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EXECUTIVE SUMMARY 
This report studies the forward propagation of input uncertainty on a discrete element method 
(DEM) model of a square, granular rotating tumbler. The National Energy Technology 
Laboratory’s (NETL) Multiphase Flow with Interphase eXchanges (MFiX) computational fluid 
dynamics (CFD) code is used for numerical solution. Comparisons are made to the original work 
of Dahl et al. (2019) who used direct propagation, i.e., the full MFiX-DEM model itself is used 
directly for forward propagation. Here, the forward propagation is performed on a surrogate 
model which was constructed with another open source NETL software, the Nodeworks 
graphical programming library.  
In this report, Nodeworks’ Surrogate Modeling and Analysis nodes were used to:  

• Devise and assess a seven-dimensional (7D) input parameter, space-filling optimal Latin 
Hypercube (LH) Design of Experiments (DOE)  

• Create and optimize a Gaussian process (GP) surrogate model by minimizing cross-
validation error 

• Compute probability boxes (p-box) describing the uncertainty in the system response 
quantity of interest (SRQoI) for the prescribed model input uncertainties 

• Performed a global sensitivity analysis by reporting first and second order Sobol’ indices 

The primary conclusions drawn from this work include:  

• P-boxes computed from the surrogate model are in good qualitative agreement with the 
p-box evaluated directly from the full model by Dahl et al. (2019). (Note that quantitative 
comparison is complicated due to the stochastic nature of the sampling.) 

• It is simple and computationally efficient to increase the number of samples and observe 
statistical convergence of the p-box.  

• A global sensitivity analysis of the surrogate model by first- and second-order Sobol’ 
indices computed from 100,000 samples is in good agreement (order of importance) with 
the local sensitivity analysis originally performed on the full model (Dahl et al., 2019).  
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1. INTRODUCTION 
Uncertainty quantification (UQ), part of the broader field of verification and validation (V&V or 
VVUQ) in computational science and engineering, focuses on determining the accuracy of 
numerical predictions (Roache, 1998; Oberkampf and Roy, 2008). While VVUQ practices have 
been adopted in many single-phase flow computational fluid dynamics (CFD) communities, e.g., 
aerospace and automotive industries, they have been lagging in multiphase flow CFD 
communities, namely in particle technology and fluidization. However, some foundational 
VVUQ work with multiphase gas-solids particulate flow models have been spearheaded by the 
National Energy Technology Laboratory (NETL) (Gel et al., 2013a, 2013b; Gel et al., 2014; 
Choudhary et al., 2016; Gel et al., 2016; Shahnam et al., 2016; Gel  et al., 2017; Syamlal et al., 
2017; Bakshi et al., 2018; Fullmer and Musser, 2018; Gel et al., 2018).  
The lag in adopting VVUQ practices is largely due to the increased complexity of multiphase 
flows compared to traditional single-phase flows. The increased complexity of multiphase flow 
phenomena requires more complex models for their prediction leading to an increased number of 
uncertain model parameters. These models are often more computationally expensive, which 
places a greater restriction on the number of simulations which may be carried out. A recent 
work by Dahl et al. (2019) studied methods to reduce the computational overhead associated 
with forward propagation of input uncertainties in a discrete element method (DEM) model of a 
rotating tumbler. Specifically, Dahl et al. (2019) considered: 1) full model evaluation requiring 
1,000 simulations; 2) using a local sensitivity analysis to determine and eliminate unimportant 
input parameters; and 3) using a local sensitivity analysis to estimate the two most extreme cases.  
Another approach to reducing computational overhead associated with VVUQ and optimization 
studies is by the design and construction of a data fitted surrogate, i.e., a response surface model 
(RSM). The graphical programming library Nodeworks, recently developed at and released by 
NETL, contains a specialized set of tools, called nodes, to reduce the entry barrier to surrogate 
modeling and analysis. The toolset was specifically designed for (although not limited to) 
simulations using Multiphase Flow with Interphase eXchanges (MFiX), NETL’s open source, 
multiphase computational fluid dynamics (CFD) code. This work uses the surrogate modeling 
and analysis nodes within Nodeworks to: 1) create a statistical design of experiments (DOE); 2) 
construct a data fitted surrogate model; 3) perform a global sensitivity analysis; and 4) forward 
propagate input uncertainties to output uncertainty for the square tumbler case of Dahl et al. 
(2019).  
The remainder of this work is outlined as follows. In Section 2, the MFiX-DEM numerical 
method is briefly overviewed. A baseline model without uncertainties is defined and simulated in 
Section 3 and analyzed to identify a suitable quantity of interest. The model is then simulated at 
many conditions specified by a statistical DOE which is used to construct a CFD-data-fitted 
surrogate model in Section 4. The surrogate model is then used for input uncertainty forward 
propagation and a global sensitivity analysis in Sections 5 and 6, respectively. The report closes 
with an overview of the principal conclusions in Section 7.   
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2. MODEL 
This work utilizes a pure DEM model of granular flow in which the interstitial gas-phase is 
neglected. The position, velocity and angular momentum of each particle is calculated via 
Newton’s laws of motion:  
 

