Umemura, and Oshima (1980), Shen and Ackerman (1982), and Haff (1983), to name a few.  
Savage and Jeffrey (1981) and Jenkins and Savage (1983) introduced the rigorous methods of 
the kinetic theory of gases to describe the collisional transfer of momentum and, thereby, to 
derive expressions for the stress tensor.  The rapid flow theory is quite well-developed and has 
been extended to describe binary mixtures (Shen 1984; Farrell, Lun, and Savage 1986; Jenkins 
and Mancini 1987), rough particles (Lun and Savage 1987), and interstitial fluid effects (Ma and 
Ahmadi 1988).  In rapid granular flows, the kinetic energy of mean flow first degrades into the 
kinetic energy of random particle fluctuations, and then dissipates as heat because of inelastic 
collisions.  2 depicts this phenomenon and compares it to similar processes in turbulent single-
phase flow.  The kinetic energy of fluctuations is accounted for in the theory by a granular 
temperature, Θm, which is different from the particle temperature (a measure of the kinetic 
energy of molecular vibrations within the particle).  Formulas for stresses in rapid granular flows 
have been included in several two-phase flow models of fluidized beds and pneumatic 
conveyors: Syamlal (1987c), Boyle and Massoudi (1989), Sinclair and Jackson (1989), Ding and 
Gidaspow (1990), and Louge, Mastorakos, and Jenkins (1991). 
 

 The viscous stress terms in equation 7 are based on a modified form of the kinetic theory 
of smooth, inelastic, spherical particles developed by Lun et al. (1984).  The terms accounting 
for momentum transfer due to particle translation (kinetic contribution) were discarded because 
they make the granular temperature unbounded in the dilute limit of εg going to one (Syamlal 
1987c).  In addition, we assume that the Lun et al. (1984) theory can be extended to describe 
stresses in multiple granular phases.  The resulting expressions for stress are given below.  The 
granular pressure is given by 

                            Granular Flow                              Turbulent Flow

Kinetic Energy of
Mean Flow

Kinetic Energy of
Random Particle
Motion

Dissipation from
Inelastic Collisions

Kinetic Energy of
Mean Flow

Kinetic Energy of
Large Eddy Motion

Viscous Dissipation
at Small-scales

 

Figure 3.  Energy Cascade in Granular Flows Compared 
                                With That in Turbulent Flows

  25 sm
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1m sm
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where 

 ( )1m mm sm 0  
mm

K  =  2     1  +   e        g    .ρ  26 

The granular stress is given by  

 ( )sm
v

sm
v

sm sm
v

sm = 2       D  +     tr  D    I  ,τ µ λ  27 

where , the second coefficient of viscosity for the msm
vλ th solids phase, is given by  

 sm
v

2 m sm m =  K          .λ ε Θ  28 
The constant K2m is given by 
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and the constant K3m is 
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The factor , the shear viscosity for the msm

vµ th solids phase, is given by 
 

sm
v

3m sm m =  K          .µ ε Θ
 
The strain rate tensor, smD , is given by 

 ( )[ ]sm sm
T

smD  =  1
2

      v  +     v       .∇ ∇r r  32 

 
The computation of granular temperature is discussed in section 2.5. 
 
 The stresses in the plastic flow regime are usually described by adopting theories from the 
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study of soil mechanics (Tuzun et al. 1982; Jackson 1983), although alternative theories have 
also been proposed (Goodman and Cowin 1972; Massoudi 1986).  The stresses arise because of 
particle friction and are described by phenomenological models rather than mechanistic models 
as in the case of rapid flow regime.  The soil mechanics theories use the idea of a yield function, 
which is a relation between the components of the stress tensor for a material about to yield, and 
a flow rule, which is a set of relations between the components of the stress and the rate of strain 
tensors.  Jackson (1983) has described in detail the critical state theory proposed by the 
Cambridge School of Soil Mechanics and has shown that the theory accounts for consolidation 
and dilatation observed in granular flows. 
 
 Similar to the functions typically used in plastic flow theories (Jenike 1987), an arbitrary 
function that allows a certain amount of compressibility in the solids phase represents the solids 
pressure term for plastic flow regime: 

  33 sm
p

sm
*P  =    P    ,ε

where P* is represented by an empirical power law 

  34 *
g
*

g
nP  =  A  (  -  )    .ε ε

Typically, values of A=1025 and n=10 have been used. 
 
