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ABSTRACT 
 
National Energy Technology Laboratory (NETL) has been developing advanced gas-
solids flow models and promoting their use in the design of multiphase flow reactors 
encountered in fossil energy processes for over two decades.  In addition to the successful 
use of the models to help with the design of fossil energy systems such as gasifiers, this 
research resulted in a general purpose gas-solids computational fluid dynamics code 
called MFIX.  In 2001, MFIX was made open source (http://www.mfix.org).  Since then 
over 750 researchers from 250 research institutions world-wide have downloaded the 
code, of which a recent survey has shown that at least 10% have become regular users of 
the code.  Nearly 50 % of the respondents, who have been using the code for several 
years, indicated significant success in their research with MFIX.  Over 40% of these users 
are graduate students, and the code has been used to complete several masters and Ph.D. 
theses.  The enhancements to the code resulting from the academic research have 
migrated into the main code repository, the quality of which is ensured with extensive 
testing conducted periodically. The “open source model” provides a new method for code 
verification as many eyes are able to examine the source code. The use of MFIX has gone 
beyond its originally intended applications, primarily fluidization, to others, such as 
volcanology.  This makes extensive model validation possible as different users exercise 
different configurations of the model for their applications. The “open source model” 
appears to be a particularly effective approach in the emerging field of computational 
gas-solids flow, where the theory and numerical techniques are rapidly evolving.  In 
addition to the code, the MFIX website hosts several mailing lists that foster technical 
discussions among the users; an open citation index for literature on gas-solids flows is 
also maintained. Thus the open source code acts as a vehicle for collecting, verifying and 
disseminating information, and facilitating collaboration among users.  The tools used for 
the collaboration, examples of successful transfer of information, and experiences with 
the “open source model” of information transfer and code verification are discussed in 
this paper. 
 
KEYWORDS: multiphase flow, open source development, gas-solids flow, verification 
and validation, high performance computing, computational fluid dynamics (CFD) 
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I. INTRODUCTION 
The term Open Source Software came into existence in 1998, although such software 
existed even before that [1, 2]. In the previous year a lesser known term, Bazaar 
development model was coined to label a community style software development 
process.  The open source (OS) development model enunciated by these labels has 
revolutionized business software1 development as exemplified by highly successful 
software products such as the operating system Linux and the webserver Apache. In spite 
of this demonstrated success, it appears that the OS model is rarely used for science 
software development [3]. The question whether the OS development model holds 
promise in science software development is actively being debated. To that debate we 
add the present discussion on our experience with an OS gas-solids flow code. In 
particular we discuss the impact made by an OS gas-solids flow code on research and 
education and how the code itself was enriched because of the OS development approach. 
 
It has been conjectured that scientists are reluctant to adopt the OS development approach 
for three reasons [3]: One, the extra time required for maintaining and documenting code 
is not appealing because scientists do not get credit for published open source codes. 
Scientists gain recognition through publications based on new ideas, in contrast to OS 
business software developers that gain recognition by distributing their code.  Two, 
scientists may worry about loss of revenue by freely distributing potentially 
commercializable code. This again is in contrast to OS business software developers, who 
are usually motivated to counter commercialization. Three, scientists may worry about 
loss of reputation caused by adverse comments about the code or lack of recognition 
when users do not acknowledge the OS code in their papers.  The first two reasons were 
not concerns to us when our gas-solids flow code was made open source. The code was 
being used internally at National Energy Technology Laboratory (NETL) by several 
people. So some amount of code and user documentation was necessary. Nothing more 
was done for making the code open source. Technology transfer was a greater concern 
than commercialization, for which OS method of distribution was ideally suited. The 
third was indeed a concern for the developers, and this paper will show that the 
experience turned out to be positive. 
 