 𝑑𝑑𝑿𝑿𝑖𝑖
𝑑𝑑𝑑𝑑

= 𝑽𝑽𝑖𝑖 ,  (1) 

 

𝑚𝑚𝑖𝑖
𝑑𝑑𝑽𝑽𝑖𝑖
𝑑𝑑𝑑𝑑

= 𝑚𝑚𝒈𝒈 + �𝑭𝑭𝑗𝑗𝑗𝑗

𝑁𝑁𝑖𝑖
(𝑐𝑐)

𝑗𝑗=1

 , (2) 

and  

 

𝐼𝐼𝑖𝑖
𝑑𝑑𝝎𝝎𝑖𝑖

𝑑𝑑𝑑𝑑
= �𝑻𝑻𝑗𝑗𝑗𝑗

𝑁𝑁𝑖𝑖
(𝑐𝑐)

𝑗𝑗=1

 ,  (3) 

where Xi, Vi, and ωi are the position, translational velocity, and angular velocity of the ith 
particle, respectively. All cases considered in this work are monodisperse so that the particle 
diameter, dp, and density, ρp, are constants in a given simulation, though the values will change 
from simulation to simulation in the UQ study. Consequently, the particle mass, mi = m = 
π ρp(dp)3/6, and moment of inertia Ii = I = m(dp)2/10, are also constants. Gravity, g, is the only 
body force acting on the system. The gravity vector is defined as,  

 
𝑔𝑔𝑥𝑥 = −|𝒈𝒈| sin

2𝜋𝜋𝜋𝜋′
𝑇𝑇

,    𝑔𝑔𝑦𝑦 = −|𝒈𝒈| cos
2𝜋𝜋𝜋𝜋′
𝑇𝑇

,    𝑔𝑔𝑧𝑧 = 0 ,  (4) 

where |g| = 980.665 cm/s2, t’ = max(t – tsettle, 0), and T = 1/f is the period of rotation. The 
sinusoidal body force mimics the granular dynamics of a rotating tumbler without requiring 
moving boundaries (which is not fully supported in MFiX at this time). However, it should be 
noted that this setup is not entirely physically consistent with an actual (moving wall) tumbler. 
The simulation time t’ is delayed by a constant offset which allows a prescribed uniform, random 
particle configuration to settle into random packed state at the bottom of the tumbler before 
rotation begins. The initial settling delay is set at tsettle = 1 s for all simulations.  
The two remaining variables yet to be specified in Equations (1)–(3) are the forces, Fji, and 
torques, Tji, acting on the ith particle due to the jth neighboring particle or wall in contact with the 
ith particle, where Ni