 A solids stress tensor based on the critical state theory was included in MFIX with Gray 
and Stiles's (1988) three-dimensional generalization of a yield function proposed by Pitman and 
Schaeffer (1987).  In that formulation, however, the solids pressure term goes to zero in the limit 
of zero internal friction -- a condition often used in simulations to turn off the time-consuming 
plastic flow computations.  This being unsatisfactory, a simpler formulation, proposed by 
Schaeffer (1987), is being used in the code now.  These stresses are calculated only for solids 
phase-1, even when multiple solids phases are specified: 

 s
p

s
p

sD1 1 1τ µ =  2      , 35 
where 

 µ φ
s
p
1  =  P  sin 

2   I
   .

*

2 D
 36 

The second invariant of the deviator of the strain rate tensor is 
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 37 

The viscosity values for plastic flow conditions are large.  Hence, to stabilize the computation, 
the stress terms are calculated implicitly and an upper limit is specified for the viscosity, which 
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becomes unbounded as I2D 6 0.  The implicit stress calculations require a considerable amount of 
computational time.  By setting the angle of internal friction (φ) to zero, the plastic stress 
computations may be turned off.  Without the plastic stresses, however, the computations may 
predict unphysical solids circulation in packed beds. 
 
 Schaeffer (1987) and Schaeffer and Pitman (1988) conducted a linear analysis of granular 
flow equations that included frictional stress terms and showed that the equations may lead to 
violent instabilities analogous to that of the backwards heat equation.  Although Schaeffer and 
Pitman (1988) remind that "linear well-posedness or ill-posedness carries no rigorous 
implications for the nonlinear theory," we take the view that the frictional flow formulation 
presented here is tentative.  As discussed in the previous paragraph, however, the framework 
required to implement such a theory exists in the code. 
 
2.3 Conservation of Internal Energy 
 
 The internal energy balance for the fluid phase is written in terms of the fluid temperature: 

where qg
r  is the fluid-phase conductive heat flux, Hg1 and Hg2 describe fluid-solids interphase 

heat transfer, )Hrg is the heat of reaction, and the last term accounts for the heat loss to the wall.  
(See section 2.6.7.)  The thermal energy balance for the m=1 solids phase is given by 
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 38 

where q  is the solids-phase-1 conductive heat flux, Hs1
r

g1 is fluid-solids interphase heat transfer, 
and )Hrs1 is the heat of reaction.  All other solids phases are assumed to be in thermal 
equilibrium, to simplify the numerical solution of the energy equations.  The thermal energy 
balance for all the other solids phases (m=2 to M), in terms of an average temperature Ts2, is 

 s s ps
s

s s s g rs    C  T
t

 +  v   T  =  -    q  +  H  -  H    ,1 1 1
1

1 1 1 1ε ρ ∂
∂

• ∇





∇ •r r
∆ 1  39 

where q is the an average solids-phase conductive heat flux, Hs2
r

g2 is fluid-solids interphase heat 
transfer, and ∆Hrs2 is the heat of reaction. 
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 A number of simplifying assumptions, none of which should be significant in typical 
applications to fluid-solids reactors, have been made in the formulation of thermal energy 
equations 7, 7, and 7: 
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 1) The irreversible rate of increase of internal energy due to viscous dissipation has been 
neglected.  Such terms are negligible except in the case of velocities approaching the 
speed of sound. 

 
 2) The reversible rate of fluid internal energy change due to compression or expansion has 

been neglected.  Such terms will be important in transient, compressible flows. 
 
 3) Interfacial flow work terms have not been included, which may lead to a violation of 

the second law (Lyczkowski, Gidaspow, and Solbrig 1982; Arnold, Drew, and Lahey 
1990).  This does not necessarily imply large errors in the calculations, because such 
terms in usual MFIX applications are negligible.  Furthermore, a satisfactory formulation 
including such terms does not exist. 

 
 4) The heat of reaction term includes both the enthalpy change due to reaction and the 

energy transfer because the products and reactants may be at different temperatures.  (See 
section 2.3.4.) 

 
 5) Heat transfer between different solids phases is negligible. 
 
 6) Radiative heat transfer is not considered. 
 
