diff --git a/docs/source/FluidEquations.rst b/docs/source/FluidEquations.rst index d60e9d9aa5ae83c239098967a3b0d804f321b12a..d7d601d38f9b7a6ac89426b4e4f16dc5d717d148 100644 --- a/docs/source/FluidEquations.rst +++ b/docs/source/FluidEquations.rst @@ -5,15 +5,15 @@ Fluid Variables | Variable | Definition | +=======================+==================================================+ | :math:`\rho_g` | Fluid density | - +------------+-------------------------------------+-----------------------+ + +-----------------------+--------------------------------------------------+ | :math:`\varepsilon_g` | Volume fraction of fluid (= 1 if no particles) | - +------------+-------------------------------------+-----------------------+ + +-----------------------+--------------------------------------------------+ | :math:`U_g` | Fluid velocity | - +------------+-------------------------------------+-----------------------+ + +-----------------------+--------------------------------------------------+ | :math:`\tau` | Viscous stress tensor | - +------------+-------------------------------------+-----------------------+ + +-----------------------+--------------------------------------------------+ | :math:`g` | Gravitational acceleration | - +------------+-------------------------------------+-----------------------+ + +-----------------------+--------------------------------------------------+ Fluid Equations =============== @@ -27,8 +27,7 @@ Conservation of fluid momentum: .. math:: \frac{ \partial (\varepsilon_g \rho_g U)}{\partial t} + \nabla \cdot (\varepsilon_g \rho_g U_g U_g) + \varepsilon_g \nabla p_g = \nabla \cdot \tau + \sum_{part} \beta_p (V_p - U_g) + \rho_g g -where :math:`\sum_p \beta_p (V_p - U_g)` is the drag term in which :math:`V_p` represents the particle velocity and - :math:`\beta_p` is the drag coefficient associated with that particle +where :math:`\sum_p \beta_p (V_p - U_g)` is the drag term in which :math:`V_p` represents the particle velocity and :math:`\beta_p` is the drag coefficient associated with that particle Conservation of fluid volume: