

Justin Weber | Aytekin Gel | Charles Tong August 28, 2020 NETL | Alpemi, LLC | LLNL

So many options!

https://github.com/meirwah/awesome-workflow-engines

8/28/2020

What is Nodeworks?

Application and framework for workflows

Why did you make this?

Why did you make this?

U.S. DEPARTMENT OF

Grasshopper

alfähre Brood filter boot a	ate much have be	we ashes	
/ index	type	F velue	
v- Out V- meta	dict MetaArray list dict		U
- units - values - nome	str ndarney str dict	5 [0.0000000e+00 2.50000000e-05 3.00000000e-05, 3.99925000e-01 59995000e-01 5.99925000e-01] Time	PyQtGraph

How is it constructed?

python

Tested operating systems:

- Linux (Centos @ Joule)
- OSX
- Windows

Deploy

- Conda
- Poetry
- Pyinstaller?

How does it work?

Super easy to make your own nodes!

Surrogate modeling and analysis toolset

Optimization Response Surface **Design of Experiments** Model evaluation Sensitivity Construction Forward Propagation Design of Experiments 🔺 🔺 👻 Code **∱ ▲** ~ **Response Surface** A j. General Optimizer ~ ~ it 🔺 Variables Quality Design Plot arguments matrix matrix/response model ± Ŧ + -Options Plot Parallel plot Preprocessing Model Error Plot Data Compare import numpy as np variable unit min max type Plot 3D \sim 2 # Schwefel Model radial basis function $\, \smallsetminus \,$ Plot 3D Variable values. $3 # f(420.9867, \ldots, 420.9867) = 0$ -500 500 0 a Continuous 4 matrix=np.asarray(matrix[1:]) 5 returnOut=418.9829*len(matrix[0, :])-np.s 1 b -500 500 Continuous 1500 g 1750 1500 1000 750 500 250 < > Response 1000 อี variable 500 e Double Precision arg(s) type < > 0 units untitled 1:1 python -400^{200^{0 200}400} -400200 0 200400 200 functionOut link -40<u>0</u>200 0 200₄₀₀ ____200 b returnOut 🖾 to from 🔄 matrix ---->>levels Q 注 🖊 🖺 >Model radial basis function \sim Selected Output DOE Iterable \sim × 🕨 DOE Matrix Response matrix list result 🕨

Design of Experiments

De	Design of Experiments 🛛 🔺 🔺 🗸										
V	ariables	Design	Plot	Qua	ality						
+	_										
	variable	e unit	min	max		typ	e				
1	ug	m/s	0	1	Con	tinuou	s				
2	beta	-	1	100	Con						
3	alpha	-	1	5	Con	Continuous					
\ \	/ariable a	lpha						=			
	type D	ouble Pre	cision ~	ar	rg(s)						
	units -										
	link N	lone						\sim			
	from 1			to	5						
	levels 2										
	Sele	ected Outp	out DOE	Iterable				~ ►			
	DOE Matrix 🕨										

Factorial Covary Montecarlo Latin hypercube Central composite Sobol Hammersly Halton

NATIONAL ENERGY TECHNOLOGY LABORATORY

From within the MFiX GUI

Search/replace text

Generic M	lodel Creator 🔺 🔺 🗸								
DOE Matrix									
Source directory works_projects/calibration									
File extensions to copy	 ✓ .csv ∧ ∴dat ✓ .nc .png 								
File extensions to replace	□ .csv ^ ✓ .dat □ .nc ↓ □ .png ✓								
Replace pattern	\${variable} ~								
Export directo	Export directory eworks_projects/calibration Directory prefix sim								
Delete direc	ctories Create directories								
	directories								

Custom python script

Code		~ k 🛦
arguments matrix		
± Ŧ		
<pre>1 import numpy as ny 2 # Schwefel 3 # f(420.9867,, 4 matrix=np.asarray 5 returnOut=418.9829</pre>	420.9867) = 0 (matrix[1:]) 9*len(matrix[0,	:])-np.s
<		>
untitled	1:1	python
matrix		functionOut <a> returnOut
		::