2.3.1 Fluid-Solids Heat Transfer 
 
 The heat transfer between the fluid and solids is assumed to be a function of the 
temperature difference: 

 ( )gm gm sm gH  =  -     T   -   T    ,γ  41 
where γgm is the heat transfer coefficient between the fluid phase and the mth solids phase.  Since 
we have assumed that solids phases 2 to M are in thermal equilibrium, γg2 is the sum of the heat 
transfer coefficients γgm for m=2 to M.  γgm is determined from the heat transfer coefficient in the 
absence of mass transfer, , corrected for interphase mass transfer by using the following 

formula derived from film theory (Bird, Stewart, and Lightfoot 1960, p. 658): 

gm
0γ

 
( )gm

pg 0m

pg 0m gm
0

 =  
C   R

exp  C  R /  -1
   .γ

γ
 42 

The heat transfer coefficient  is related to the particle Nusselt number Nugm
0γ m: 

 gm
0 g sm m =  

6  k   Nu
   ,γ

ε
d pm

2  43 

where Num is the Nusselt number for the individual particles constituting the mth solids phase. 
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 The Nusselt number is typically determined from one of the many correlations reported in 
the literature for calculating the heat transfer between particles and fluid in packed or fluidized 
beds (e.g., Zabrodsky 1966; Gelperin and Einstein 1971; Gunn 1978).  Syamlal and Gidaspow 
(1985) used a set of correlations presented by Zabrodsky (1966).  Following Kuipers, Prins, and 
van Swaaij (1992), MFIX now uses the following correlation proposed by Gunn (1978) 
applicable for a porosity range of 0.35-1.0 and a Reynolds number up to 105: 

  44 
N u  =  ( 7  -  10  +  5 )   (1 +  0.7  Re  Pr  )

  

 +  (1.33 -  2.4  +  1.2  )  Re  Pr    .

m g g
2

m
0.2 1/3

g g
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m
0.7 1/3
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The Prandtl number is defined as 
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k
   .

pg g

g

µ
 45 

2.3.2 Conductive Heat Flux in Fluid Phase 
 

The conductive heat flux within the fluid phase, qg
r , is described by Fourier's law:  

 

 g g g gq  =  -   k    T    ,r
ε ∇  46 

where kg is the gas thermal conductivity. 
 
2.3.3 Conductive Heat Flux in Solids Phase 
 
 In a simulation of the heat transfer from a fluidized bed to a wall, Syamlal and Gidaspow 
(1985) found it necessary to consider solids-phase conductive heat flux to be able to calculate 
bed-to-wall heat transfer coefficients comparable to experimental measurements.  The 
conductive heat flux in the solids phase, smqr , is assumed to have a form similar to that in the fluid 
phase: 

 sm sm sm smq  =  -   k    T   ,r
ε ∇  47 

where ksm is the particle phase conductivity.  Since solids phases m=2 to M are considered to be 
in thermal equilibrium, a sum of the flux terms is used to represent conductive fluxes in solids 
phase-2. 
 
 Syamlal and Gidaspow (1985) used a model due to Zehner and Schlunder (Bauer and 
Schlunder 1978) to determine the solids phase conductivity.  Kuipers, Prins, and van Swaaij 
(1992) used a similar, but improved, way to determine the solids-phase conductivity.  Their 
model accounts for direct conduction through the fractional contact area ζ and indirect con-
duction through a wedge of gas trapped between the particles.  The model has been simplified by 
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neglecting the radiation between the particles and the resistance to heat transfer due to inhibition 
of the normal movement of gas molecules between the particles (Smoluchowski effect).  
Following Kuipers, Prins, and van Swaaij (1992), we also delete the contribution of gas 
conductivity from the formulation to obtain: 

 

 
 
 21



 
[ ]sm

g

k km k rm

g

k
k

 =  
   R  +  (1 -  )

1 -  
   ,

φ φ λ

ε
 48 

where 
 

 λ rm
km

km km

km
km

kmb R
R b R

b R
b R b

b R
b

= −
−

−

−
+

−
−

+
+











2
1

1
1

1
1

1
22( / )

( ) /
( / )

ln( / )
( / )

 49 

 
 
 

 km
pm

g
R  =  k

k
   , 50 

 
and, for spherical particles, 
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The contact area fraction has the value φK = 7.26 x 10Β3.  By using this model for fluidized beds, 
we are clearly extending its applicability beyond the packed-bed range, where enduring contact 
between particles occurs.  We also assume that the model can be extended to describe 
conduction in multiparticle systems.  As a simpler alternative, ksm can be assumed to be a small 
multiple of kg, by noting that for typical values of kpm and the void fraction, the ratio of ksm to kg 
is between 1 and 5 (Syamlal and Gidaspow 1985). 
 