(c) is the number of particles and walls contacting the ith particle which may 
be zero. MFiX-DEM uses the so-called “soft-sphere” approach to DEM (Pöschel and Schwager, 
2005), where collisions are resolved in time which cause particles to “deform” (mathematically), 
imparting forces and torques on one another. The linear-spring dashpot (LSD) model of Cundall 
and Strack (1979) is applied here. Details of the LSD model as implemented in MFiX can be 
found in Garg et al. (2012a, 2012b).  
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3. BASELINE CONDITION 
The DEM model described previously is now used to simulate the self-diffusion of a 
monodisperse granular “mixture” in a rotating, square tumbler. A few system parameters are 
assumed to be known exactly. Namely, the size of tumbler, Lx = Ly = Lz = L = 8.942 cm, and the 
mass of the particles in the tumbler, M = 518.1 g, are assumed to have no associated 
uncertainties. Additionally, the normal spring stiffness, kn = 106 dyne/cm, an LSD model 
parameter, is assumed to be sufficiently large that the results of all simulations are insensitive to 
further increases in its value.  
The remaining model parameters are all considered uncertain input variables: f (or equivalently 
T), dp, ρp, the particle-particle restitution coefficient epp, the particle-wall restitution coefficient, 
epw, the particle-particle friction coefficient µpp, and the particle-wall friction coefficient µpw. The 
distribution ranges and distributions of these input parameters will be discussed further in 
Sections 4 and 5 , respectively. Here, the base values (typically the median or mean) for the 
seven uncertain parameters are applied which make up the baseline condition: f = 30 rpm (= 0.5 
Hz), dp= 0.310134 cm, ρp = 2.513 g/cm3, epp = 0.969565, epw, = 0.954934, µpp = 0.273370, and 
µpw = 0.251369. It should be noted that this exercise is a hypothetical problem—there is no 
(known) existing tumbler in this configuration with associated experimental data. The particle 
properties, however, are real and the characterization of all uncertainties, except f, were 
measured in the laboratory (Dahl et al., 2019).  
At baseline conditions, the number of particles in the system are Np = M/m = 13,200 and the 
solids concentration of the system is approximately φ = M/ρpL3 ≈ 0.29. The solids concentration 
is slightly too high to generate the initial particle configuration in a random array. Therefore, the 
particles are initialized in a uniformly spaced primitive cubic lattice with a slight gap between 
each particle and a small, thermal velocity. The particles reorganize slightly from the initial 
thermal speed and collapse into a static, packed bed during the 1 s settling time before rotation 
begins.  
The system response quantity of interest (SRQoI) in this case is the rate of self-diffusion or 
mixing of the particles amongst themselves. There are several ways in which the self-diffusion 
coefficient can be calculated (Garzó and Montanero, 2004). Here, the straightforward approach 
of Dahl et al. (2019) is followed in which the first half of the seeded particles are “colored” by 
one value (e.g. 1) and the second half are colored by another value (e.g. 2) as shown graphically 
in Figure 1. Then, the number of nearby particles Ni

(nearby), defined as particles with centroids 
separated by no more than 2.5 radii, surrounding the ith particle are isolated. If Ni

(nearby) ≥ 4, the 
fraction of Ni

(nearby) which have the same color as the ith particle itself is taken as the alike 
neighbor fraction (ANF) for the ith particle. This procedure is repeated for all particles with at 
least four nearby neighbors and averaged into a global ANF.  
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Figure 1: State of the baseline tumbler after (approximately) 1/2 (left), 3/2 (center) and 5/2 

(right) rotations.  

 
Initially the ANF is near 1 (not 1 exactly due to the interface), meaning that almost all particles 
are surrounded by particles of the same color. After the settling period (tsettle), rotation begins and 
the particles begin mixing. As the particles mix, the ANF decreases in value, eventually 
approaching the fully mixed state where ANF ~ 0.5. The self-diffusion process is shown 
qualitatively in Figure 1. The mixing rate can be quantified by calculating the slope of the ANF. 
Specifically, between approximately one half and two and a half “turns” of the tumbler, the ANF 
decays linearly on average which can be readily fit with a first-order regression, as shown in 
Figure 2. The magnitude of slope of this linear fit is taken as the mixing rate, which, for a single 
realization of the baseline condition, is approximately 0.129. This value is in good agreement 
with the original study (Dahl et al., 2019) which considered three replicates of the base case 
(three different stochastic realizations of the same initial configuration) finding baseline mixing 
rates of 0.129, 0.129, and 0.128.  
 

 
Figure 2: Decay of the ANF from 1/2 to 5/2 “turns” (i.e. rotations of the gravity vector) with 

the linear regression superimposed.  

 



Surrogate Modeling Approach to Uncertainty Quantification for a DEM Model of a Rotating Cubic Tumbler 

6 

4. SURROGATE MODELING  

4.1 DESIGN OF EXPERIMENTS 
The first step in constructing a data-fitted surrogate model is to collect the data, in this case by 
running DEM simulations, at carefully selected sample locations within the parameter space. 
This sampling is often referred to as a (statistical) design of experiments (DOE). Here, the DOE 
state-space is defined by the seven uncertain input parameters: x1 = f, x2 = dp, x3 = ρp, x4 = epp, x5 
= epw, x6 = µpp, and x7 = µpw. The max and min of the seven parameters used in the DOE is 
provided in Table 1. The input parameter ranges are selected to extend over the smallest and 
largest measured value of each parameter by 10% on each side so that when the surrogate model 
is constructed, the model accurately captures the “edges” of the measured values. Two 
exceptions to the extended DOE coverage are the restitution coefficients; both upper limits are 
set at 0.9999 so as to not exceed the physically realistic upper limit of one.  
 