NATIONAL ENERGY TECHNOLOGY LABORATORY

From within the MFiX GUI

Queue submission

C	late_	.oad temp	L				
		Script	nands	Comr	Options	Jobs	
		Path		Status	Queue	Job ID	
	oer/ cts/	me/3/jweb orks_projec orks_ex6/ 0000	Done	general	617894		
	oer/ cts/	me/3/jweb orks_projec orks_ex6/ 0001	/.nfs/ho nodewo nodewo my 000	Done	general	617895	
	er/ ts/	me/3/jweb orks_projec orks_ex6/ 0002	/.nfs/ho nodewo nodewo my_000	Done	general	617896	
1.75	orl.	ma/2/iwah	/ nfc/ho	1.200			

Custom python script

Code				je 🖌	~
arguments	matrix				
±∓					
1 import 2 # Schwe	numpy as n efel	p	0		
4 matrix=	np.asarray	(matrix[1:])	0	. 1.)	
5 return(Out=418.982	9*len(matrıx)	0,	:])-n	ıp.sı
<					>
untitled		1	:1	P	/thon
			fu	unction	Dut 돈
matrix				return(Dut 🕨
maultx					

Response Surface

Neural Net Regressor

NATIONAL ENERGY TECHNOLOGY LABORATORY

O PyTorch

Optimization

NATIONAL ENERGY

TECHNOLOGY LABORATORY

Differential evolution Basin hopping SHGO - simplicial homology global optimization Dual annealing

Schwefel function

f(420.99, 420.99) = 0

Se	Sensitivity Analysis 🛛 🔺 🖈 🗸												
► n	nodel												
O	ptions	ons Plot Total First Order Second Order											
Met	thod	d sobol analysis 🗸 🗸											
Sar	mples	1000											
Cor	nfidence	0.95			▲ ▼								
Res	samples	10			▲ ▼								
		From	То										
а	-3.14		3.14										
b	-3.14		3.13										
с	-3.14		3.13										
	Calculate Sensitivities												

Sobol

Method of Morris

Fourier amplitude sensitivity test

Delta moment-independent measure

Random balance designs Fourier applicated sensitivity test

Forward Propagation

Forward	Propagation			je 🔺	~	Forward Propagation	~ je 🔺	For	ward Propagation	~ †e ▲
model						model		► mo	del	
Options	Bounds Probability Box					Options Bounds Probability Box		Opti	ons Bounds Probability Box	
Aleator	y samples 1000	Samples of	outside range re-dra	w	\sim	The probability that the value will be 4 or less		1.0 ·		
Epistem	ic samples 100	Epist	temic Method latin hy	ypercube	\sim	is between 87.4 % and 93	%			
typ	e distribution	from	to		m(^	Draw on probability box		0.8 -		
a aleatory	normal	-3.14	3.14	0	_	Given the prescribed input uncertainties with 95 % probability,				
b aleatory	normal	-3.14	3.14	0	\sim	the quantity of interest will be between 4.51 and 5.77		, 0.6		
<					>	Draw on probability box				
/ariable Type		aleatory			\sim					
istribution	normal				\sim	Export bounds to file		0.4		
/lean	0.0									
Standard Devia	tion 0.8							0.2 ·	. //	
100 -]							
50 -								0.0	-2 0 2 4 6	8
٥L		-						Â	← → 中 Q 幸 ⋈ 🖹	
	(Calculate Propagation				Calculate Propagation			Calculate Propagation	
								_		

Integration with PSUADE UQ Toolkit from LLNL

Wizard for Quick Setup of Workflow Templates

NATIONAL ENERGY TECHNOLOGY LABORATORY

De	esian of	Experir	nents	je 🛦	~		Code		~ <u>†</u> ▲									
Node wizard											?	×	1					
Sensitivity Analys	is	For	ward	Prop	agati	on	Optimizatio	n										
Function to be opti	mizeo	ł					sphere					\sim						
Number of dimens	ions						2					-						
Method							surrogate					\sim						
Use feedback loop														✓ Å Å	·			
														~				
														50 40 esu 30 od				
														20 SP 10 P				
									Populat	e Nodes	Ca	incel] -	2 ⁰ ² ⁴ b				
			_		_								[8				
							Re	sponse matrix I	list	× 1				result				
	-	-		0			-											
•	• 0	-	>	1			8									^	🗢 📮 🖟 🕬)	1

Feedback

Loops

Other nodes

NATIONAL ENERGY

Examples

Example 1 | Cyclone Optimization

NATIONAL ENERGY

Example 1 | Run the models!