2.3.4 Heat of Reaction 
 
 Since the energy equation is formulated in terms of the temperatures, the heat of reaction 
must be stated explicitly.  Expressions for the heat of fluid-solids reactions must account for the 
difference in temperature between the phases.  (See figure 4.)  Let ∆H0 be the heat of reaction at 
the standard temperature of T0 for the general fluid-solids reaction 
 
 a A(s) + b B(g) 6 c C(s) + d D(g). 
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Figure 4.  Computation of Heat of Reaction for 
                                   Reactants at Different Temperatures

Then the enthalpy change due to the reaction is 
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In a fluid-solids reaction, the partitioning of the heat of reaction between the phases is arbitrary, 
since the averaging required to derive the hydrodynamic equations does not contain any 
information regarding the gas-solids interface.  The actual chemical reactions occur in an 
interface region of finite dimensions.  For example, in an analytical study of single-particle char 
gasification, Arri and Amundson (1978) showed that the hydrogen and carbon monoxide flame 
front may reside at the core surface, in the ash layer, or in the boundary layer surrounding the 
particle, depending upon process conditions.  The partitioning of the heats of reaction, therefore, 
must be based on physical arguments.  To partition the heat of the coal combustion reaction 
C + O2 6 CO2, for example, Syamlal and Bissett (1992) assigned the heat of reaction for the step 
C + 2O2 6  CO to the solids phase and the heat of reaction for the step CO + 2O2 6 CO2 to the 
gas phase. 
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2.4 Conservation of Species 
 
 The gas and solids phases may contain an arbitrary number of chemical species, Ng.  The 
species conservation equation for the gas phase is 

 
∂
∂

∇ •
t

 ( X )  +   ( X v )  =  R    ,g g gn g g gn g gnε ρ ε ρ r  53 

where Xgn is the mass fraction and Rgn is the rate of formation of gas species n.  The species 
conservation equation for solids phase m is 
 

 
∂
∂

∇ •
t

 (     X  )  +    (     X   v  )  =  R    ,sm sm smn sm sm smn sm smnε ρ ε ρ r  54 

where Xsmn is the mass fraction and Rsmn is the rate of formation of solids phase-m, species n.  
The above equations consider the accumulation, convection, and rate of reaction but neglect the 
diffusive flux. 
 
2.4.1 Reaction Kinetics 
 
 Reaction kinetic expressions need to be supplied to close the species balance equations.  
Such expressions will depend upon the specific chemistry being described.  As an example, 
consider a coal combustion reaction, 
 
 2C  +  O2   6  2CO  . 
 
The most common way of determining a rate expression for this reaction is by assuming a 
shrinking core mechanism, as depicted in figure 5, which considers the three resistances: 
external film diffusion, diffusion through the ash layer, and the reaction at the surface of the 
unreacted core (Yoon, Wei, and Denn 1978; Wen, Chen, and Onozaki 1982).  A rate expression 
is then derived by assuming a pseudo-steady state; that is, the time constant for the shrinking of 
the core is much larger than that for the transport of oxygen to the core.   The rate of formation 
of oxygen is then given by (O2 is gas species 1, CO is gas species 2, and C is solid species 1) 
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Figure 5.  Shrinking Core Model for Coal Combustion 
 
where  is the partial pressure of oxygen.  The film resistance is given by O  

2
p

 fm
O  

2 m

pm O  
2 fm

k  =  
D   Sh

d   R   T
   , 56 

where  is the diffusion coefficient and is the gas constant for oxygen, TO  
2D O  

2R fm is an average 

film temperature, and the Sherwood number [similar to equation 7 for the Nusselt number] is 
given by (Gunn 1978): 

  57 
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The Schmidt number is defined as 

 Sc =  
  D

   .g

g O  
2

µ

ρ
 58 

The ash layer resistance is given by 
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dm e

dm pm O  
2 sm

k  =  2   r   D
(1 -  r )   d   R   T

   , 59 

where De is an effective ash diffusivity given by (Wen, Chen, and Onozaki 1982) 
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and the ratio of core diameter to particle diameter,  

 dm
c
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d
   , 61 

can be related to the solids mass fraction as  
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where Xs1 is the carbon mass fraction, Xs4 is the ash mass fraction, and superscript 0 indicates 
the initial values of those quantities.  Wen et al. (1982) obtained the ash porosity from 

 ash  =  0.25 +  0.75  (1 -  )    .ε X s4
0  63 

The surface reaction resistance is given by (Desai and Wen 1978) 

 ( )rm dm
2

smk  =  23227  r   exp   - 27000 /1.987  T     . 64 

From equation 7, the other formation rates can be obtained as 

 g COR   R  =  - 56
32

  R2 1≡ g  65 

and 

 s C gR   R  =  24
32

  R    .1 1≡  66 

Since this reaction occurs in the particle, the heat of reaction is assigned to the solids phase:  

 ∆ rs pC s pO  
2 pCO g

g
H  =   - 52832   -  C  (T  -  298)   -   (C  -  2  C )  (T  -  298)    

 R  

32
  ,1 1

1
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


67

where the reference temperature is 298 K. 
 