The discussion in this paper pertains only to science software that is used for research.  
This should be contrasted with the use of such software for the analysis and 
troubleshooting of devices used in industry or in a lab.  In those cases the theory behind 
the software is not the object of the investigation; the   simulation results (most likely 
combined with other empirical information) is used for the design or improvement of a 
device or a process.  Commercial software is ideally suited for that type of usage because 
of the availability of a user-friendly software interface and a dedicated support team. 
Much research precedes the development of the mathematical models and numerical 
techniques that form the basis of commercial software. The research software used for 
developing the mathematical models and numerical techniques is the topic of the 
                                                 
1 The terminology business software is used for operating systems, compilers, productivity software, etc. in 
contrast to science software such as computational fluid dynamics, stress analysis etc. 
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discussion in this paper. Specifically we discuss the area of computational gas-solids flow 
where the mathematical models and their solution methods are constantly evolving.  This 
discussion is important because gas-solids flow is an active area of research where papers 
are being published based on closed (commercial and academic) and open source codes.   
 
The OS experience reported here is for the gas-solids flow code called MFIX developed 
at NETL. The information on user experience was collected from two user surveys 
(conducted to help formulate the future plans of MFIX.)  The surveys enabled us to 
determine who used the software, how it was used, how successful the users were and 
what were the significant outcome. The survey results and information on the experience 
of the developers are presented here to shed light on how well the OS development model 
worked in the case of MFIX. 
 
We start with a brief overview of open source development model in Section II.  In 
Section III we discuss the construction of science software and the role played by 
verification and validation.  And we discuss the advantages and disadvantages of using 
OS development methodology. The background and OS features of MFIX are given in 
Section IV.  The OS experience with MFIX is described in Section V.  The impact on 
research and education in computational gas-solids flow and user experiences with MFIX 
are given in that section. How MFIX itself was enriched from the open source 
development model is also discussed in that section.  The future plans of MFIX and 
concluding remarks are given in section VI.  

II. Open Source Development 
The term "Open Source Software" came into existence in 1998, coined in a strategy 
meeting triggered by Netscape's announcement of the release of Navigator source code 
[1, 2].  Open source software refers to computer software whose source code is freely 
available to study, change, and improve its design.  A number of software products was 
always freely available in the source code form (e.g., NETLIB repository, TEACH code 
from Imperial College, KFIX and KIVA from Los Alamos National Lab).  The 
distinguishing feature of the OS label is that the software is provided with a license (e.g., 
GPL, LGPL) that requires the users to follow some simple rules (e.g., inclusion of GPL 
license header in each source file). This type of licensing played a crucial role in the 
development of open source software products. Furthermore a new way of developing 
and maintaining software, made possible by Internet and identified by Raymond [4], 
made a big impact in the world of business software. 
 
Raymond calls the new model the Bazaar model and contrasts it with the traditional 
Cathedral model used by commercial software developers.  These models originate from 
opposing views about software debugging [4]. In the Cathedral model the software is 
developed by a few experts; every effort is made to release the software only after all the 
bugs are fixed.  Thus the users and developers are delineated into two separate groups. 
 
In the Bazaar model the code is developed over the Internet with the full participation of 
the users. Raymond credits Linus Torvalds for the invention of this process: "… Linus's 
cleverest and most consequential hack was not the construction of the Linux kernel itself, 
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but rather his invention of the Linux development model" [4].   Raymond claims that 
bugs will be discovered at a rapid rate in this model because the source code is available 
for public testing, scrutiny, and experimentation.  In contrast, an inordinate amount of 
time and energy is spent by a few developers hunting down bugs in the Cathedral model.  
In the Bazaar model the boundary between developers and (at least some) users blur. 
Raymond predicts that, although individual vision and brilliance will matter during the 
initiation of software projects, software will increasingly be developed in an open-source 
manner with full user participation in the future. In this paper we will use the terminology 
OS development, synonymous to Bazaar model, to mean the availability of the software 
in source code form as well as its development in full public view, promoting user 
participation globally. 
 
All the evidence that support the open source development model, however, comes from 
business software products which are comparatively large (millions of lines of code) and 
have a large number of users (thousands). Science software products are relatively small 
(thousands of lines of code) with a smaller user base (tens). So does the OS development 
model have any advantages in science software development?  It turns out that it does for 
the reasons cited by Raymond, but for an even more important reason discussed in the 
next section. 

III. Open Source Development in Science 
Before we can discuss the advantages of OS development of science software, we will 
need to discuss how such software is constructed and the role played by verification and 
validation. The term verification is an equivalent of debugging; the term validation, 
however, applies to the underlying mathematical model and, therefore, transcends 
debugging. 
 
The subject of verification and validation of computational fluid dynamics software has 
been discussed in a number of papers [e.g., 5, 6, and 7].  To focus our discussion we use 
Figure 1, which is a modified form of a figure cited by Oberkampf and Trucano [5].  The 
purpose of science software is to describe a useful part of reality (e.g., gas-solids flow), 
expressed by an underlying mathematical model and an associated numerical technique, 
so that the software can be used for analyzing, designing and troubleshooting devices.  
The mathematical model, expressed in the language of partial differential equations 
(PDE), can be written concisely [e.g., 9]. A crucial step in mathematical modeling 
research is confirming whether the mathematical model accurately describes the relevant 
part of reality. This step is called validation and is defined by American Institute of 
Aeronautics and Astronautics (AIAA) as “the process of determining the degree to which 
a model is an accurate representation of the real world from the perspective of the 
intended uses of the model” [5].  This is done by solving the mathematical model and 
comparing the solution with experimental data.  Simple mathematical models can be 
analytically solved and the solution compared with data to establish the validity of the 
model, which we call analytical validation.  This is rarely possible with gas-solids flow 
models, and hence the boxes reality and mathematical model are connected with a 
dashed-arrow. Note that it is trivial to establish that two mathematical models are 
identical; it can be done simply by comparing the governing equations. We make this 
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Figure 1 Verification and validation of computational software [5] 
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remark because it is important to know whether two published mathematical models are 
the same. We will show later that it is nontrivial to establish the equivalence of models by 
using numerical solutions. 
 
To obtain solutions from complex mathematical models, first the mathematical model is 
expressed in a solvable form called a computational model, consisting of the discretized 
PDE and an algorithm for solving the discretized equations.  The computational model 
can be written only much less concisely and accurately [e.g., 8]. It is less concise because 
details extraneous to the mathematical model need to be included (e.g., discretization 
methods, consideration of mesh topology, solution technique). It is much less accurately 
written (in a practical sense) because researchers often leave out details of the 
computational model in the documentation (e.g., how a certain average is computed or a 
limit is determined when a term becomes singular).  So for a given mathematical model it 
is not easy to directly establish that the corresponding computational models are 
equivalent. 
 
The computational model written in a computer language is the computational software.  
This is not a direct translation. The software contains much more information than that 
contained in the computational model, such as input and output processing, error 
checking, guarding against round off errors, and so on. The computational software, 
therefore, becomes voluminous; for example the mathematical model in MFIX is written 
in about 25 pages, say 1,000 lines of mathematical code [9], where as the corresponding 
software contains about 100,000 lines of FORTRAN code (even excluding data files and 
post processing codes).  Unlike the computational model, the computational software is 
always complete. It has all the details available in one place: the source code.  Developers 
are meticulous about ensuring the accuracy of the code, although they are less careful 
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about documenting the computational model. Even when a developer carefully 
documents the computational model at some point in time, the inevitable evolution of the 
computational software soon makes that documentation obsolete. For a given 
computational model, however, it is impossible to directly establish that the codes of two 
computational software are equivalent.  
 
Of course, the difficulty mentioned above is merely theoretical; nobody attempts such a 
comparison of computational software.  In reality researchers are only interested in 
comparing two mathematical models, and a two step verification process is used to 
establish the equivalence of the computational software with the mathematical model.  
The term verification is defined by AIAA as “the process of determining that a model 
implementation accurately represents the developer’s conceptual description of the model 
and the solution to the model” [5]. In the solution verification step the developer ensures 
that the computational model gives the solution to the mathematical model within a 
specified tolerance. For completing this step, access to the source code is not essential. In 
the code verification step the developer ensures that the computational model is correctly 
translated into computer code.  Access to the source code is essential for completing this 
step. Once the computational software is verified it is considered to be the equivalent of 
the mathematical model. The solution given by the computational software is then 
considered to be the solution of the mathematical model and can be used to compare two 
mathematical models or a mathematical model with reality. 
 
The verification of complex software is a crucial and laborious endeavor, which is 
practically never complete, especially when the theory and numerical techniques are 
evolving as in gas-solids flow [7].  Every time the theory or the numerical technique in 
the software is changed, bugs invariably get introduced. So the presence of a large 
community of users engaged in the verification and validation of such complex software 
is an advantage.  This is an advantage readily enjoyed by commercial software.  The user 
base of OS software must reach a critical mass for the OS software to enjoy this 
advantage. Then OS software offers additional advantages as discussed in the following 
paragraphs. 
 
The solution verification step consists of comparing solution given by the code to 
analytical solutions or highly accurate numerical solutions, to ensure that the errors 
caused by spatio-temporal discretization, solution procedure, and round-off are within 
acceptable limits. The mathematical model of the complexity expressed in MFIX cannot 
be verified in its entirety through solution verification. So solution verification is done for 
parts of the model in isolation (e.g., parabolic flow profile, convection of a species, 
chemical reactions in a plug-flow configuration).  The breadth of such studies expands 
when a community of users conducts solution verification studies.  The results of such 
studies (e.g., species mass balance, momentum deficit) helped fix bugs in MFIX. 
Although both closed source and OS software give users equal opportunity to conduct 
solution verification, OS software gives the user the ability to identify and fix bugs in the 
source code, in addition to merely reporting problems. This is an advantage because it 
reduces the burden on the developers. 
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Furthermore, OS software allows all users to conduct code verification even without 
being prompted by a bug. This often happens when a new user reads the code trying to 
learn the implementation details of a particular equation. Only the few developers of the 
closed-source code are able to do that.  This is the advantage of OS development cited by 
Raymond [4]. 
 
In the model validation step the simulation results are compared with experimental data 
to assess the validity of the mathematical model.  It is assumed that the computational 
software has been verified and hence its results are truly the solutions of the underlying 
mathematical model. The model “validation involves a process, not a single test or 
comparison” [7]. When the model is able to reproduce many different sets of 
experimental data, researchers gain confidence in the validity of the underlying 
mathematical model.  Also testing constitutive relations using the same base code ensures 
that the observed improvement in the predictive capability of the model truly results from 
the new constitutive relation and not from a peculiarity in its numerical implementation. 
So validation studies conducted by a community of users improve the confidence in the 
mathematical model expressed in a computational software product. 
 
As a tool for model validation OS software has two advantages over closed-source 
software. One, because OS software is freely available, the opportunities for reproducing 
published results is greatly increased.  Reproducing and verifying reported results 
constitute the vital peer-review process in science.  Researchers routinely verify 
mathematical derivations presented in research papers.  Many experimental studies are 
also duplicated and verified2.  So “making the source visible is akin to publishing the 
proof of a theorem for a mathematician or opening his lab books for others to see in an 
experimental setup” [3]. Closed-source software simply does not allow such peer-review. 
 
