
 URD (version 1.3) 7/11/2004

Open Source, Multiphase Flow Problem Solving Environment
User Requirements Document

Simulation, Analysis and Computational Science Division
National Energy Technology Laboratory

P.O. Box 880
Morgantown, WV 26505

Version: 1.3

July 11, 2004

 URD (version 1.3) 7/11/2004

Contributors
Sofiane Benyahia
Aytekin Gel
Thomas J. O’Brien
Philip Nicoletti
Sreekanth Pannala
Michael Prinkey
Madhava Syamlal

Disclaimer
This document was generated from brainstorming sessions and is intended only
as a starting point to develop a working set of requirements. Many of the
requirements listed here may not yet be realizable because of limitations in the
available technology or resources.

 URD (version 1.3) 7/11/2004

CONTENTS

VERSION HISTORY ... 4
INTRODUCTION ... 6
GOALS AND DEFINITIONS... 7

1. Primary Programmatic Goals .. 7
2. Secondary Programmatic Goals .. 7
3. Software Design Goals... 7
4. Definition of the Targeted User .. 8
5. Definition of the Application Domain ... 9
6. Definition of Code Life-Cycle .. 10

USER REQUIREMENTS .. 10
UR-1. Geometry ... 11
UR-2. Meshing ... 11
UR-3. Physics Representation .. 12
UR-4. Numerical Solution Scheme.. 13
UR-5. Software Development .. 15
UR-6. Software Maintenance ... 17
UR-7. Testing and Verification ... 17
UR-8. Documentation ... 18
UR-9. Target Hardware and Operating Systems 19
UR-10. Code Execution.. 20
UR-11. Output Data .. 21
UR-12. Post-Processing and Visualization .. 23
UR-13. Software Distribution.. 25

BIBLIOGRAPHY... 26
GLOSSARY ... 29

 URD (version 1.3) 7/11/2004

VERSION HISTORY

Each version will be designated with a two digit number, m.n; incrementing m
will denote major modification (e.g., adding sections) while incrementing n will
denote minor modification (e.g., corrections). Each version will be stored, along
with the previous version, with changes indicated by the Track Changes feature.

……………………………………………………………………………………………
Version: 1.0
Date: 6/9/2004
Authors: Sofiane Benyahia, Aytekin Gel, Thomas J. O’Brien, Philip Nicoletti,
Sreekanth Pannala, Michael Prinkey, Madhava Syamlal
Reason for changes:
Initial version.
Summary of changes:
None

……………………………………………………………………………………………
Version: 1.1
Date: 6/11/2004
Authors: Thomas J. O’Brien, Kent Eschenberg
Reason for changes:
Modify Section 11 (Output Data) and Section 12 (Post-Processing and
Visualization).
Summary of changes:
UR-11. Output Data
============
--- UR-11.5 Metadata
--- UR-11.5.1 Variable Access
--- UR-11.5.2 Content List
--- UR-11.5.3 Statistics (replaces UR-11.4)
UR-12 Post-processing and visualization
------ URD-12.6 Multiple Datasets
------ URD-12.7 Multiple Views
------ URD-12.8 Animations (replaces URD-12.1.2.1)
--- URD-12.8.1 Time Selection
--- URD-12.8.2 Time Animation
--- URD-12.8.3 Parameter Animation
--- URD-12.8.4 Camera Location Animation
--- URD-12.8.5 Recording Animations
------ URD-12.9 Saving Parameters
------ URD-12.10 Offline Recording
.

 URD (version 1.3) 7/11/2004

……………………………………………………………………………………………
Version: 1.3
Date: 7/11/2004
Authors: Thomas J. O’Brien, David Bernholdt
Reason for changes:

 URD (version 1.3) 7/11/2004

INTRODUCTION

The intent of this document is to provide guidance for the future development of
the NETL-MFIX code for modeling multiphase flows. This document will be used
as a starting point to prioritize user requirements, to specify software
requirements, to develop a software design, and to prepare a software
development plan.

Multiphase flows occur in many applications in chemical, petro-chemical and
fossil-energy conversion industries. Understanding and accurately modeling such
flows would lead to greatly improved designs of multiphase flow reactors. These
flows pose enormous challenges for both experiments and simulations, however.
Inherent instabilities of such flows and lack of instruments that work in the dense
and erosive environments make experiments difficult. The large set of coupled
partial differential equation required to model multiphase flows make
computational analysis a challenge as well. Furthermore, unlike gas-phase flows
where the model – Navier-Stokes equations – is well established, the closure
relations used in multiphase flow models are still under development. Therefore
there is a need for a fast, robust, solver framework for advancing the multiphase
flow science.

Over the last twenty years multiphase flow research at NETL and later at ORNL
lead to the development of an open source software called MFIX (Multiphase
Flow with Interphase eXchanges), distributed through http://www.mfix.org. Over
300 researchers from over 150 institutions all over the world have downloaded it.
It is used for research at NETL, ORNL and at several external research groups
around the world. Currently, MFIX developers at different sites contribute to and
communicate advances in this simulation package. Source-code modifications
are managed using version control software, so that each change is documented.
New versions are tested against a suite of control cases.

During that time many software components became available for geometry
specification and grid generation, solving linear and nonlinear equations,
analyzing and visualizing data, and integrating different simulation codes.
National labs, academia and commercial software companies have developed
these components. The programming paradigm also changed from structured
design to object-oriented design, and modern programming languages and tools
became available and widely used. Combining the large library of publicly
available software components and tools with the physics and numerics
knowledgebase contained in the current MFIX code offers a great opportunity to
develop a next-generation problem solving environment (PSE) for multiphase
flow computations.

 URD (version 1.3) 7/11/2004

This document describes the user requirements for the next generation of the
MFIX code. Naturally the existing code will be used as a starting point in the
development and for verifying the multiphase flow PSE developed from the
ensuing work.

GOALS AND DEFINITIONS

1. Primary Programmatic Goals
1.1. Develop software infrastructure to model multiphase flow processes in

power and process industry (e.g., coal gasifiers).
1.2. Increase the use of modeling for design and control in power and

process industry.
1.3. Develop and validate multiphase flow theory: transport equations,

boundary conditions, and constitutive relations.
1.4. Develop numerical techniques for solving these multiphase flow

equations efficiently and accurately.

2. Secondary Programmatic Goals
2.1. Enable scientists to focus on model and algorithm development and

validation, rather than on code development and debugging.
2.2. Develop a substantially new capability that is useful for research and

not available elsewhere.
2.3. Future MFIX development should continue to:

2.3.1. Be complementary and contributory to commercial software.
2.3.2. Be a vehicle of technology transfer for theoretical multiphase flow.
2.3.3. Facilitate dissemination of information through shared open-source

software in addition to publications and presentations.
2.3.4. Enhance collaboration with other labs, academia, commercial

companies and other agencies.
2.3.5. Enhance future support and funding for research through

interagency collaboration.