2.5 Conservation of Granular Energy 
 
 Kinetic theory describing the flow of smooth, slightly inelastic, spherical particles was 
used in the derivation of the constitutive relation describing the stress tensor in the mth solids 
phase, smS , as presented in section 2.2.4.  The resulting constitutive relations contain the quantity 
Θm, called the "granular temperature" of the mth solids phase.  The granular temperature is 
proportional to the "granular energy" of the continuum, where granular energy is 
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defined as the specific kinetic energy of the random fluctuating component of the particle 
velocity: 

where C  is the fluctuating component of the instantaneous velocity m
r

mcr  of the mth solids phase 
defined by 
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The transport of granular energy in the mth solids phase is governed by the relation  
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where θγ  

m
is the rate of granular energy dissipation due to inelastic collisions, and  is the 

diffusive flux of granular energy.  The term φ

θ  
m

q

gm accounts for the transfer of granular energy 
between the gas phase and the mth solids phase, whereas φlm accounts for the transfer of granular 
energy between the mth and lth solids phases.  Supplying constitutive relations for equation 70 
and numerically solving the M coupled partial differential equations it represents is an onerous 
task. 
 
 This task is simplified in this work by first deriving a single partial differential equation 
(PDE) that represents the transport of the granular kinetic energy of the mixture of all solids 
phases.  This "mixture granular energy equation" is formed by summing the individual PDEs of 
equation 70 
 

 

 
 
 27



 

3
2

  
t

 v

   S :  v  -    q  -   +   +  

m=1

M

sm m
m=1

M

sm m sm

m=1

M

sm sm  
m

 
m gm

l=1
l m

M

lm

sm sm   +        

  

 =      .

∂
∂

∇ ∇ •

∑ ∇• ∑

∑ ∑












≠

ε ρ ε ρ

γ φ φ

Θ Θ

Θ Θ

3
2

r

r r

 71 

Now define a mixture granular temperature 
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and a mixture density 

  73 s
m=1

M
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Therefore, 
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Assume equipartition of granular energy, i.e., 

  75 pm m pl lm   =  m     ,Θ Θ

where mpm is the mass of the particles that constitute solids phase m.  Now, eliminating the mass 
of the particles in favor of density and diameter and summing equation 75 over subscript l yields 
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Then 
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Let an average velocity be given by 
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so that 

  79 
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M
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Then the averaged granular energy equation becomes 
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After Θ is determined by solving equation 80, values of Θm are obtained from  

 The implementation of the detailed granular energy equation described above in MFIX is 
still under development.  The current version of the code uses an algebraic expression for 
granular temperature, Θm, obtained from the energy equation of Lun et al. (1984), by assuming 
that the granular energy is dissipated locally; neglecting the convection and diffusion 
contributions; and retaining only the generation and dissipation terms (Syamlal 1987c).  The 
resulting algebraic granular energy equation is 
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where K4m is given by 
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2.5.1 Diffusive Flux of Granular Energy 
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 The granular energy equation for the mth solids phase, equation 7, contains the term 
describing the diffusive flux of granular energy, rq    

mΘ

 
rq   =  -  k       . 

m
 
m mΘ Θ Θ∇  84 

As in the case of smS  (section 2.2.4), the kinetic contribution in Lun et al. (1984) theory has been 
deleted.  In addition, the term in the collisional contribution to rq that is proportional to 

was neglected.  The diffusion coefficient for granular energy, , is described by 
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where 

 ( )η  =  1
2

   1  +   e     .mm  86 

2.5.2 Granular Energy Dissipation 
 
 The term Θ  

m
γ represents the rate of granular energy dissipation within the mth solids phase 

due to collisions between the particles constituting the continuum.  This term is represented by 
the expression derived by Lun and others (1984), 

 
m 4 m sm m

3
2 =  K          ,2

Θ Θγ ε  87 

where K4m has already been defined in equation 7. 
 
2.5.3 Granular Energy Transfer 
 
 The term φgm accounts for the transfer of granular energy between the fluid phase and the 
solids phase.  Physically, this represents the transfer to the fluid phase of the kinetic energy of 
random fluctuations in particle velocity.  An expression for this transfer is given by Ding and 
Gidaspow (1990): 

 gm gm m =  - 3  F     .φ Θ  88 
The term φlm in the granular energy equation accounts for the transfer of granular energy 
between the mth and lth solids phase continua due to collisions between their respective particles. 
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 This contribution is ignored in this work: 

 lm  =  0    .φ  89 
2.6 Initial and Boundary Conditions 
 
2.6.1 Initial Conditions 
 
 The initial values of all field variables (ε, Pg, Tg, Ts1, Ts2, gvr , svr , Xgn, Xsmn) must be 
specified for the entire computational domain.  However, the initial transients are usually not of 
interest, and the solution is governed by the boundary conditions.  In that case the initial 
conditions need only be accurate enough to allow convergence.  In fluidized beds, for example, 
the solids velocity is usually set to zero, and the gas velocity is given some uniform 
unidirectional value. 
 
2.6.2 Inflow Boundary 
 
 An inflow boundary condition should be specified at a location where uniform flow is 
expected.  All the field variables need to be specified at the boundary.  Two types of inflow 
boundary conditions are possible, constant pressure or constant mass flux.  The constant mass 
flux condition is more commonly used. 
 
2.6.3 Outflow Boundary 
 
 Specified constant pressure is the most common condition for the fluid outflow boundary. 
 MFIX also allows the user to specify constant velocity at outflow boundaries.  This condition 
should be used only when another constant pressure outflow condition has been specified and the 
specified outflow is much less than that expected from the constant pressure outflow boundary. 
 
2.6.4 Impermeable Walls 
 
 At internal or external impermeable walls, the normal velocities are set to zero.  The 
condition for the tangential components is specified either as a no-slip or as a free-slip condition. 
 These boundary conditions are imposed with the help of fictitious boundary cells.  The no-slip 
condition is specified as 

  90 (v
 
g
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g

)    ,fictitious cell cell next to wall

 
so that the velocity at the wall is zero.  The free-slip condition is specified as 

  91 (v
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)    ,fictitious cell cell next to wall
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so that the gradient of the velocity at the wall is zero. 
 
2.6.5 Impermeable and Semipermeable Internal Surfaces 
 
 MFIX allows the user to specify internal surfaces, which are infinitesimally thin walls or 
porous surfaces in the flow domain, exerting no tangential stresses (free-slip).  At an 
impermeable internal surface, the normal gas and solids velocity are set to zero.  At a semi-
permeable internal surface, the solids velocity is given a user-specified fixed value.  The gas 
velocity is allowed to vary, and the flow resistance offered by the porous media is calculated 
from the formula 

 gx
g

1
g 2 g g gf  =  -

C
  u  -  1

2
  C     |u |  u   ,

µ
ρ  92 

using the x-component as an example. 
 
2.6.6 Cyclic Boundaries 
 
 Cyclic boundary conditions are automatically specified for the θ direction in cylindrical 
coordinates.  Rotationally (without pressure drop) or translationally (with pressure drop) cyclic 
boundary conditions may be specified at any of the boundaries. 
 
2.6.7 Wall Heat Transfer 
 
 The wall heat transfer in a fluidized bed can be predicted by using a sufficiently fine grid 
near the walls (Syamlal and Gidaspow 1985).  This approach, however, is too expensive for 
practical computations.  Therefore, the boundary conditions for the energy equations in MFIX 
are set such that the walls are non-conducting, and the term Hwall (Twall-Tg) is provided to account 
for wall heat loss.  Hwall and Twall are user-defined functions of space and time that allow the user 
to specify complex heat loss characteristics. 
 
2.6.8 Boundary Conditions for Granular Energy Equation 
 
 At the present time no boundary condition is required for the granular energy equation 
because the algebraic form of the equation is solved. 
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 3  Summary of Governing Equations and Constitutive Relations 
 
 
 The equations that are solved in the current version of MFIX are summarized in this 
section. 
 