Table 1: Input Parameter Ranges for DOE 

DEM Model 
Parameter Units 

DOE Input 
Variable Min Max 

f (rpm) x1 28.8 31.2 

dp (cm) x2 0.26 0.35 

ρp (g/cm3) x3 2.22 2.92 

epp - x4 0.92 0.9999 

epw - x5 0.58 0.9999 

µpp - x6 0.1 0.45 

µpw - x7 0.02 0.42 

 
Nodeworks’ Design of Experiments node from the Surrogate Modeling and Analysis node 
collection is used to create the DOE. The selected sampling method is Latin Hypercube (LH). An 
initially randomized LH sample is optimized to maximize the design’s space filling property by 
swapping variable values between samples. The seed for the initial LH is 6212624. The DOE 
node’s genetic algorithm is used for optimization with 100 iterations. Following a 
recommendation of Oberkampf and Roy (2010) for the number of required samples for LH 
designs: 73+2 = 345 samples are generated. The resulting lower triangular scatter plot matrix of 
the genetically optimized LH samples shown in Figure 3.  
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Figure 3: Lower triangular scatter plot matrix of the input parameter DOE. 

 
After construction of the DOE, a simulation campaign is carried out. The DEM model input 
variable information contained in the 345 samples is transformed into 345 distinct simulations. It 
is worth noting that since the uncertain input parameters are related to the particles themselves 
(and the particle initial state is provided as an input, namely through a particle_input.dat 
file), the sample information is propagated to several streams. First, the particle diameter, density 
and number of particles (computed for each sample) are entered into a small Pgen.in file. Next, 
a particle generator, here a small standalone FORTRAN code, is executed which takes Pgen.in 
as input and creates a sample-specific particle_input.dat file, which is the MFiX code input 
file describing the initial particle configuration. Secondly, all seven values are entered in a 
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sample-specific mfix.dat file. Then, the 345 MFiX simulations are launched. Each simulation 
is carried out for t’ = 7 s, i.e., 6 s of tumbler rotation time, sufficient to extend 2.5 rotations for 
all conditions. All simulations were run on NETL’s Joule2 supercomputer in serial on the shared 
queue. Wall clock times took between 1.7 and 11.2 hours. Once all simulations are completed, 
the resulting output data files are post-processed using the same1 MATLAB script as in the 
original study by Dahl et al. (2019). Only one SRQoI is considered: y1 = mixing rate, the 
magnitude of the slope in the ANF decay calculated from a linear regression between 0.5 to 2.5 
rotations, as shown in Figure 2. The SRQoI is computed for all 345 simulations which is 
agglomerated in Figure 4. When isolated to the effects of single inputs on the SRQoI, only x3 in 
Figure 4 appears to show a strong dependence. A sensitivity analysis may be able to pare down 
the seven input parameters (see Section 6), however, since all seven have been included in the 
original DOE, there is little increased computational effort in including all parameters in the 
surrogate model, constructed next in Section 4.2. 
 

  
Figure 4. Scatter plot of the SRQoI, y1, versus the seven inputs x1 – x5.  

 
 

                                                 
 