- All models ran simultaneously
- Took 21 minutes to 7 hours per model
- Cell count varied from 40,320 to 169,764
- Three models failed (6%), due to bad mesh

Example 1 | Workflow

Example 1 | Optimization

Using differential evolution

- 11 times lower pressure drop
- 2.3 times lower mass loss

Variable	Original (m)	Optimal (m)
r _{barrel}	0.06	0.096
r _{vortex}	0.015	0.026
h _{vortex}	0.4	0.373
h _{inlet}	0.08	0.12
w _{inlet}	0.02	0.015

Edge of design space

Example 2 | Hopper Discharge Calibration

- Problem: Discharge of granular materials from a hopper.
- Frequently encountered setup in industrial settings.
- Typically design is based on empirical correlations, which doesn't necessarily always provide robust and efficient designs.
- Accurate modeling & simulation of granular material through Discrete Element Method (DEM) is critical for credible models.
- Use Nodeworks to perform model calibration (deterministic) for four modeling parameters in MFIX-DEM:

Example visualization of hopper discharge modeled with MFIX-DEM

Source: Chen, Adep, Emady, Jiao, and Gel, "Enhancing the physical modeling capability of open-source MFIX-DEM Software for handling particle size polydispersity: Implementation and Validation" Powder Technology, 317 (2017) 117–125 doi: <u>http://dx.doi.org/10.1016/j.powtec.2017.04.055</u>

Example 2 | Hopper Discharge Calibration (cont'd)

imports experimental data and evaluates the response surface at each set of model/experimental parameters, calculating a

Deterministic Calibration

Example 2 | Hopper Discharge Calibration (cont'd)

Example 3 | Discrete Element Method Mixing UQ

Quantify mixing as the rate of decay of the **A**like **N**eighbor **F**raction (ANF)

Source: Fullmer, W. D.; Dahl, S.; Weber, J. Surrogate Modeling Approach to Uncertainty Quantification for a DEM Model of a Rotating Cubic Tumbler; NETL-TRS-5-2019; NETL Technical Report Series; U.S. Department of Energy, National Energy Technology Laboratory: Morgantown, WV, 2019, p 24. DOI: 10.18141/1514272.

ANF = fraction of particles within $2.5r_p$ -radius of a given particle with the same color (averaged over all particles)

Example 3 | $DOE \rightarrow Simulations \rightarrow Surrogate$

NATIONAL

Example 3 | Forward Propagation

Hybrid/nested sampling approach of Roy & Obekampf 10 epistemic samples, each with 100 aleatory samples

Example 4 | Stochastic Source Inversion (use case @LLNL)

- Simulation: linear elasticity in 2D
- Uncertain inputs: shear and Young's modulus (location-dependent: dimension=4050)
- Scenario: Given an observation strain tensor, recover the shear and Young's modulus
- Method: KPCA for dimension reduction + MCMC for inference

Lawrence L

National Laboratory

Example 4 | Stochastic Source Inversion

Lawrence Livermore National Laboratory

- Better support for feedback loops
- Add more nodes for machine learning workflows
- Build a node creator
- Look into better dispatch tools
 - Cloud/local/HPC
- Better integration with other UQ tools
- Export workflows
- Automatic report generation

Terminals

+ -

data result

Widget

Type Value

Min

Buttons Items

Proccess method

= 🖬 🗀 Ⅱ 🕨 ■ 🚅 👙 Հ ⊡ Ӳ 🕅 ⑳ 🙆

Untitled* × +

Thanks!

Website mfix.netl.doe.gov/nodeworks/

Questions?

- 🗆 X

This work was funded by the Department of Energy, National Energy Technology Laboratory, an agency of the United States Government, through a support contract with Leidos Research Support Team (LRST). Neither the United States Government nor any agency thereof, nor any of their employees, nor LRST, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

