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Motivation

• Previous studies (e.g., presentation by van 
Ommen et al, 2004) indicate simulations do not 
scale as expected (e.g., according to Glicksman's
dimensionless groups)
− Counter intuitive results that full-set yields poorer 

dynamical similarity than reduced-set
• Are additional physics used in the code?
• Are numerical errors involved?
• Is there a problem with algorithm implementation?

• Can scaling studies be used as CFD software 
verification?
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The dimensionless scaling groups 
proposed by Glicksman have been 
widely used for fluidized beds

• Theoretically derived from equations of motion (including 
kinetic theory closure relations*)

• Verified experimentally**
• Provides logical approach for sensitivity analysis and scaling 

devices
• Should be possible to extrapolate bed design/operation over 

large changes (e.g., extrapolate a process from earth to the 
Moon or Mars)
− If additional physics is not introduced which does not scale with 

these groups

*Hrenya, C. et al., Powder Technology 116 2001 190–203
**Louge, M. et al., Chemical Engineering Science 59 (2004) 2633 – 2638
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• Full Set*

• Simplified set*

*Also included: bed geometry; particle sphericity, size distribution

Original dimensional analysis produced 5+ 
key groups*, but Glicksman proposed 
reduced set of 4+
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Very important parameter

Glicksman combined these 
two parameters into one
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We are using MFIX to evaluate consistency 
with the Glicksman scaling groups for 
selected fluidization cases

• Cases:
− 1) Fully developed upward dilute solids flow in a 

channel
− 2) Uniform bubbling bed
− 3) Bubbling bed with a single jet

• Approach:
− We pick a reference case of each of the above 

applications
− Vary particle properties, gas properties or gravity to 

match the non-dimensional groups according to 
Glicksman’s full set

− Compare the results with properly scaled time (time ~ 
length/velocity)
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Case 1: Fully-developed upward 
dilute gas/solids flow in a 1-D channel

g

10 cm width

Glass beads :  2.4 g/cm3 density
120 micron diameter
0.95 restitution coef.

Gas sup. Velocity fixed at: 5.0 m/s
Avg Solids volume fraction fixed at: 3%

Upward flow 
with periodic 
boundaries

1-D channel has 1 computational 
cell in flow-wise direction.

Jenkins wall BC parameters:
Particle-wall rest. coef. = 0.7
Coefficient of friction = 0.2
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The scaling laws are verified for the 
simple channel flow

a- Solids volume fraction profiles
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b- Granular Temperature Profiles
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c- Gas axial velocity profiles
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d- Solids velocity profiles
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Case 2: 2D Uniformly bubbling 
fluidized bed*

g = 9.8 m/s230 or 15 cm width

Sand particles :  2.6.103 or 2.01.103 kg/m3

density
396 and 198 μm diameter

0.8 restitution coef.

Gas density: 1.2 or 0.93 kg/m3

Gas viscosity: 1.82.10-4 and 4.98.10-4 poise

60 or 30 cm 
height

Fluidization Air = 
0.566 or 0.4 m/s

*van Ommen et al, 2004 AIChE annual meeting

Same number of 
computational cells

20 or 10 cm
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Power Spectrum Density (PSD)

• Reference and 
scaled beds are 
not dynamically 
similar

• To explore this 
discrepancy we 
will now look at 
a simpler 
system

A – Reference
B – Scaled
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Case 3: 2D bubbling fluidized bed 
with a single jet*

g = 9.8 and 4.9 m/s240 and 80 cm width

Sand particles :  2.6 g/cm3 density
0.5 and 1 mm diameter

0.8 restitution coef.

Gas density: 1.2 kg/m3

Gas viscosity: 1.8.10-4 and 3.6.10-4 poise
Jet velocity

5.77 m/s

~60 and 120 
cm height

Aux. air
~0.3 m/s

*Gidaspow, D.,1994. Multiphase flow and fluidization, pp. 158-162

Same number of 
computational cells
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Time Series Analysis (PSD and CDF 
for cycle times)

Why are these different even for a simple system?

A – Reference
B – Scaled

A – Reference
B – Scaled

P-value – 0.37
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Bubbling fluidized bed with a jet – Initial 
bubble formation

Standard case
L

Full set
2 x L 

Ar mismatched
2 x L
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Bubbling fluidized bed with a jet
- subsequent breakup and interaction

Standard case
L

Full set
2 x L 

Ar mismatched
2 x L
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Time-series

• What can be the source of this discrepancy?
• Are there constraints in the code not considered in 

Glicksman’s scaling rules?
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Current Viscous and Plastic Theory 
Implementation

Plastic Regime

Slow flow

Strain rate independent 

Soil mechanics 
(Schaeffer, 1987)

εg=ε*

Viscous Regime

Rapid flow

Strain rate dependent 

Kinetic Theory (Lun, 
1984)

f(x) = 1

f(x) = 0
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Is the step discontinuity contributing to 
the scaling discrepancy – can we use a 
blending function?

• Blending function
− Smoother transition
− Still preserving the viscous/frictional 

stress formulation
− Bridge to address the transition region

• Benefits
− Improved convergence (papers 284d & 

301a) 
− Reduced artificial non-linearity
− Increase stability
− Possibly address the scaling 

discrepancy?
− Reduce the infinite states of the system

Full Blend

Partial
Blend

Frictional Viscous
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Bubbling bed with a jet: Did blending 
viscous and plastic stresses help?
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Bubbling bed with a jet: Did things 
change with blending viscous and plastic 
stresses? Effect on PSDs

Partial Blending Full Blending

A – Reference
B – Scaled
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Did things change with blending viscous 
and plastic stresses? Effect on CDF of 
cycle times

Partial Blending Full Blending

A – Reference
B – Scaled

•Reference and scaled beds are dynamically very similar 
•Discrepancy:

•Resolution – numerical errors?
•Longer time-series?

P-value – 0.025

P-value – 0.97
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How does this change effect freely 
bubbling bed?
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• Reference and 
scaled beds are still 
not dynamically 
similar but look 
closer

• Gas 
compressibility?

• Resolution –
numerical errors?

• Longer time-series?
• Is               a         

problem?
• Is               a         

problem, A is pre-
exponent for plastic 
solids pressure?
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B – Scaled
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Conclusions and future work
• Observed similar problems as reported by van 

Ommen with a different simulation tool (MFIX)
• Specific results:

− Good scaling in upward dilute solids flow in a channel
− Bubbling bed with jet with stress blending achieves very 

good similarity
− Uniform bubbling bed fails to achieve dynamic similarity 
− Viscous-frictional step change in dense phase may be critical 

model parameter 
• General issue:

− Need standard way to evaluate scaling behavior of codes that 
accounts for both time-averaged and dynamic features 
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Thank you for your attention!!

http://www.mfix.org
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