1 To minimize post-processing computational time, the original script was streamlined by 
removing all calculations not related to the ANF and restricting calculation of the ANF to the 
time period between 0.5 and 2.5 rotations used for extrapolation.  
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4.2 CROSS-VALIDATION 
The DOE input, x1 – x5, and processed response, y1, are imported into the Nodeworks’ Response 
Surface Model (RSM) node for construction of a DEM-data-fitted surrogate model. Although 
there are several surrogate modeling options available in the RSM node, focus is limited here to 
the Gaussian Process (GP) model with the 1*RBF kernel, made available via the scikit-learn 
toolkit (Scikit-learn, 2019; Pedregosa et al., 2011). This GP model has been found to be reliable 
and robust in recent surrogate modeling studies of CFD-data also using Nodeworks (Xu et al., 
2019; Weber et al., 2019). The GP automatically fits a variety of hyper-parameters by using the 
fmin_l_bfgs_b optimizer with ten restarts. The only remaining tuning variable is alpha, a 
noise parameter added to the diagonal of the kernel matrix. The value of alpha essentially 
determines how tight the surrogate fits to the data.  
In this tumbler case, some sensitivity in the SRQoI, y1, to the initial particle randomization is 
known to exist (Dahl et al., 2019). There are several ways to deal with this dependence, here the 
simplest option is taken: it is assumed that the response contains inherent noise because each y1 
only represents a single sample from a distribution of possible results (resulting from the 
stochastic initial condition). In other words, the values of y1 themselves contain some unknown 
amount of uncertainty which is assumed to be properly accounted for when the GP noise level, 
alpha, minimizes the error of the surrogate. The error in the surrogate model is assessed by 
cross-validation, i.e., some data is held out from the fitting and then used to assess the 
discrepancy in the surrogate at the withheld locations. Otherwise, the “error” is minimized when 
alpha = 0 and the regression becomes a pure interpolator. However, such an error would not 
assess the accuracy of the model when interrogated at points which are not exactly one of the 
345 DOE sample points.  

A cross-validation study to determine the optimal alpha is conducted with a 20% holdout. The 
samples being withheld are randomized. Therefore, each test is repeated 20 times to compute 
95% confidence intervals. Figure 5 shows the change in the cross-validation error with alpha. 
The error in Figure 5 is assessed as an L2-norm,  

 
L2−norm = �

∑ [𝑓𝑓(𝒙𝒙𝑖𝑖) − 𝑦𝑦𝑖𝑖]2𝑁𝑁
𝑖𝑖=1

∑ 𝑦𝑦𝑖𝑖2𝑁𝑁
𝑖𝑖=1

 ,  (5) 

where f(xi) corresponds to the GP model evaluation at the input variable vector corresponding to 
output yi, and N is the subset corresponding to the 20% holdout points (of the full 345 samples). 
At low values of alpha, the GP model asymptotes to the noise level observed of a pure 
interpolator when the GP guarantees that f(xi) = yi. However, exact evaluation only holds for the 
80% of the samples used to construct the surrogate. The 20% holdout points experience an (L2-
norm) error of approximately 10%. Over a relatively narrow range, alpha ≈ 10-6 to 10-2, the 
error is reduced when the surrogate model noise (roughly) matches the noise inherent in the y1. 
The optimal value for alpha is approximately 10-4, which is selected for the remainder for this 
study. Above alpha ≈ 10-2, the GP quickly becomes overwhelmed by noise and saturates to zero 
causing the error to approach unity. It is briefly noted that the optimal value of alpha ≈ 10-4 is 
somewhat larger than found in similar, previous studies (Xu et al., 2019; Weber et al., 2019), 
which is perhaps a consequence of the non-negligible impact of the stochastic initial condition on 
the SRQoI.  
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Figure 5: Cross-validation error analysis of the GP surrogate model as a function of the 

noise parameter.  

 

4.3 FINAL MODEL  
With the determined optimal value of alpha ≈ 10-4, cross-validation is deactivated, i.e., 0% 
holdout and the GP model is refit to all 345 points. The parity and error plots of the final GP 
surrogate model are provided in Figure 6. The mean square error of the fit is 5.6×10-6. The R-
squared value of the regression is 0.98. The L1, L2, and L∞ error norms are 1.4%, 1.9%, and 
5.8%, respectively. The GP model is visualized in a reduced three-dimensional (3D) space in 
Figure 7. Note the remaining parameters, x1, x2, x4 – x6, are fixed at their mean values in Figure 7.  

 
Figure 6: Parity (left) and error (right) plots of GP surrogate model compared to full model 

(MFiX-DEM) evaluation without holdout.  
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Figure 7: Selected GP surrogate model visualized in x3-x7 space. 
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5. FORWARD PROPAGATION 
Having constructed a well-fit surrogate, the primary UQ objective of this study can be carried 
out: quantifying how model input uncertainty translates to uncertainty in the model output, here 
the y1 SRQoI specifically. In the VVUQ framework, this study is often called forward 
propagation. Like Dahl et al. (2019), the comprehensive VVUQ framework of Roy and 
Oberkampf (2011) is followed. The first (UQ) step is identifying and characterizing all input 
uncertainties—with specific emphasis on differentiating aleatory uncertainties (characterized by 
a likelihood distribution) from epistemic uncertainties (characterized by a uniform interval).  
While the uncertainties were identified prior to DOE sampling, they were only characterized 
based on the range of their measured values. Here, construction of probability distributions for 
aleatory uncertainties are necessary for sampling. Five of the seven input parameters with 
experimental measurements are the particle diameter and restitution and friction coefficients, x2, 
x4 – x7. The measured values are used with MATLAB’s kernel density estimator (KDE). The 
input space of each distribution is taken to be the same width as that used in the DOE, i.e., 
extending the measured data by 10% except for physical limits of 0 ≤ x4-x7 ≤ 1. While this results 
in some non-negligible probabilities at the boundaries of the distributions, it ensures that the 
surrogate model will be sampled within its support region. Each range is then sampled by 1,000 
equally spaced points for KDE. The resulting estimated distributions are provided in Figure 8 
compared to the underlying data (circles) used for KDE.  
The two remaining input parameters, x1 and x3, are considered epistemic. Because this is not a 
physical experiment, the rotation rate is not a measurable value and is taken to have an interval 
of 28–31 rpm. The particle density is a measurable quantity, however, taking single particle 
density measurements is challenging. Hence, batch (many particle) measurements for particle 
density are often reported, such is the case here. Therefore, x7 is taken as an epistemic 
uncertainty with a range of 2.2835–2.85 g/cm3.  
As with the preceding steps, the forward propagation analysis is carried out in the Forward 
Propagation node of Nodeworks’ Surrogate Modeling and Analysis node-set. The epistemic 
uncertainty ranges are input directly into the node and the KDE distributions of Figure 8 are 
imported as user-specified aleatory distributions. Nodeworks’ Forward Propagation node follows 
the framework of Roy and Oberkampf (2011), where the sampling is separated for combined 
epistemic-aleatory uncertainty. First, one of the Ne epistemic samples is drawn. The epistemic 
values are fixed, and Na aleatory samples are drawn. This produces a single cumulative 
distribution function (CDF) of the response, y1. The procedure is then repeated for all Ne 
samples, each time re-drawing all Na samples. The output is a collection of Ne-CDFs, each with 
Na steps. Because each of the epistemic samples are equally likely, no probable distinction can 
be drawn between them. Instead, the minimum and maximum values at given probability define 
the probability box, or p-box, of the uncertain response. This can be thought of as the bounding 
CDFs, however, the p-box may be defined by more than just two CDFs.  
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Figure 8: Estimated probability distributions for the five aleatory uncertainties, black circles 

represent measured data. 

 
For comparison to the original results (Dahl et al., 2019), forward propagation is first considered 
with Ne = 10 and Na = 100. LH epistemic sampling is selected. Two example p-boxes with these 
settings are shown in Figure 9 surrounding the original result of Dahl et al. (2019) which was 
generated via direct model evaluation by which the DEM model itself was evaluated at the 
10×100 points necessary to construct the p-box. The full-model and surrogate model p-boxes 
compare favorably. Re-evaluating the forward propagation (which is nearly instantaneous for the 
surrogate) can produce p-boxes which may look more or less qualitatively similar, depending on 
the sampling.  
 



Surrogate Modeling Approach to Uncertainty Quantification for a DEM Model of a Rotating Cubic Tumbler 

14 

 
Figure 9: Example p-boxes from surrogate model forward propagation (left, right) inclosing 

original full-model evaluation (center) of Dahl et al. (2019).  

 
While there was not a substantial computational savings in constructing the surrogate model over 
the full model evaluation (i.e., 345 vs. 1,000 simulations), an advantageous feature of the 
surrogate approach is that the dependence of the p-box on the sampling (either the method or the 
number of samples) can be easily changed. Figure 10 shows how the p-box changes with 
increasing number of samples keeping a factor of ten in the Na/Ne ratio. It is noted that this case 
converges nicely—specifically the tails of the p-box are not significantly enhanced with 
continued sampling—due to the truncated ranges of the KDE distributions.  
Finally, it is noted that this (hypothetical) study was focused on this forward propagation step. If 
this study were part of a larger VVUQ study aimed at evaluation of model form uncertainty (by 
comparison to experimental data), numerical uncertainty, largely due to discretization, must be 
evaluated and included (buffering the p-box) for both surrogate and full (direct) mode forward 
propagation. Additionally, the surrogate model generated p-box would need to include the 
uncertainty (error) resulting from the p-box itself.  
 