 Gas continuity: 
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 Solids continuity: 
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 Gas momentum balance: 
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 Solids momentum balance: 
 

[ ]

∂
∂

∇ • ∇ ∇ •

∑

∑

t
 ( v )  +    ( v v )  =  -  P  +    S

  

 -  F  (v  -  v )   +   F v v

g  -  R v  + v

sm sm sm sm sm sm sm sm g sm

gm sm g
l=1

M
slm sl sm

sm sm
l=0

M
ml sl ml sm

 (  -  )

  

 +   ml

ε ρ ε ρ ε

ε ρ ξ ξ

r r r

r r r r

r r r

 96 

 
 

 
 
 34



g g pg
g

g g g g s g g s g

wall wall g

C  
T
t

 +  v   T  =  -   q  +  1 (T 1 -  T )  +  2  (T 2  -  T )  -  H

  
 +  H  (T  -  T )

ε ρ γ γ
∂

∂
• ∇







 ∇ •r r

∆ rg

 97 

 Gas energy balance: 
 
 
 Solids - 1 energy balance: 
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 Solids - 2 energy balance: 
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 Gas species balance: 
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 Solids species balance: 
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 Gas-solids drag: 
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 Solids-solids drag: 
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 Gas-phase stress: 
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Note that

gτ
is set to zero in the current version (1.70) of MFIX. 
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 Granular stress: 
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  Plastic regime: 
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  Viscous regime: 
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 Gas-solids heat transfer: 
 

 
( )gm

pg 0m

pg 0m gm
0

 =  
C   R

exp   C  R /   -1
   .γ

γ
 124 

 

 gm
0 g sm m

2
pm

 =  
6  k   Nu

d
   ,γ

ε
 125 

 
 
 

 
 
 38



 
 Granular energy equation: 
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 5  Nomenclature 
 
 
A  - Function of void fraction defined by Eq. 13 
 
b  - Function of void fraction defined by Eq. 51 
 
B  - Function of void fraction defined by Eq. 14 
 
CDs  - Single particle drag function 
 
Cpg  - Specific heat of the fluid phase; J/(kg≅K) 
 
Cflm  - Coefficient of friction for solids phases l and m. 
 
Cpsm  - Specific heat of the mth solids phase; J/(kg≅K) 
 
dpm  - Diameter of the particles constituting the mth solids phase; m 
 
DO2  - Oxygen diffusivity; m2/s 
 

gD   - Rate of strain tensor, fluid phase, Eq. 23; s-1 

 
smD   - Rate of strain tensor, solids phase-m; s-1 

 
elm  - Coefficient of restitution for the collisions of mth and lth solids phases 
 r

gf   - Fluid flow resistance due to porous media; N/m3 
 
Fgm  - Coefficient for the interphase force between the fluid phase and the mth solids 

phase; kg/(m3≅s) 
 
Fslm  - Coefficient for the interphase force between the lth solids phase and the mth 

solids phase; kg/(m3≅s) 
 
rg   - Acceleration due to gravity; m/s2 
 

0  
lm

g   - Radial distribution function at contact 

 
Hg1  - Heat transfer from fluid to solids phase-1; J/(m3≅s) 
 
Hg2  - Heat transfer from fluid to solids phases-2 to M; J/(m3≅s) 
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∆Hrg  - Heat of reaction in the fluid phase; J/(m3≅s) 
 
∆Hrsm  - Heat of reaction in the mth solids phase; J/(m3≅s) 
 
Hwall  - Wall heat transfer coefficient; J/(m3≅K≅s) 
 
I2D  - Second invariant of the deviator of the strain rate tensor for solids phase-1, 

Eq. 37; sΒ2 
 
Igm  - Momentum transfer from fluid phase to mth solids phase; N/m3 
 
Iml  - Momentum transfer from mth to lth solids phases; N/m3 
 
kam  - Ash layer resistance; s/m 
 
kfm  - Film resistance; s/m 
 
kg  - Fluid phase conductivity; J/(m≅K≅s) 
 
kpm  - Conductivity of material that constitutes solids phase-m; J/(m≅K≅s) 
 
krm  - Surface reaction resistance; s/m 
 
ksm  - Solids phase-m conductivity; J/(m≅K≅s) 
 
Θ  

mk   - Granular energy conductivity; J≅s/m3 

 
K1m  - Granular stress constant defined by Eq. 26; kg/m3 
 
K2m  - Granular stress constant defined by Eq. 29; kg/m2 
 
K3m  - Granular stress constant defined by Eq. 30; kg/m2 
 
K4m  - Granular stress constant defined by Eq. 83; kg/m4 
 
l  - Index of the lth solids phase; also used as a miscellaneous index 
 
m  - Index of the mth solids phase.  "m=0" indicates fluid phase 
 
M  - Total number of solids phases 
 
Mw  - Average molecular weight of gas 
 
n  - Index of the nth chemical species 
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Ng  - Total number of fluid phase chemical species 
 