3. Software Design Goals
3.1. Reuse software components: The PSE will be developed by

assembling best-in-class components from academia, national labs,
open source projects and commercial software companies. The
guiding philosophy will be to identify and reuse existing software
components before writing any new code.

3.2. Core capability: A fully functional set of core capabilities, based
completely on public domain software components, will be available in
the PSE. This will help a large set of researchers, especially from
academia, to use the PSE and to share the results of research and

 URD (version 1.3) 7/11/2004

thereby contribute toward the advancement of the field of
computational multiphase flow.

3.3. Multiple programming languages: Typically legacy scientific software
components are written in Fortran and modern software components
are written in C and C++. So the PSE must allow the use of software
components in different languages, as a minimum Fortran 90, C, and
C++.

3.4. Software tools and practices: PSE design and development will use
modern software tools and practices such as object oriented design
and automated building, testing and generation of documentation.

3.5. Interface standards: The PSE will use established interface standards
for linking software components. Some examples of interface
standards are CCA, CAPE-OPEN, CORBA, and COM. Interface
definitions used in the PSE will be published and maintained
immutable.

3.6. Portable, scalable and extensible: The PSE will be portable to different
OSs, at a minimum, Windows and Linux. It will be scalable to work
efficiently on 10s or 100s (to be decided) of processors. It will be
extensible; that is, it will have the ability to link new software
components as they become available.

3.7. Scripting front end: The PSE will use a scripting front end to enable
customization. This will be a high-level domain specific language. The
script could be written in a widely-used scripting language (e.g.,
Python.), be a complier-like code-generated, or be “home-grown.”
Interpreted scrip many be used for “low performance” needs;
generacte code for “high performance.” It will allow users to input
transport equations, constitutive relations and boundary conditions,
and to process output results.

4. Definition of the Targeted User
The majority of the users are expected to be researchers at national labs,
graduate students and faculty. The intended use of the PSE is for advancing the
field of computational multiphase flow. So the users would like to change the
theory as well as the numerical method and to calculate results quickly using the
modified theory or numerical technique. They would also like to have access to
the details of the simulation, such as intermediate results, numerical values of
various terms in the equations, convergence behavior, and the computational
effort required in various subroutines and components.

 URD (version 1.3) 7/11/2004

5. Definition of the Application Domain
5.1. Hydrodynamics of dilute to dense multiphase flow: The dense limit will

include regions in which interactions within the dispersed phase is very
important and there is a strong-coupling between the phases.

5.1.1. Gas-Solids: this will include regimes ranging from dilute particle
flow to packed beds, where particles are in enduring contacts

5.1.1.1. Polydisperse flow: allow a particle size/density distribution
5.1.2. Gas-Liquid: this regime will center on bubble column flows
5.1.3. Liquid-Solids:systems in which the fluidizing medium is a liquid
5.1.4. Gas-Liquid-Solids: three interpenetrating phases, such as for

Fischer-Tropsch synthesis
5.1.5. Porous Media: allow a volume of the flow region to be occupied by

a porous medium
5.1.6. Turbulent Flow: methods for describing highly turbulent flows will

be included
5.2 Heat Transfer: allow the description of thermal flows

5.2.1 Single Phase: this capability does not require interphase exchange
5.2.1.1 Fluid phase: heat transfer simulation techniques within a

single fluid phase is well understood
5.2.1.2 Dispersed phase: heat transfer in a dispersed phase,

described as a fluid, is formally similar to the previous
case, however, different closure relations will be required

5.2.2 Gas-Particle: heat transfer between phases will require interphase
transfer coefficients.

5.2.3 Flow-surface: heat transfer between the flow and the containing
boundary will be described as a boundary condition

5.3 Chemical Reactivity: chemically reactive flows, which usually also
involve heat transfer, are an essential feature of most practical
industrial processes

5.3.1 Species Transport: transport equations, for both major and minor
species, will be required

5.3.1.1 Fluid phase: transport equations for the carrier phase are
quite well understood

5.3.1.2 Dispersed phase: the mechanisms for species transport in
the dispersed phase may be quite different from that in
the carrier phase and will depend strongly on the loading

5.3.2 Chemical Reactions: general descriptions of chemical source
terms will be provided, allowing exchange between the phases

5.3.2.1 Fluid phase
5.3.2.2 Dispersed phase

5.3.3 Particle Models: descriptions, such as particle burn-out models,
attempt to capture the details of processes within the particle

5.3.4 Mixing Models: models for the effects of mixing at scales smaller
than those resolved by the simulations will be included

 URD (version 1.3) 7/11/2004

5.3.5 Turbulent Chemistry: the effect of turbulent mixing on chemistry
will be included. This is a quite extensively developed field for
single phase flows but is poorly understood for multiphase flows

 5.4 Radiation
5.3.6 Discrete Ordinates Method.
5.3.7 Radiosity: consider radiosity algorithms used in computer

graphics.
5.5 Modeling of Lab-, Pilot-, and Commercial-Scale Devices: most
experimental work with detailed flow measurements, as required for
validation, is at the laboratory scale. However, simulation results at larger
scales will be required.

6. Definition of Code Life-Cycle
Most of these terms are well understood and need little further explanation.
6.1. Theory statement: the mathematical structure of the theory to be

solved by the code is implied by the application domain. This code is
intended to solve primarily coupled, Navier-Stokes-like PDEs on interior
domains. A secondary objective is to couple this with solutions of
particle trajectories, using DEM methods.

6.2. Algorithm development: this portion of the life-cycle is defined in this
document.

6.3. Design of data structures: this is also an aspect which is defined in this
document.

6.4. Design of the Code: this is the major purpose of this document.
6.5. Coding: it is the intent of this project to utilize as much software as

possible from other sources.
6.6. Debugging/Verification: this is an ongoing activity, beginning during

the coding process and continuing through feed-back from users.
6.7. Performance tuning: analysis of the code “bottle-necks” will provide

insight into ways to improve the performance of the code. This is
complicated by the fact that this will be machine and compiler
dependent.

6.8. Porting: the target machines will be Linux clusters at NETL and the
machines at the PSC and ORNL.

6.9. Production: the policy will be to establish a stable version of the code,
which will be available as Open Source. As new developments are
stabilized they will migrate to sequential versions of the production
code.

6.10. Enhancement: code enhancement will be an on-going process, since
this is intended to be a research tool.

USER REQUIREMENTS

 URD (version 1.3) 7/11/2004

UR-1. Geometry
UR-1.1. Geometric Templates: templates will be used to provide a simple

way to specify certain standard geometries (e.g., cylindrical vessel with
a conical bottom) commonly used in simulation cases. The user may
combine the templates to create a desired geometry.