The more important advantage of OS software is that it exposes all the implementation 
details. Closed-source software hides the details of the computational model. While 
comparing published results, questions often come up regarding the mathematical model 
(e.g., the equations, boundary conditions, constants) and implementation details (e.g., 
how certain limits are evaluated).  Even though the mathematical model is usually fully 
stated in a manual or a paper, being able to double check the model from the code is an 
advantage. For example, D. Boyalakuntla (ORNL) recently detected typographical errors 
in two equations in [43] by reviewing the corresponding MFIX code. With the 
computational model the situation is even worse: a full description of the computational 
model is seldom available.  In fact, certain parts of the computational model in 
commercial software may even be guarded as proprietary information. Also the tendency 
in commercial software is to ensure robustness and “it is well known that robustness is 
often achieved at the expense of numerical accuracy” [6].  The use of closed-source code 
for research, therefore, suffers from the disadvantage that questions about the model 
cannot be readily settled. Sometimes it is difficult to establish whether a difference in the 

                                                 
2 As the experiments have become more and more complex it has become difficult to reproduce 
experimental facilities and, hence, community experimental facilities got developed (e.g., Large Hadron 
Collider at CERN).  Perhaps a similar need arises for community software as the models become more 
complex. 
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predictions of two software products truly reflects the difference in the underlying 
mathematical models or their implementations. This would not have been an issue with 
fully verified and validated software. Since verification and validation are practically 
never complete for complex models, this is a practical issue and OS software offers an 
advantage. This an important advantage unique to science software, understandably not 
discussed by Raymond [4]. 
 
Although OS software overcomes the difficulties with peer review, it has certain 
disadvantages.  One, for its existence OS software needs a core group of researchers 
supported over a sufficient period of time. That is usually not feasible with OS software  
as the main objective; OS software materializes as a byproduct of projects with other 
objectives. Two, for realizing the advantage of community verification and validation, the 
user base must achieve a critical mass. This is hard to achieve with science software with 
its often limited number of features. Three, to maintain good quality of the software and 
thereby attract other developers, the OS team needs to follow good software development 
processes.  A poorly written and documented code is practically closed-source even when 
the source code is freely distributed. Writing readable and maintainable code is not the 
highest priority of most researchers, who are trying to solve an immediate problem. Four, 
the software and its usage needs to be documented, which is often not done when the 
primary focus of the researchers is the solving of scientific or engineering problems.  
These are not of concern in commercial software development because companies can 
hire people specifically for developing code, ensuring software quality, conducting 
testing, and writing documentation.  Furthermore, the successful commercial software by 
definition is sustained by a large user base. 
 
If the advantages of OS software are realized by researchers and institutions begin to 
value OS software contributions, then the difficulties identified in the previous paragraph 
may be overcome. In fact, it is a recent trend that government agencies such as the U.S. 
Department of Energy are encouraging open source approach in several projects funded 
by them. It is important to determine whether the stated advantages of OS science 
software are borne out by experience. In Section V we will present data based on MFIX 
experiences. Before that we need to discuss the background of MFIX and its OS features. 

IV. MFIX Background and OS Features 
MFIX (Multiphase Flow with Interphase eXchanges) development started at NETL in 
1991.  The main goal was to develop a tool for modeling fluidized bed reactors such as 
coal gasifiers, commonly encountered in fossil fuel plants. A major software requirement 
was the capability to do 3D simulations. Another was the capability to detect and report 
input errors.  Experience with other codes showed that much time is lost in tracking input 
errors.  Such errors caused either the simulation to crash without reporting any useful 
error message or, worse, the simulation to go on for a long time producing erroneous 
results. Another requirement was to produce a well commented and documented code. 
The first version inherited the numerical technique of Harlow and Amsden [10], found in 
an early version of the IIT code [11, 12].  It was completed by January 1993.  
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All the variables used in that version were described in comment statements, the 
equations documented in a theory manual [13], and the numerical technique, code  
architecture and user instructions documented in a user’s manual [14].  The first set of 
gasifier simulations were conducted in 1995 [15], and the code is now routinely used at 
NETL for gasifier modeling [e.g., 17].  The public distribution of the code through 
Energy Science and Technology Software Center (www.osti.gov/estsc/) started in 1995. 
It appears that few users obtained the code from that source because the authors never 
received any request for help from such users.  
 
