From be61b80eb954f1f394a454bc116ad2f18b89e05b Mon Sep 17 00:00:00 2001 From: Ann Almgren Date: Thu, 18 Oct 2018 17:39:03 -0700 Subject: [PATCH] Updated equations --- docs/source/FluidTimeDiscretization.rst | 26 +++++++++++++------------ 1 file changed, 14 insertions(+), 12 deletions(-) diff --git a/docs/source/FluidTimeDiscretization.rst b/docs/source/FluidTimeDiscretization.rst index 6dada55..a3cce91 100644 --- a/docs/source/FluidTimeDiscretization.rst +++ b/docs/source/FluidTimeDiscretization.rst @@ -10,18 +10,18 @@ Thus here we focus on the discretization of the momentum equation In the predictor -- Define :math:`U^{MAC}`, the face-centered (staggered) MAC velocity which is used for advection. +- Define :math:`U^{MAC,n}`, the face-centered (staggered) MAC velocity which is used for advection, using :math:`U^n` - Define an approximation to the new-time state, :math:`(\varepsilon_g \rho_g U)^{\ast}` by setting .. math:: (\varepsilon_g \rho_g U)^{\ast} = (\varepsilon_g \rho_g U)^n + - \Delta t ( -\nabla \cdot (\varepsilon_g \rho_g U^{MAC} U_g) + \varepsilon_g \nabla {p_g}^{n-1/2} + \Delta t \left( -\nabla \cdot (\varepsilon_g \rho_g U^{MAC} U_g) - \varepsilon_g \nabla {p_g}^{n-1/2} -.. math:: | \nabla \cdot \tau^n + \sum_{part} \beta_p (V_p - {U_g}^{\ast}) + \rho_g g ) +.. math:: \nabla \cdot \tau^n + \sum_p \beta_p (V_p - {U_g}^{\ast}) + \rho_g g \right) - Project :math:`U^{\ast}` by solving -.. math:: \nabla \cdot \frac{\varepsilon_g}{\rho_g} \nabla \phi = \nabla \cdot (\varepsilon_g U)^{\ast} +.. math:: \nabla \cdot \frac{\varepsilon_g}{\rho_g} \nabla \phi = \nabla \cdot \left( \varepsilon_g U)^{\ast}+ \varepsilon_g \nabla {p_g}^{n-1/2} \right) then defining @@ -29,28 +29,30 @@ then defining and -.. math:: {p_g}^{n+1/2, \ast} = {p_g}^{n-1/2} + \phi +.. math:: {p_g}^{n+1/2, \ast} = \phi In the corrector -- Define an approximation to the new-time state,:math:`(\varepsilon_g \rho_g U)^{\ast \ast \ast}` by setting +- Define :math:`U^{MAC,\ast \ast}` at the "new" time using :math:`U^{\ast \ast}` + +- Define a new approximation to the new-time state, :math:`(\varepsilon_g \rho_g U)^{\ast \ast \ast}` by setting .. math:: (\varepsilon_g \rho_g U)^{\ast \ast \ast} = (\varepsilon_g \rho_g U)^n + - \Delta t ( (-1/2) \nabla \cdot (\varepsilon_g \rho_g U^{MAC} U_g)^n -(1/2) \nabla \cdot (\varepsilon_g \rho_g U^{MAC} U_g)^{\ast \ast} - + \varepsilon_g \nabla {p_g}^{n+1/2,\ast} + \Delta t \left( (-1/2) \nabla \cdot (\varepsilon_g \rho_g U^{MAC} U_g)^n -(1/2) \nabla \cdot (\varepsilon_g \rho_g U^{MAC} U_g)^{\ast \ast} + - \varepsilon_g \nabla {p_g}^{n+1/2,\ast} .. math:: + (1/2) \nabla \cdot \tau^n + (1/2) \nabla \cdot \tau^{\ast \ast} + - \sum_{part} \beta_p (V_p - {U_g}^{\ast \ast}) + \rho_g g ) + \sum_p \beta_p (V_p - {U_g}^{\ast \ast \ast}) + \rho_g g \right) - Project :math:`U^{\ast \ast \ast}` by solving -.. math:: \nabla \cdot \frac{\varepsilon_g}{\rho_g} \nabla \phi = \nabla \cdot (\varepsilon_g U)^{\ast \ast \ast} +.. math:: \nabla \cdot \frac{\varepsilon_g}{\rho_g} \nabla \phi = \nabla \cdot \left( (\varepsilon_g U)^{\ast \ast \ast} + \varepsilon_g \nabla {p_g}^{n+1/2,\ast} \right) - then defining +then defining .. math:: U^{n+1} = U^{\ast \ast \ast} - \frac{1}{\rho_g} \nabla \phi and -.. math:: {p_g}^{n+1/2} = {p_g}^{n-1/2} + \phi +.. math:: {p_g}^{n+1/2} = \phi -- GitLab