UR-1.2. Importing CAD Files: the PSE will have the ability to import CAD
files in standard formats (e.g., DXF, OBJ, STL, VRML 2.0, IGES). Built-
in tools will allow filtering and cleaning up of the geometry, as needed
for meshing. The tool will have the ability to convert the unit of
measurement of the imported geometry to a desired unit of
measurement.

UR-1.3. Tag Boundaries/Interfaces: provide an easy to use method to tag
the boundaries/interfaces in preparation for boundary/interface
condition assignments at a later stage.

UR-1.4. Geometry Visualization: there will be an ability to visualize the
geometry as it is generated, with added features like slice and
component views.

UR-2. Meshing

UR-2.1. Automatic Meshing: provide the ability to mesh simple geometries
automatically, without user intervention, given the number of points
and mesh quality specification, minimum and maximum grid sizes, etc.

UR-2.1.1. Meshing Templates: a simple, parametric meshing
capability to integrate user-defined topology-based library of
commonly used geometries will be available (as in UR-1.1).

UR-2.2. Mesh Type: allow different types of meshes. The user will be able
to choose different types of meshes based on physics requirement or
geometry requirement.

UR-2.2.1. Cartesian Mesh: achieve higher order accuracy.
UR-2.2.2. Unstructured Mesh: ability to grid complicated

geometries
UR-2.2.3. Hybrid Mesh: there are various types

UR-2.2.3.1. Hex/Tet Hybrid Meshes: mix hexahedrals and
tetrahedrals as needed. Accuracy will be improved by employing
hexs away from the boundaries and use tets at the complicated
boundaries.

UR-2.2.3.2. Overlapping Mesh: logically rectangular regions will
be overlapped to mesh a complicated geometry (see Ogen)

UR-2.3. Automatic Mesh Quality Checks:
UR-2.3.1. Metrics: user-defined or standard checks will be used

to give control over parameters like skewness, ratio of change in
cell-area/volume, etc.

 URD (version 1.3) 7/11/2004

UR-2.3.2. Adaptive Mesh Refinement: it will be possible to refine
the mesh in critical regions to resolve either geometric or flow
features.

UR-2.3.2.1. Static: geometric details like inlets, complicated
boundaries, will be resolved to improve mesh quality
automatically.

UR-2.3.2.2. Dynamic: the mesh will be dynamically adapted to
resolve flow features and improve accuracy (e.g., bubble
boundary, bed surface etc.).

UR-3. Physics Representation

UR-3.1. Scripting Requirement: include the capability of easily writing new
model equations, including constitutive relations, along with initial and
boundary conditions. To achieve this, a simple GUI for entering an
equation script (e.g., Maxima-like front end) will be used.

UR-3.1.1. Equation Type: general transport-type equations of
the following type will be represented with a simple script, e.g.,
as in Maxima:

() () ())(QSQDQUQ

=∇⋅∇−⊗⋅∇+
∂

∂ ρρρ
t

where is the fluid or solids phase velocity, U ρ is the phase density, and Q
is a tensor-valued property of the flow.

UR-3.1.2. Constitutive Relations: will be represented using a
script.

UR-3.1.3. Initial and Boundary Conditions: will be represented
using a script. Profiles of initial and boundary conditions should
be easily implemented.

UR-3.1.4. Radiation Models: be able to implement radiation
models that do not follow a transport equation form.

UR-3.1.5. Error Checking: facilitate review and error checking of
the implemented equations:

UR-3.1.5.1. Symbolic Form: generate the equations in symbolic
form from the script, (for example, Maxima-like script being
translatable by using LaTex). This will allow a quick review of the
implemented equations.

UR-3.1.5.2. Concise: minimize the lines of script (e.g., < 20 lines
per transport equation).

UR-3.1.5.3. Consistent: check whether the problem specification
is well-posed, e.g., check the input for dimensional consistency.

UR-3.1.6. Performance Target: the scripting capabilities should
allow an expert user to code a new scalar transport equation in
a day.

 URD (version 1.3) 7/11/2004

UR-3.2. Sub-Grid Scale Models: generating this model can be labor
intensive. An automatic generation of the sub-grid stresses and drag
terms should be allowed to expedite this process.

UR-3.3. Model Combination: ability to combine models at multiple length
and time scales (e.g., use information from particle tracking in an
Eulerian model). This is particularly useful at wall boundaries where a
boundary condition for the solids stresses may not be easily
formulated using the Eulerian approach.

UR-3.4. Dynamic Tracking of Terms: ability to disaggregate contributions
from each term in a model equation so that one can determine the
significance and the degree of change in each term dynamically. This
information can be used to choose explicit or implicit treatment of the
different terms in the model, which may speed-up the simulation.

UR-3.5. Using a Model Locally: Ability to turn off equations in certain areas
of the computational domain in a static or dynamic manner. For
example, this can be useful in a fluidized bed simulation where a user
may turn-off the solids phase equations in the gas plenum below the
porous plate gas distributor.

UR-3.6. Units of Measurement: ability to work with various units systems or
in dimensionless units.

UR-4. Numerical Solution Scheme

UR-4.1. Script-Based Solution Scheme: there are several different solution
strategies for the solution of single-phase and multiphase transport
problems. To allow for simple implementation and flexible
modification of the solution scheme, the code will define individual
aspects of the solution scheme (linear system solutions, Newton
iterations, time-step advancement, etc.) using a high-level script
language which can be easily modified without requiring recompilation
or exhaustive understanding of the underlying solution elements. (see
Script Requirements above, UR-3.1.5).

UR-4.2. Validate Input Script: provide a mechanism to test and flag
problems in user input, such as incompatible boundary conditions,
material properties, dimensional consistency.

UR-4.3. Code Generation: some elements of the solution scheme may be
too complicated to contain within a simple control script, or may cause
the resulting script to be too difficult to be readily understood.
Furthermore, performance of the scripting language may be too slow
to include low-level operations. To avoid these situations, a code
generator will be used to produce the script and/or new compiled code
by a parsing a file provided by the user, which is then compiled and
linked with MFIX-NG library.

UR-4.4. Generation of Optimal Solvers: the use of a code generator to
produce compiled code allows the possibility of per-system code

 URD (version 1.3) 7/11/2004

optimization based on benchmarking tests. These optimizations will
include fine-tuning of internal loops such as blocking parameters or
prefetch sizes or small changes in the parallel solution strategy or
preconditioner choice.

UR-4.5. Linear/Nonlinear Solvers: in order to provide a truly flexible
platform for multiphase CFD, highly optimized solver functions must be
available. These must be applicable to all or part of the solution
domain. It is preferable to be able to define the nonlinear solver
without specifying a full Jacobian, either analytically or numerically.