MFIX is a general-purpose computer code for describing the hydrodynamics, heat 
transfer and chemical reactions in fluid-solids systems. It solves a generally accepted set 
of partial differential equations for the conservation of mass, momentum, and energy for 
multiple phases [e.g., 9, 18]. It has been used for describing bubbling and circulating 
fluidized beds and spouted beds. MFIX calculations give transient data on the three-
dimensional distribution of pressure, velocity, temperature, and species mass fractions. 
MFIX provides rudimentary meshing capability with three-dimensional Cartesian or 
cylindrical coordinate systems.  Simulations are set up using an input data file, and in 
some cases user-defined subroutines are also needed.  Two post processing codes are 
used for visualizing the results and retrieving data in the form of tables. 
 
The code underwent several revisions since 1995.  The numerical technique used in the 
code was changed to a technique based on SIMPLE [19]; several high resolution 
discretization methods were added in 1996 [8].  Many improvements were made through 
a project under the Multiphase Fluid Dynamics Consortium and collaboration with Oak 
Ridge National Lab (ORNL).  In 1998 the Fortran 77 code base was translated into 
Fortran 90 using the translation software VAST-90.  Subsequently the code was 
parallelized to run on shared memory processors (SMP) and distributed memory 
processors (DMP) [16]. In 1999 version tracking of MFIX was started by using the CVS 
(concurrent versioning system; http://ximbiot.com/cvs/) software. 
 
The website http://www.mfix.org was launched in 2001 for distributing the source code 
and disseminating information related to computational gas-solids flow.  By February 
2006 over 750 researchers from over 250 research institutions world-wide had 
downloaded the code.  The website typically receives between 5000 and 10000 hits every 
month. The MFIX OS license allows people that registered at the website access to the 
source code.  No redistribution of the code is permitted, however.  Several collaboration 
tools available on MFIX website promote the OS development model: 
• Source code revision control:  CVS is used for source code revision control.  CVS 

allows several developers to work on the same file at the same time and to merge 
their revisions of the code. CVS records all the changes in the code; all previous 
versions of the code are for ever archived in the database.  Therefore, developers can 
easily retrieve any version of the code by specifying the desired date and time. So a 
version referred to in a publication is for ever available for public scrutiny (provided 
the authors preserve the data files and user-defined routines, if any.) With the CVS 
web interface users can view the day-to-day changes made in the source code.  As 
shown in Figure 2 the web interface gives the file name, version number of the file, 

  9 

http://www.osti.gov/estsc/
http://www.mfix.org/


The Fifth World Congress on Particle Technology, Orlando, Florida, April 23-27, 2006 
Session: TWD30 Selected Topics in Fluid-Particle Systems 

age of the file, name of the developer that checked in the latest version, and 
comments about the changes made.  The interface allows users to graphically 
compare two versions of the files and pinpoint the differences. All users can check 
out code from CVS, but the main developers act as gatekeepers for checking code 
into CVS. 

• Tests and tutorials: The MFIX directory contains over forty test cases and thirteen 

tutorial cases.  The test cases test various features of the code in isolation (e.g., fluid 
flow without solids), and typically run in a short period of time.  When a new feature 
is added to the code, a new case to test that feature is also added to the test-cases 
directory.  The tutorial cases are realistic cases that test a combination of features of 
the code (e.g., combined fluid-solids flow). These cases can be used to learn about 
setting up simulations. 

Figure 2 CVS web interface 

• Documentation: When the initial version of MFIX was developed three manuals 
documenting the theory, user interface and numerical techniques were written [13, 14, 
and 8].  It is nearly impossible to synchronize these detailed manuals with a code that 
is constantly evolving.  So the approach taken is to maintain two minimalist manuals 
that are constantly updated; a readme file that lists all the user inputs and an 
MFIX_equations file that lists the current set of equations [9].  The equations file is 
version controlled and is a citable web document. In addition, the documentation 
section also contains all the developer notes, written for each new feature 
implemented. 

