diff --git a/docs/source/FluidTimeDiscretization.rst b/docs/source/FluidTimeDiscretization.rst
index f079d0de82cce1f1ed3b36ac71b2a3cf1d45bb1c..95baf6afbe22f23fbdfd09f8e916b4be1e21f1fc 100644
--- a/docs/source/FluidTimeDiscretization.rst
+++ b/docs/source/FluidTimeDiscretization.rst
@@ -12,22 +12,43 @@ In the predictor
 
 #. Define :math:`U^{MAC}`, the face-centered (staggered) MAC velocity which is used for advection.
 
-#. Define an approximation to the new-time state,:math:`(\varepsilon_g \rho_g U)^{*} = (\varepsilon_g \rho_g U)^n +  \Delta t ( -\nabla \cdot (\varepsilon_g \rho_g U^{MAC} U_g) + \varepsilon_g \nabla {p_g}^{n-1/2} + \nabla \cdot \tau^n + \sum_{part} \beta_p (V_p - {U_g}^{*}) + \rho_g g )`
+#. Define an approximation to the new-time state, :math:`(\varepsilon_g \rho_g U)^{\ast}` by setting 
 
-#. Project :math:`U^{*}` by solving
-    :math:`\nabla \cdot \frac{\varepsilon_g}{\rho_g} \nabla \phi = \nabla \cdot (\varepsilon_g  U)^*`
+.. math::(\varepsilon_g \rho_g U)^{\ast} = (\varepsilon_g \rho_g U)^n +  
+          \Delta t ( -\nabla \cdot (\varepsilon_g \rho_g U^{MAC} U_g) + \varepsilon_g \nabla {p_g}^{n-1/2} + 
+          \nabla \cdot \tau^n + \sum_{part} \beta_p (V_p - {U_g}^{\ast}) + \rho_g g )
+
+#. Project :math:`U^{\ast}` by solving
+    :math:`\nabla \cdot \frac{\varepsilon_g}{\rho_g} \nabla \phi = \nabla \cdot (\varepsilon_g  U)^{\ast}`
     then defining
-         :math:(\varepsilon_g  U)^{**} = (\varepsilon_g  U)^{*} - \frac{\varepsilon_g}{\rho_g} \nabla \phi
+
+.. math:: (\varepsilon_g  U)^{n+1} = (\varepsilon_g  U)^{***} - \frac{\varepsilon_g}{\rho_g} \nabla \phi
+
+    and 
+
+.. math:: {p_g}^{n+1/2, \ast} = {p_g}^{n-1/2} + \phi
+
+         :math:(\varepsilon_g  U)^{\ast \ast} = (\varepsilon_g  U)^{\ast} - \frac{\varepsilon_g}{\rho_g} \nabla \phi
     and 
-         :math:`{p_g}^{n+1/2,*} = {p_g}^{n-1/2} + \phi`  
+         :math:`{p_g}^{n+1/2,\ast} = {p_g}^{n-1/2} + \phi`  
 
 In the corrector
 
-#. Define an approximation to the new-time state,:math:`(\varepsilon_g \rho_g U)^{***} = (\varepsilon_g \rho_g U)^n +  \Delta t ( (-1/2) \nabla \cdot (\varepsilon_g \rho_g U^{MAC} U_g)^n -(1/2) \nabla \cdot (\varepsilon_g \rho_g U^{MAC} U_g)^{**} + \varepsilon_g \nabla {p_g}^{n+1/2,*} + (1/2) \nabla \cdot \tau^n + (1/2) \nabla \cdot \tau^{**} + \sum_{part} \beta_p (V_p - {U_g}^{**}) + \rho_g g )`
+#. Define an approximation to the new-time state,:math:`(\varepsilon_g \rho_g U)^{\ast \ast \ast}` by setting  
+
+.. math::  (\varepsilon_g \rho_g U)^{\ast \ast \ast} = (\varepsilon_g \rho_g U)^n + 
+           \Delta t ( (-1/2) \nabla \cdot (\varepsilon_g \rho_g U^{MAC} U_g)^n -(1/2) \nabla \cdot (\varepsilon_g \rho_g U^{MAC} U_g)^{\ast \ast} 
+          + \varepsilon_g \nabla {p_g}^{n+1/2,\ast} + (1/2) \nabla \cdot \tau^n + (1/2) \nabla \cdot \tau^{\ast \ast} + 
+            \sum_{part} \beta_p (V_p - {U_g}^{\ast \ast}) + \rho_g g )
 
 #. Project :math:`U^{***}` by solving
-    :math:`\nabla \cdot \frac{\varepsilon_g}{\rho_g} \nabla \phi = \nabla \cdot (\varepsilon_g  U)^{***}`
+
+.. math:: \nabla \cdot \frac{\varepsilon_g}{\rho_g} \nabla \phi = \nabla \cdot (\varepsilon_g  U)^{***}
+
     then defining
-         :math:(\varepsilon_g  U)^{n+1} = (\varepsilon_g  U)^{***} - \frac{\varepsilon_g}{\rho_g} \nabla \phi
+
+.. math:: (\varepsilon_g  U)^{n+1} = (\varepsilon_g  U)^{***} - \frac{\varepsilon_g}{\rho_g} \nabla \phi
+
     and 
-         :math:`{p_g}^{n+1/2} = {p_g}^{n-1/2} + \phi`  
+
+.. math:: {p_g}^{n+1/2} = {p_g}^{n-1/2} + \phi