UR-4.6. Segregated/Coupled Solution: in order to allow for flexible design
of CFD solution algorithms, the linear/nonlinear solvers must be able to
solve a system pertaining to one, several, or all of the solution
variables.

UR-4.7. Transient and Steady-State Solutions: it is necessary to be able to
simulate both time-varying and steady flow behavior. For steady
flows, implicit methods must be available to improve convergence. For
transient flows, sufficient implicitness should be available to maintain
stability, but not at the expense of overall solution time.

UR-4.8. Compressible and Incompressible Flows: the code will be capable
of handling pressure-velocity and pressure-velocity-density coupling to
allow for the solution of compressible flows.

UR-4.9. Higher Order Schemes: the solver will provide discretization
schemes of third-order or higher for convective terms, second-order or
higher for diffusive terms, and second-order or higher for transient
terms.

UR-4.10. Multiple Modeling Methods and Approaches: there are several
different approaches for modeling single-phase and multiphase
transport, each with different strengths and weaknesses. The solution
framework will be sufficiently flexible to handle each of these. This
might include Volume-of-Fluid/Level Set, Lattice-Boltzmann, Smoothed
Particle Hydrodynamic transport descriptions, or the Eulerian/Eulerian
description. This may also include Langrangian particle tracking for
coupling to the Eulerian phase(s). The spatial discretization of the
transport equations may be handled in various ways as well, whether it
is via the Finite-Volume Method, Finite Element Method, or through a
more novel approach such as a Discontinuous Galerkin Method. And
temporal discretization should be flexible enough to handle explicit,
implicit, or fractional step time advancement.

UR-4.10.1. Eulerian/Eulerian
UR-4.10.1.1. Finite-Volume Method
UR-4.10.1.2. Volume-of-Fluid/Level Set
UR-4.10.1.3. Finite Element Method
UR-4.10.1.4. Discontinuous Galerkin Method

UR-4.10.2. Eulerian/Lagrangian

 URD (version 1.3) 7/11/2004

UR-4.10.3. Lattice-Boltzmann
UR-4.10.4. Smoothed Particle Hydrodynamic

UR-4.11. Solvers: will be capable of solving each of the subset equations. ()
UR-4.12. Interpolation and Extrapolation: provide multi-dimensional space

and time interpolation and extrapolation schemes to allow interaction
between the various models.

UR-4.13. Boundary Conditions: as with the underlying transport equations

and solution scheme, the solver framework will provide a simple,
flexible method to define boundary conditions. These will include
Robin, Neumann and Dirichlet conditions for scalars, slip, no-slip and
partial slip conditions for the velocity as well as others such as the
non-reflecting boundary condition. For each field variable it will be
possible to write a specific boundary conditions for each boundary.

UR-4.14. Parallelized/Vectorized: the solver framework must be efficient on
both single, multiprocessor, and distributed memory parallel platforms.

UR-4.15. Dynamic Load Balancing: schemes to redistribute the work equally
among the processors in parallel environments. The use of grid
adaption and/or discrete particle tracking via Langrangian methods can
lead to load imbalance on parallel systems. To address this issue, the
solver may be based on a load-balancing, parallel programming
platform such as Charm++.

UR-4.16. Extensible Data Structure: flexibility of the solver framework
extends to the underlying data structures as well. It will be easy to
add new transport equations and new stored variables both to the
solver’s internal data structures and to its input/output files.

UR-4.17. Convergence and Error Estimation: different algorithms and
solution approaches will require different convergence tests. These
will be easily modifiable without significant code revision.

UR-5. Software Development

UR-5.1. Framework for a Collaborative Environment: establish a framework
that enables collaborative software development through an object-
oriented, component-based software design approach.

UR-5.1.1. Standard Interfaces: design or adapt a framework
with flexible and standard interfaces that enhances collaborative
development. Our resources may allow only the development of
certain parts of the whole system. Develop a customizable
design so that others can easily extend the capabilities of the
code.

UR-5.1.2. Extensibility: ability to migrate user developed
modules into the core without additional development effort

 URD (version 1.3) 7/11/2004

(e.g., eliminate extra effort for reading and writing keywords,
storing field variables, updating documentation).

UR-5.1.3. Integrability with Other Software Components:
provide the user adequate framework and tools to integrate
third party software components easily to maximize
collaboration with government research agencies, universities,
etc.

UR-5.2. Interoperability: provide interoperability through well-defined,
flexible interfaces. Enforce compliancy to:

UR-5.2.1. the CCA (e.g., TSTT equation solver and FEM
interfaces)

UR-5.2.2. CAPE-OPEN interfaces (e.g., connectivity with process
simulators)

UR-5.2.3. COM (e.g., connectivity with Excel).
UR-5.2.4. Enable Hardware Interoperability: the PSE should

easily allow the use of different machine architectures.
UR-5.2.5. Programming Language: allow the use of different

programming languages through Interface Definition Language
(IDL) tools like Babel.

UR-5.2.6. Able to Work with different software components
UR-5.2.7. Able to work as a component in a slave mode (e.g.,

under another problem solving environment)

UR-5.3. Software Engineering:
UR-5.3.1. Employ Object-Oriented Analysis and Design: the PSE

is modeled (!) using objects, that have behaviour (they do
things) and state (which changes when they do things) and
complexity is managed using abstraction. Abstraction is the
elimination of the irrelevant and the amplification of the
essential information. It is by the interaction of objects that
computation proceeds. This programming approach will allow
the implementation of component based software design
effectively.

UR-5.3.2. Retire Fortran: there will be no new development in
Fortran; maintain legacy codes through interfaces. Develop
and/or utilize existing APIs for creating the interfaces.

UR-5.3.3. Dominant Language: migrate toward one language
(e.g., C++)

UR-5.3.4. Coding Standards: adhere to a common modern
coding standards:

UR-5.3.4.1. Coding Style: develop a common coding style and set
of rules for all core developers where clarity and simplicity is
emphasized.

 URD (version 1.3) 7/11/2004

UR-5.3.4.2. Header Files: all numerical constants will be in one
script or header file or an interface will be developed. Header
files may not be univeral in a multilanguage environment. It
may not be possible to give the same_ header file to C++,
Fortran, and Python, so that an _interface is needed.

UR-5.3.4.3. Interfaces: interface definitions in releas versions will

be unchangeable; effect change only by defining new interfaces
and deprecating old ones. All interfaces will be versioned, so
that they can be uniquely identified.

UR-5.3.5. Configuration and Compilation Tools: use automatic,
cross-platform configuration and compilation tools (e.g.,
Autoconf, CMake).

