Fast CFD Based Optimization of Coal Moving Bed Gasifier

Jia Yu, Liqiang Lu, Mehrdad Shahnam, William A. Rogers National Energy Technology Laboratory, Morgantown, West Virginia 26507, United States

Coal/biomass gasifier simulation

Pilot scale gasifier at Sotacarbo, Italy

NERGY

Challenges

- Experiment takes several hours to reach steady state
- 3D CFD simulation can only simulate about several seconds to several minutes

Strategies

- Long time (several hours) 1D simulation to provide initial condition for 3D simulation
- Coarse grained DEM simulate to speed up 3d simulation and optimization

1-D: DEM3-D: coarse-grained DEM

Coarse Grained DEM

Moving Bed Gasifier Experiment^[1]

- Coal: 24kg/h, Usibelli, 1300kg/m³
- Air+H2O=57.6+3.7 at 250 Celcius
- 140Kpa, coal diameter 5mm-15mm, isolated wall, thermocouple close to center.
- Data for model validation:
- a. Syngas compositions (mole fraction, dry basis)
- b. Bed temperature profile

Proximate Analysis		Ultimate Analy	vsis (by weight)
Fixed Carbon	31.34	С	48.56
Moisture	17.64	Н	5.96
Volatiles	41	N	0.50
Ash	10.02	S	0.18
		0	17.14
Bulk Density (kg/m ³)	800	Moisture+Ash	17.64+10.02

[1] C Frau, F Ferrara, A Orsini, A Perrinau. Characterization of several kinds of coal and biomass for pyrolysis and gasification. Fuel, 2014

SOTACARBO SUSTAINABLE ENERGY RESEARCH CENTRE

Particle diameter shrinkage model

Constant density for fuel particles:

The diameter of the biomass particles is: $d_p = (\frac{6m_p}{\pi \rho})^{1/3}$

Kinetics

ſ	coal	Π				
		Categories @	Reactions &			
gas outlet		gas outlet		Forward reaction.	Backward reaction.	÷
<u> </u>			Drying 🖓	Moisture(coal) \rightarrow H ₂ O(gas) \sim		
drying zone pyrolysis zone		Pyrolysis 🗸	Volatiles → $0.6088CO + 0.3962CH_4 + 2.2469H_2 + 0.4665H_2O + 0.093tar + 0.1932CO_2 + 0.093tar + $			
		Gasification @	$Char+H_2O \rightarrow CO+H_2 e^2$	$CO + H_2 \rightarrow Char + H_2O_{e^2}$	÷	
			$Char+CO_2 \rightarrow 2CO^{\circ}$	$2CO \rightarrow Char + CO_2 C$	÷	
				$\text{Char} + 2\text{H}_2 \rightarrow \text{CH}_4 \text{P}$	$CH_4 \rightarrow Char + 2H_2 +$	÷
gas inlet combustion zone gas inlet			$\text{Char} + \text{O}_2 \rightarrow \text{CO}_2^{+2}$		÷	
	Gas phase	$CO+\frac{1}{2}O_2 \rightarrow CO_2^{\circ}$		÷		
	reactions @	$H_2 + \frac{1}{2}O_2 \rightarrow H_2O^{-\varphi}$		÷		
			$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O^{+2}$		÷	
			$CO+H_2O \rightarrow CO_2+H_2$		÷	
				$CO_2 + H_2 \rightarrow C$	C0 + H ₂ 0 ^J	÷

1D-4 hour simulation to steady state

U.S. DEPARTMENT OF

Solid phase mapping:

1. Solid compositions

3-D CGDEM 10min simulation

3D-CGDEM simulation results at steady state

ENERGY INSTANT STREET AND SCIENCE

Optimization Gas Products: IGCC or F-T

Integrated gasification combined cycle or the Fischer–Tropsch process

Ref: H Ghezel-Ayagh, Stephen Jolly, Dilip Patel, and David Stauffer. Solid Oxide Fuel Cell System Utilizing Syngas from Coal Gasifiers. Process Engineering of Energy Systems. dx.doi.org/10.1021/ie300841m | Ind. Eng. Chem. Res. 2013, 52, 3112–3120

Optimization Cases

Major parameters:

ER =

actual air/fuel ratio air $\frac{dH}{fuel}$ ratio for stoichiometric combustion 0.6 0.5 0.4 <u>с</u> 0.3 0.2 0.1 0 0.05 0.2 0 0.1 0.15 0.25 S/B

S/B=Water/Biomass mass ratio

Optimization For IGCC

For IGCC: the goal is to use the conserved energy, we search for the maximum heating value

LHV(MJ/m³)=CO×12.636+H2×10.798+CH4×35.818+C2H4×59.036+C2H6×63.772 Total LHV(kwh)=LHV(MJ/m³) ×Flowrate (m³/s)*1000(MJ/kJ)

Optimization for F-T

Fischer-Tropsch process:

$$(2n+1)$$
 H₂ + n CO \rightarrow C_n H_(2n+2) + n H₂C

We search for H₂/CO at 2.0

Scaleup to 1MW - Demonstration

Acknowledgement-MFS Group

Multiphase Flow with Interphase eXchanges

NETL Multiphase Flow Science

Acknowledgement

Dr. Jia Yu (jia.yu@netl.doe.gov)