 
Figure 10: Evolution of p-box with increased sampling: Ne = 10, Na = 100 (left), Ne = 100, Na 

= 1,000 (center), Ne = 1,000, Na = 10,000 (right).  
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6. SENSITIVITY ANALYSIS  
While the primary focus of this work was the forward propagation (Section 5), the surrogate 
model can also be used for further analysis. In the original study by Dahl et al. (2019), the full 
model evaluated p-box was compared to reduced (less computationally expensive) forward 
propagations by beginning with a sensitivity analysis and eliminating unimportant inputs from 
the UQ study. Using a local sensitivity analysis with replication, Dahl et al. (2019) found that x3, 
x7, x4 and x6, in that order, had the largest impact on the SRQoI. The local sensitivity analysis is 
checked by a global sensitivity analysis on the surrogate model. For the analysis the RSM node 
containing the GP model is connected to Nodeworks’ Sensitivity Analysis node, also from the 
Surrogate Modeling and Analysis toolkit. Sobol’ indices are computed using 100,000 samples 
with 1,000 resamples. The results in Figure 11 are in good agreement, at least qualitatively, with 
the local sensitivity analysis. Ranking by total indices, the most important parameters are x3 
(0.737 ± 0.005), x7 (0.131 ± 0.002), x4 (0.101 ± 0.001) and x5 (0.035 ± 0.000). While the strong 
dependence of the results on x3 may have been obvious from the scatter plot of Figure 4, the 
agreement, at least in the order of importance, between the local, full-model sensitivity analysis 
and the global, surrogate model sensitivity analysis is encouraging.  
 

 
Figure 11: Global Sobol’ sensitivity indices computed from 100,000 samples of the GP 

surrogate model.  
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7. CONCLUSIONS AND FUTURE WORK 
This work followed a recent study by Dahl et al. (2019) on the forward propagation of seven 
input uncertainties through an MFiX-DEM model of a square, rotating tumbler. In the original 
work, the uncertainties were propagated directly through the MFiX-DEM model. Here, 
Nodeworks was used extensively to drive a companion effort in which a (numerical) data-fitted 
surrogate model was constructed and used for the forward propagation. It was found that the 
resulting probability bands or p-boxes computed from the surrogate model were in good 
qualitative agreement with the original p-box evaluated directly from the full model by Dahl et 
al. (2019). (Note that quantitative comparison is complicated due to the stochastic nature of the 
sampling.) A global sensitivity analysis was also carried out on the surrogate model. First- and 
second-order Sobol’ indices computed from 100,000 samples were used to rank the importance 
of the uncertain inputs. The ranking (order of importance) was is in good agreement with the 
local sensitivity analysis originally performed on the full model (Dahl et al., 2019).  
The most apparent benefit of the surrogate modeling approach to forward propagation is the 
substantially increased flexibility over the direct propagation method. For instance, if the p-box 
was judged to be too coarse after the evaluation of a 10x100 (epistemic-by-aleatory) sampling, it 
is straightforward and computationally inexpensive to arbitrarily increase the sampling until the 
desired p-box resolution is reached, as demonstrated in Section 5. Further, for sensitivity 
analysis, the sampling and even this method itself can be easily adjusted when used with a 
surrogate model.  
The surrogate model approach employed here did not substantially reduce the overall 
computational overhead: 1,000 simulations in the original direct propagation compared to 345 
simulations (plus the effort of constructing the surrogate). The LS sampling criterion followed 
here was recommended in the context of forward propagation (Oberkampf and Roy, 2010); 
however, not necessarily for the construction of surrogate models. Other guidelines for surrogate 
construction are more favorable. For instance, Loeppky et al. (2009) recommend as few as 10 
samples per dimension may be sufficient. This would reduce the number of samples used in this 
work from 345 to 70, however this would come at a cost of increased error in the surrogate itself. 
Future work will be aimed at evaluating the connection between the number of samples, the 
dimensionality of the problem, and the corresponding (surrogate) model error for multiphase 
CFD data should be considered.  
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