UR-5.4. Standard Development Environment: use a standard combination
of platform/OS/compiler (e.g., Linux OS and Intel compilers) for
development purposes to eliminate potential problems between
developers due to hardware and software differences. This is for
development purposes only. The use of additional environments will be
encouraged during a late stage of development to encourage portability.

UR-6. Software Maintenance

UR-6.1. Software Configuration Management: utilize a configuration
management system to track the code changes with proper
notifications and controls on the code repository (e.g., CVS,
Subversion).

UR-6.2. Bug Tracking and Resolution: use automatic tools for tracking
defects and enhancements (e.g., Bugzilla, Mantis).

UR-6.3. Collaborative Environment: use web-based collaborative software
development tools (e.g., GForge, SourceForge or www.mfix.org–style
tools).

UR-6.4. Code Conformance Detection: automatic checking of code for
conformance to design, interface definitions, etc.

UR-6.5. Process Plan: implement a well defined processes for 1) change-
control, 2) review, and 3) problem reporting and correction

UR-6.6. Traceability: make code changes traceable to a person and
implementation date by using, for example, CVS plus a well defined
development process.

UR-7. Testing and Verification

UR-7.1. Automatic Testing: the new solver framework will be automatically
tested using standard unit-tests for individual solution functions and,
eventually, for the solver as a whole. Unit tests and a suite of
benchmark cases will be developed along with the code. An automatic

 URD (version 1.3) 7/11/2004

testing script will run these tests exhaustively and report any
deviations.

UR-7.1.1. Unit-Tests:
UR-7.1.1.1. Individual Solution Functions:
UR-7.1.1.2. Solution as a Whole:

UR-7.1.2. Benchmark Cases:
UR-7.2. Internal Checking of Conserved Quantities: built into the solver

will be optional sanity checks for conservation of mass, energy,
species, etc.

UR-7.3. Debugging Environment: an effective debugging environment will
be an integral part of the new solver development. Each developer
and future user should have access to the initialization files, debug
options, etc., to allow them to examine the internal workings of the
code more easily.

UR-7.4. Test Harness: within the solver, a simple method of unit testing
will be available. This will allow subcomponents of the solver to be
tested independently of the rest of the code. This will make the
testing of code changes more efficient.

UR-7.5. Code Accuracy Tests: different approaches will be used to test the
veracity of the solver results.

UR-7.5.1. Analytical Methods: comparisons can be made to
analytical solutions.

UR-7.5.1.1. Closed-Form Solutions: for single-phase flow only
UR-7.5.1.2. Synthetic Solutions: for multiphase flow, synthetic

solutions can be generated by forcing functions.
UR-7.5.1.3. High-Resolution: a suite of high-resolution single-

phase and multiphase numerical solutions can be used for
comparison.

UR-8. Documentation

UR-8.1. Code Documentation: code documentation will be generated
automatically by using suitable software, such as Doxygen or Cocoon.
The documentation will be extracted from the code itself by using
unobtrusive, sentinel strings. The documentation will be generated in
a standard format such as Texinfo, which can be converted into a
variety of formats such as html using Texi2html. The users will be
able to browse the resulting documentation using a web page, which
allows navigation using an index and cross-references.

UR-8.2. User Documentation: one or two levels of user documentation
(e.g., basic and advanced) will be automatically generated from the
code documentation, based on a protocol defined for extracting user
documentation from code documentation. The documentation will
contain code fragments and equations generated from the code.

 URD (version 1.3) 7/11/2004

UR-9. Target Hardware and Operating Systems
UR-9.1. Operating Systems to be Supported

UR-9.1.1. Linux: the complete package (including third party
components) must be independent of any Linux flavors and/or
distribution (RedHat, SUSE, Debian, Scyld Beowulf Clustering,
etc.).

UR-9.1.2. UNIX Flavors: UNICOS/mp, HP-Compaq OSF.
UR-9.1.3. Windows 2000 / XP: ensure the compatibility of third

party components to be used under Windows environment.
UR-9.1.4. Others: IBM SP, Cray X-1, Red Storm, …

UR-9.2. Hardware Related Issues:

UR-9.2.1. Processor Architectures: differences between 32-bit
versus 64-bit processor based architectures may require some
programming conventions to be developed and implemented at
an early stage (e.g., use of long integers everywhere to avoid
32 bit versus 64 bit integer definition differences).

UR-9.2.2. Single Processors Optimizations: ensure all types of
optimizations are achieved on single processor execution before
proceeding with parallel performance and scalability. For
example, determine the suitable flags for compiler-based
optimizations.

UR-9.2.2.1. Super-Scalar Processors: new trends in processor
technology (super-scalar processors) and limited on-die cache
will require algorithmic modifications for effective cache use.

UR-9.2.2.2. Vendors: differences between Intel and AMD
processors and associated optimizations may require algorithmic
changes and/or different set of compiler flags to be activated.

UR-9.2.3. Vector Processors: allow effective use of pipelines on
vector processors via code modifications.

UR-9.2.4. Clusters: evaluate evolving network topologies and
cluster technologies to determine algorithmic enhancements to
take advantage of the new technologies, e.g., Blade systems
with InfiniBand interconnect topology.

UR-9.3. Parallel Job Granularity: more sophisticated system software will be
required to effectively utilize larger clusters.

UR-9.3.1. Linux clusters with 100s of processor: machines of up
to this size are available at most university and research
laboratories. Many are quite small. Even with large clusters,
only a small number may be available or the user may chose to
run many jobs on different segments, rather than one large job.

UR-9.3.2. Machines with 1000s of Processor: large machines will
be available at national laboratories or supercomputer centers.

http://www.scyld.com/PR_040406.html

 URD (version 1.3) 7/11/2004

UR-9.4. Performance Target: simulate the time-averaged behavior of a
gasifer (1 m dia x 4 m high), including complex chemistry, in a day.

UR-10. Code Execution

UR-10.1. Run-Time Error Diagnostics : error detection in input data and
diagnostic tools during run time. Tools will allow trace back to root
cause in case of runtime errors such as floating-point exceptions
during calculations, communication errors between components, etc. A
small piece of software that is embedded in the core code (e.g., similar
to a Netscape Quality Feedback agent) could be developed to acquire
what was happening when the code crashed (e.g., the stack trace,
memory, OS environment) and report to developers. This approach will
enable the users to easily participate in quality improvement. To avoid
frequent reporting of trivial problems, the agent software could be set
to report only certain type of errors.

UR-10.1.1. Input Data: use an advanced diagnostic algorithm to
identify input data related problems during the setup phase.

UR-10.1.2. Runtime Errors: tools will allow trace back to root
cause in case of runtime errors.

UR-10.2. Solution Steering: allow full fledged solution steering capability with
acceptable overhead. This feature can be categorized under two
independent stages:

UR-10.2.1. Real Time Monitoring: enable the user to inspect and
interpret the state of an ongoing simulation. For this purpose
provide:

UR-10.2.1.1. Data Streaming: allow 1) real time streaming of user
specified parameters (e.g., residuals, specific terms in equations
or field variables in a range or subset of cells) to monitor the
overall progress, 2) display of streamed data graphically or as
text, 3) probing of current field variables interactively.

UR-10.2.1.2. Data Visualization: real time visualization and/or post
processing of the solution as the run is progressing (in various
formats, as for example, animation, line graphs, pV3,
CUMULVS).

UR-10.2.2. Computational Steering: enable the user to interact
with the simulation in order to modify the simulation runtime
parameters and/or input parameters (e.g., POSSE, CUMULVS).
Provide option to achieve:

UR-10.2.2.1. Real-Time Steering: use client software that attach to
(and detach from) running processes of the simulation on a
given range of processors.

UR-10.2.2.2. Semi-Interactive Steering: force the ongoing
simulation to reread a run-time control parameter file to update
modified parameters and/or reread the input file.

 URD (version 1.3) 7/11/2004

UR-10.3. Check Point Recovery (CPR): enable the user to gracefully recover

from an abnormal termination during production runs. Fault tolerance
through either checkpoint recovery or algorithmic implementation has
become a critical requirement for conducting production runs at high
performance computing centers (e.g., at Pittsburgh Supercomputing
Center, the rule is “no CPR no production run access”). Some issues to
address for acquiring fault tolerance through check pointing:

UR-10.3.1. CPR Files and Overhead: provide a separate set of
files for CPR, in addition to the standard restart and visualization
files. Minimize the overhead introduced during CPR file
generation. This should be resilient to failure of any number of
processes.

UR-10.3.2. Location of Check Point: the size and contents of
check point files may vary depending on how it is implemented.
MFIX should generate check point files at a stage of execution
with the lowest memory footprint that would be sufficient for a
full recovery.

UR-10.3.3. Hardware Dependence: MFIX should use a portable
check pointing capability. Compare application level CPR versus
kernel level CPR to determine ease of implementation versus
portability.

UR-10.3.4. Interaction with Solution Steering: CPR should
interact with solution steering system transparently to allow the
user to continue the simulation from an earlier stage, should the
solution diverge as a result of a recent steering attempt.

UR-10.4. Interaction with Batch Queuing Systems: enable adequate interface
and interaction capability with the commonly used batch queuing systems
at high performance computing centers.

UR-10.5. Performance Monitoring: routinely provide performance monitoring,

internal profiling and performance reporting at the end of a run.
UR-10.5.1. Single Node Profiling: provide integrated profiling

algorithms that can accesses the built-in hardware to measure
performance on a processor using a Performance Application
Programming Interface (PAPI) library.

UR-10.5.2. Parallel Performance Profiling: provide an interface to
tools like Tuning and Analysis Utilities (TAU) for performance
benchmarking for parallel runs.

UR-11. Output Data

UR-11.1. Output File Format and Content: some of the important
requirements for the output file format and its content are:

 URD (version 1.3) 7/11/2004

UR-11.1.1. Hardware Independence: The output data files should
be readable (without any translation) on all supported hardware
platforms.

UR-11.1.1.1. Integer encoding: user should not have to worry
about big endian/little endian as well as 32 or 64 “bited-ness”.
Either choose a standard format that takes care such things with
its read/write library automatically, or the code should be able to
detect the "endian-ness" of the data and translate appropriately.

UR-11.1.1.2. Record length: user should not have to worry about
"recl=512" versus "recl = 128" as in Fortran.

UR-11.1.2. Unique Output Format: e.g., HDF, CGNS.
UR-11.1.3. Translator: for reformatting data into standard file

formats (e.g., vtk).
UR-11.1.4. Term Selection: ability to write out the values of

various terms in the equations.
UR-11.1.5. Subsets: ability to write out a subset of data (e.g., on

a coarse grid, certain planes, etc.)
UR-11.1.6. Compression: allow automatic compression of data

sets, with choice of lossy or loss-less.
UR-11.1.7. Unit Conversion: ability to write out data in another

supported unit system.
UR-11.2. Distributed I/O: in order to move away from “the root node handles

all” type storage, use a distributed input and output capability. I/O
environments are still far from settled on parallel computers.
Depending on the computer and configuration, node-local scratch
disks and/or a global parallel file system may be required, and the
performance of both types of resources can vary widely. Portably may
require the ability to support a variety of configurations, necessitating
an abstraction layer to make the various environments look uniform to
the program. netCDF and HDF both have parallel implementations
now.

UR-11.2.1. Use Parallel file system (e.g., LUSTRE, PVFS for Linux
platforms, netCDF, HDF).

UR-11.2.2. Data Redistribution: allow for the redistribution of
data; e.g., a simulation initially run on 100 processors may need
to be restarted on 80 processors.

UR-11.2.3. Statistics: ability to accumulate time-averages or
higher order statistics on the fly.

UR-11.2.4. Gallery: maintain a database of simulations for easily
reusing results from old simulations or comparing simulations.

UR-11.3. Metadata - the output file, or an auxiliary file, should include data
about the data or "metadata" to enable efficient post-processing.

 URD (version 1.3) 7/11/2004

UR-11.4. Variable Access - the metadata should describe the location of
variables and times so that the retrieval of data can be accomplished with
one seek and one read per file.

UR-11.5. Content List - the metadata should provide a list of the variables
stored in the dataset along with information about the variable. This
information should allow a general-purpose post-processor that has no
specific knowledge of MFIX to read and work with the data. Adding new
variables to the MFIX output will therefore require no changes in the
post-processing packages. The variable information should include, at a
minimum, the name; the type (integer, float, etc.); vector length
(typically 1 or 3); a brief description; the units; and the times at which
the variable is available.

UR-11. Statistics - the metadata should provide the minimum, maximum,
and average for each variable. This information should be developed as
the data is written, and then added to the metadata at the end of the
run. If needed, a final processing step may be performed to integrate the
accumulated statistics from multiple processors.

6.

UR-12. Post-Processing and Visualization – in most cases, "post-
processing packages" means both interactive visualization and calculation
packages as well as off-line packages.
UR-12.1. Data Export/Import Features: ability to export/import computed

data in various forms.
UR-12.1.1. Tabulated Form: ASCII or binary

12.1.1.1.1. Numerical Post Processor: extract data in tabular form
(e.g., post_mfix).

12.1.1.1.2. Excel: be able to import (export) data from (to) Excel.
UR-12.1.1.2. Interactive Data Mining: e.g., point and select range

of grid locations to get the values of the field variables or inquire
about the location of the highest temperature.

UR-12.1.1.3. Solution Steering: on-the-fly visualization capability
for solution steering.