Nsm  - Total number of solids phase-m chemical species 
 
Num  - Nusselt number 
 
Pg  - Pressure in the fluid phase; Pa 
 
pO2  - Partial pressure of oxygen; Pa 
 

sm
pP   - Pressure in Solids phase-m, plastic regime; Pa  

 
sm
vP   - Pressure in Solids phase-m, viscous regime; Pa  

 
P*  - Total solids pressure in plastic regime; Pa 
 
Pr  - Prandtl number, Eq. 45 
 

gqr   - Fluid-phase conductive heat flux; J/(m2≅s) 
 

sq 1
r   - Solids-phase-1 conductive heat flux; J/(m2≅s) 
 

s2qr   - Solids-phase-2 to M conductive heat flux; J/(m2≅s) 
 
rq 

  
mΘ

  - Diffusive flux of granular energy; J/(m2≅s) 

 
rdm  - Ratio of core diameter to particle diameter 
 
R  - Universal gas constant; Pa≅m3/(kmol≅K) 
 
Rem  - mth solids phase particle Reynolds number, Eq. 15 
 
Rkm  - Ratio of solids to fluid conductivity, Eq. 50 
 
Rml  - Rate of transfer of mass from mth phase to lth phase. l or m = 0 indicates fluid 

phase; kg/(m3≅s) 
 
Rgn  - Rate of production of the nth chemical species in the fluid phase; kg/(m3≅s) 
 
Rsmn  - Rate of production of the nth chemical species in the mth solids phase; 

(kg/m3≅s) 
 
Sc  - Schmidt number, Eq. 58 
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gS   - Fluid phase stress tensor; Pa 

 
Shm  - Sherwood number 
 

smS   - Solids phase-m stress tensor; Pa 
 
t  - Time; s 
 
Tg  - Thermodynamic temperature of the fluid phase; K 
 
Ts1  - Thermodynamic temperature of the solids phase no. 1; K 
 
Ts2  - Average thermodynamic temperature of the solids phases, m = 2,...,M; K 
 
Twall  - Wall temperature; K 
 

gvr   - Fluid phase velocity vector; m/s 
 

smvr   - mth solids phase velocity vector; m/s 
 
Vrm  - The ratio of the terminal velocity of a group of particles to that of an isolated 

particle 
 
Xgn  - Mass fraction of the nth chemical species in the fluid phase 
 
Xsmn  - Mass fraction of the nth chemical species in the mth solids phase 
 
GREEK LETTERS 
 
γgm  - Fluid-solids heat transfer coefficient corrected for interphase mass transfer; 

J/(m3≅K≅s) 
 

gm
0γ   - Fluid-solids heat transfer coefficient not corrected for interphase mass transfer; 

J/(m3≅K≅s) 
 
Θ   

m
γ   - Granular energy dissipation due to inelastic collisions; J/m3≅s 

 
εg  - Volume fraction of the fluid phase (void fraction) 
 

g
*ε   - Packed-bed (minimum) void fraction 

 
εsm  - Volume fraction of the mth solids phase 
 

 
 
 51



 
η  - Function of restitution coefficient, Eq. 86 
 
Θm  - Granular temperature of phase-m;  m2/s2 
 
λrm  - Solids conductivity function defined by Eq. 49 
 

sm
vλ   - Second coefficient of solids viscosity, viscous regime; kg/(m≅s) 

 
µg  - Molecular viscosity of the fluid phase; kg/(m≅s) 
 
µ s

p
1   - Solids viscosity, plastic regime; kg/(m≅s) 

 
µ s

v
1   - Solids viscosity, viscous regime; kg/(m�s) 

 
ξml  - ξml = 1 if Rml < 0; else ξml = 0. 
 
ρg  - Microscopic (material) density of the fluid phase; kg/m3 
 
′ρ g   - Macroscopic (effective) density of the fluid phase, Eq.2; kg/m3 

 
ρsm  - Microscopic (material) density of the mth solids phase; kg/m3 
 
′ρ sm   - Macroscopic (bulk) density of the mth solids phase, Eq. 3; kg/m3 

 

gτ   - Fluid phase deviatoric stress tensor; Pa 

 

sm
p

τ   - Solids phase-m deviatoric stress tensor, plastic regime; Pa 
 

sm
v

τ   - Solids phase-m deviatoric stress tensor, viscous regime; Pa 
 
φ  - Angle of internal friction 
 
φgm  - Granular energy transfer to fluid phase; J/(m3≅s) 
 
φlm  - Granular energy transfer between solids phases; J/(m3≅s) 
 
φk  - Contact area fraction in solids conductivity model 
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