UR-12.2. CFD Calculator: an interactive or scripting based CFD calculator
module that can access the visualized data to calculate variety of
scalar and vector functions, for example, compute vorticity, integrate
user specified area to compute mass flow rate, compute weighted
averages.

UR-12.3. Reduced Order Models: facilitate the generation of reduced order
models.

UR-12.4. Interactive Remote Visualization: capability to employ geometric
compression of rendered 3D visualization images for presentations in
PowerPoint and/or remote visualization with any Internet browser over
low bandwidth network access such as 56 Kbps dial-up. (e.g., 3D
Compress Technologies)

 URD (version 1.3) 7/11/2004

UR-12.5. Collaborative Visualization Environment (CVE): Enable a distributed
visualization environment for users that are geographically dispersed
across the country or around the world.

UR-12.6. Multiple Datasets - the post-processing packages should allow any
number of MFIX datasets to be used. For example, a visualization
package should be able to plot, side by side, the same variable from
different runs or a calculator should be able to apply a formula using
variables from different datasets. The formula may, for example,
calculate the mean and standard deviation of the difference between
the two datasets.

UR-12.7. Multiple Views - the visualization should include an option for one
to six synchronized views. The contents of each view can be any
combination of visualizations using any combination of variables. The
cameras (i.e., viewpoint and look direction) of the different views
should be synchronized but with an option to temporarily move one
view's camera independently.

UR-12.8. Animations (replaces URD-12.1.2.1) - these requirements concern
several types of automatic sequencing over time and other
parameters.

UR-12.8.1. Time Selection - the post-processing packages should
provide multiple methods for selecting the simulation times, in
seconds, at which tasks are performed. The methods may
include, for example, combining all times from all variables in all
the datasets in use; selecting only the times used by one
variable in one dataset; or selecting the times generated with a
user-supplied start, stop and increment. Linear interpolation
should be used to generate a variable needed at a time at which
it was not recorded. There should be an option for temporarily
limiting the tasks to a subset of the list of times.

UR-12.8.2. Time Animation - the post-processing packages
should provide a mechanism for stepping through the list of
times. Interactive packages should include an option to repeat
the loop indefinitely.

UR-12.8.3. Parameter Animation - the post-processing packages
should provide loops for most parameters. For example, they
should provide a loop over the isosurface value using user-
supplied values for the minimum, maximum and number of
steps.

UR-12.8.4. Camera Location Animation - the post-processing
packages should provide tools for smoothly "flying" the camera
through a series of user-selected positions. The list of positions
should be editable and reusable.

UR-12.8.5. Recording Animations - the post-processing packages
should provide a mechanism for recording all types of

 URD (version 1.3) 7/11/2004

animations (over time, parameter and camera location). The
recording should use a standard, efficient format (such as
MPEG2) or should use a format that can be converted offline
into a standard format.

UR-12.8.6. Saving Parameters - a mechanism should be available
for saving and recalling all visualization and calculation
parameters. These will include the selection of variables,
calculations, visualization methods and their parameters, and
animation parameters including camera positions. A file of such
information is often called a "script". The script should be
editable.

UR-12.8.7. Offline Recording - a mechanism should be provided
to produce an image or movie offline using saved parameters
(see URD-12.8.6). This mechanism should be able to create a
"standard movie" of a dataset that could be reviewed by the
researcher before further investigation is undertaken. This
mechanism should also be able to create a "standard image set"
that could be used to provide periodic images from a running
simulation.

UR-13. Software Distribution

UR-13.1. An Open Source method will be used for software distribution. The
following licensing models will be considered:
• Public domain, uncopyrighted.
• Copyleft.
• GNU General Public License

(http://www.gnu.org/copyleft/gpl.html).
• LGNU.
• GFDL.
• The University of Utah Public License

(http://www.cs.utah.edu/~gk/teem/txt/LICENSE.txt).
UR-13.2. Open Source Core: all the required software components with a

certain core capability will be Open Source, available as a single
package.

http://www.gnu.org/philosophy/categories.html#PublicDomainSoftware
http://www.gnu.org/copyleft/gpl.html
http://www.cs.utah.edu/%7Egk/teem/txt/LICENSE.txt
http://www.cs.utah.edu/%7Egk/teem/txt/LICENSE.txt

 URD (version 1.3) 7/11/2004

BIBLIOGRAPHY

Autoconf: an extensible package of m4 macros that produce shell scripts to

automatically configure software source code packages.
 (http://www.gnu.org/software/autoconf/)

Babel, tools developed to address the language interoperability problem using

Interface Definition Language (IDL) techniques
(http://www.llnl.gov/CASC/components/babel.html; pig-Latin version -
http://www.gnu.org/software/autoconf/autoconf.alt-pl.html)

Bugzilla: a Defect Tracking System or Bug-Tracking System which allows

developers to keep track of outstanding bugs in their product effectively.
(http://www.bugzilla.org/)

CMake, the cross-platform, open-source make system

(http://www.cmake.org)

Cocoon: processes C++ include files and produces a net of relocatable web

pages that document the libraries, classes, and global functions and types
that are found in them.
(http://www.stratasys.com/software/cocoon/).

CUMULVS : Collaborative User Migration, User Library for Visualization and

Steering
(http://www.csm.ornl.gov/cs/cumulvs.html)

Doxygen: a documentation system for C++, C, Java, Objective-C, IDL (Corba

and Microsoft flavors) and to some extent PHP, C# and D.
(http://www.stack.nl/~dimitri/doxygen/index.html)

GForge: an Open Source collaborative software development tool, which

allows the management of software development projects
(http://gforge.org)

LUSTRE: a novel storage and file system architecture and implementation
suitable for very large (10,000 node) clusters. This is Open Source software,
developed and maintained by Cluster File Systems, Inc.
(http://www.clusterfs.com/) under the GNU General Public License.

 (http://www.lustre.org)

http://www.llnl.gov/CASC/components/babel.html
http://www.gnu.org/software/autoconf/autoconf.alt-pl.html
http://www.bugzilla.org/
http://www.cmake.org/
http://www.stratasys.com/software/cocoon/
http://www.csm.ornl.gov/cs/cumulvs.html
http://www.stack.nl/%7Edimitri/doxygen/index.html
http://www.clusterfs.com/

 URD (version 1.3) 7/11/2004

Mantis: a web-based bug tracking system.
(http://www.mantisbt.org/index.php)

Ogen, an overlapping grid generator
(http://www.llnl.gov/casc/Overture/henshaw/documentation/ogen.pdf)

Pascucci, V., Laney, D.E., Frank, R. J., Scorzelli, G., Linsen, L., Hamann, B.

and Gygi, F. “Real-time monitoring of large scientific simulations”
Symposium on Applied Computing archive; Proceedings of the 2003 ACM
symposium on Applied computing Melbourne, Florida pp. 194 - 198(2003)
ISBN:1-58113-624-2

http://portal.acm.org/citation.cfm?id=952573&dl=ACM&coll=portal&CFID
=21560739&CFTOKEN=58529735

POSSE (Portable Object-Oriented Scientific Steering Environment)

http://www.anirudh.net/phd/posse/index.html

PVFS (Parallel Virtual File System): stripes file data across multiple disks in
different nodes in a cluster

 (http://www.parl.clemson.edu/pvfs/ or http://www.pvfs.org/pvfs2/)

Scyld Beowulf Linux Cluster Operating System

(http://www.scyld.com/PR_040406.html)

SourceForge: the largest

Open Source software development website with the largest
repository of Open Source code and applications available on the
Internet. SourceForge.net provides free services to Open Source
developers.

 (http://sourceforge.net/)

Subversion version control software

(http://subversion.tigris.org/)

Tammy Dahlgren, Tom Epperly and Gary Kumfert. CCA Components in

Fortran 90 Using Babel. Common Component Architecture Forum, Salt
Lake City, Utah. April 10-11, 2003. Also available as Lawrence Livermore
National Laboratory technical report UCRL-PRES-152699.

TAU (Tuning and Analysis Utilities)

http://www.cs.uoregon.edu/research/paracomp/tau/ta

Texinfo: uses a single source file to produce output in a number of
formats, both online and printed (dvi, info, html, xml, etc.).
(http://www.gnu.org/software/texinfo/)

http://portal.acm.org/toc.cfm?id=SERIES179&type=series&coll=portal&dl=ACM&CFID=21560739&CFTOKEN=58529735
http://portal.acm.org/citation.cfm?id=952573&dl=ACM&coll=portal&CFID=21560739&CFTOKEN=58529735
http://portal.acm.org/citation.cfm?id=952573&dl=ACM&coll=portal&CFID=21560739&CFTOKEN=58529735
http://www.anirudh.net/phd/posse/index.html
http://www.scyld.com/PR_040406.html
http://www.cs.uoregon.edu/research/paracomp/tau/ta
http://www.gnu.org/software/texinfo/

 URD (version 1.3) 7/11/2004

Texi2html: a Perl script that converts Texinfo into a highly configurable
HTML.
(http://www.mathematik.uni-kl.de/~obachman/Texi2html/)

3D Compression Technologies
http://www.3dcompress.com

http://texinfo.org/
http://w3c.org/MarkUp/
http://www.mathematik.uni-kl.de/%7Eobachman/Texi2html/
http://www.3dcompress.com/

 URD (version 1.3) 7/11/2004

GLOSSARY

CAD Computer Aided Design
CAPE-OPEN Computer Aided Process Engineering – Open interface

standards used in process simulation.
CCA Common Component Architecture
COM Component Object Model
CORBA Common Object Request Broker Architecture
CPR Check Point Recovery
DEM Discrete Element Method
FEM Finite Element Method
FVM Finite Volume Method
IDL Interface Definition Language
MFIX Multiphase Flow with Interphase eXchange
NETL National Energy Technology Laboratory
ORNL Oak Ridge National Laboratory
OS Operating System
PAPI Performance Application Programming Interface
PDE Partial Differential Equation
POSSE Portable Object-Oriented Scientific Steering Environment
PSC Pittsburg Supercomputing Center
PSE Problem Solving Environment
PSC Pittsburgh Supercomputer Center
SCIDAC Scientific Discovery through Advanced Computing
Script A high level domain-specific language
TSTT Terrascale Simulation Tools and Technology

 URD (version 1.3) 7/11/2004

Distribution List

Sofiane Benyahia ... Sofiane.Benyahia@netl.doe.gov
David Bernholdt .. bernholdtde@ornl.gov
Dhanunjay Boyalakuntla .. Boyalakuntds@ornl.gov
Raymond Cocco ..rcocco@dow.com
Lewis Collins .. rlc@fluent.com
Anthony Cugini ... Anthony.Cugini@netl.doe.gov
Sebastien Dartevelle ... sdart@lanl.gov
Stuart Daw...sdaw@ornl.gov
Juray De Wilde ...Juray.DeWilde@UGent.be
Brian Dotson ... Brian.Dotson@netl.doe.gov
Kent Eschenberg .. eschenbe@psc.edu
Rodney Fox .. rofox@iastate.edu
Aytekin Gel ..aike@aeolusresearch.com
Christine Hrenya .. Christine.Hrenya@colorado.edu
Joseph McCarthy ... mccarthy@engrng.pitt.edu
Philip Nicoletti ... Philip.Nicoletti@netl.doe.gov
Thomas Norton ... tsn@fluent.com
Nicholas Nystrom ... nystrom@psc.edu
Thomas J. O’Brien .. Thomas.OBrien@netl.doe.gov
Timothy J. O’Hern ... TJOHern@sandia.gov
Sreekanth Pannala .. PannalaS@ornl.gov
Michael Prinkey ... Michael.Prinkey@netl.doe.gov
William Rogers ...William.Rogers@netl.doe.gov
Robert Romanosky ..Robert.Romanosky@netl.doe.gov
Adel Sarofim ... sarofim@reaction-eng.com
Jennifer Sinclair .. jlds@ecn.purdue.edu
Philip Smith .. smith@opus.utah.edu
Sundar Sundaresan ..Sundar@Princeton.edu
Madhava Syamlal ... msyaml@fl.netl.doe.gov

mailto:Sofiane.Benyahia@netl.doe.gov
mailto:Boyalakuntds@ornl.gov
mailto:sdaw@ornl.gov
mailto:Thomas.OBrien@netl.doe.gov
mailto:TJOHern@sandia.gov
mailto:Robert.Romanosky@netl.doe.gov
mailto:smith@opus.utah.edu

	 VERSION HISTORY
	Reason for changes:
	 INTRODUCTION
	
	GOALS AND DEFINITIONS
	1. Primary Programmatic Goals
	2. Secondary Programmatic Goals
	3. Software Design Goals
	4. Definition of the Targeted User
	5. Definition of the Application Domain
	6. Definition of Code Life-Cycle
	USER REQUIREMENTS
	UR-1. Geometry
	UR-2. Meshing
	UR-3. Physics Representation
	UR-4. Numerical Solution Scheme
	UR-5. Software Development
	UR-6. Software Maintenance
	UR-7. Testing and Verification
	UR-8. Documentation
	UR-9. Target Hardware and Operating Systems
	UR-10. Code Execution
	UR-11. Output Data
	UR-12. Post-Processing and Visualization – in most cases, "post-processing packages" means both interactive visualization and calculation packages as well as off-line packages.
	UR-13. Software Distribution

	 BIBLIOGRAPHY
	 GLOSSARY