• Communication: The communication between the users takes place through several 
mailing lists.  The popular OS software SYMPA (http://www.sympa.org/) has been 
adopted for this purpose. The main mailing list mfix-help@lists.mfix.org is where 
users post help-requests.  In the OS software world there is no guarantee that users 
will always get help. Reported bugs and projects of interest to MFIX team will 
always get the team’s attention. Other help requests may get a reply from the MFIX 
team or other users. Some users reported that they received help within twenty four 
hours of reporting a problem. All the discussions are archived. So users are able to 
search the archive for past discussions about a topic. In addition to the mfix-help 
mailing list, there are over 20 different mailing lists covering different aspects of 
multiphase flows: numerics, granular physics, discrete element methods, chemical 
reactions, visualization, validation, applications such as gasification, etc. 
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• Open citations (http://www.mfix.org/open_citations/index.php): This section of the 
website lists papers relevant to computational gas-solids flow.  The discussion board 
allows people to submit information about relevant papers as well as include 
comments about the papers. The database is searchable; for example, one can easily 
list all the papers of a particular author or topic. This part of the website has not 
progressed very well perhaps because it has not been well publicized. 

• Three forms of downloadable code are available: 
o CVS version – The users can view the latest changes in the code and 

download desired files. This ensures that the development is done under full 
public view. 

o Development version – Every day the previous day’s version of the entire 
code is gathered and placed on the web site for downloading.  The only 
guarantee is that this version will compile and link to produce an executable.  

o Stable version – Released once or twice a year after a major revision or 
several minor changes and bug fixes. This version is tested and guaranteed to 
work with all the test and tutorial cases.  

 

V. OS Experiences with MFIX 
In this section we will examine the OS experiences with MFIX.  The development and 
application work done by the MFIX team (mostly the present authors) has been excluded 
from this discussion so that the OS experience can be highlighted. First, we will describe 
how MFIX has contributed to research and education in computational gas-solids flow. 
Then we will examine how MFIX itself was enriched through the OS development 
process. 
 
To collect information on MFIX usage, two surveys were conducted.  The first survey 
was conducted online and input was solicited from all MFIX users.  The details about the 
survey are given in Gel et al. [20]. The survey was conducted to guide the future 
development of MFIX [20].  So the participants included MFIX team members as well. 
The main findings from the survey are reported here to identify the users’ profiles and 
applications. 
 
The first survey resulted in responses from seventy users with wide-ranging backgrounds 
and application needs. So at least 10% of the people that downloaded the code became 
users of the code. Figure 3 shows the distribution of the MFIX users based on the number 
of years they have been using MFIX. The majority of the users have around one year 
experience, whereas 30% have one to three years of experience. Most experienced users 
consisted about 9% of the user community. This seems reasonable, as MFIX became an 
open-source code only in 2001.  Also many users will remain in the category 1-3 years of 
experience as many of them are graduate students. 
 
Figure 4 shows the affiliations of MFIX users: 41% are graduate students, 21% are 
faculty members, and 16% are post doctoral associates. So the survey results show that 
almost eighty percent of the users are in the universities. Only four respondents identified 
themselves as industrial researchers (excluding MFIX team members) and another as an 
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attorney. This is not surprising since the software is set up for research type applications. 
We believe that this is a representative sample based on our experience with requests for 

help, although the survey could be biased because of the reluctance of industrial users to 
respond.  

0 years, 
13%

1 year, 49%

2 years, 
24%

5 & more 
years, 9%

3 years, 6%

Figure 3 Distribution of survey respondents by years of experience 

 
Figure 5 shows the percentage of MFIX users that consider the use of MFIX in their 
projects successful. Nearly 50% indicated they had success with MFIX in their projects, 

among these 11% indicated they were highly successful. The other half was split between 
being not sure (33%) or not successful (17%). The percentage of successful users is 
encouraging because MFIX is an expert user’s software with minimal user support 

Faculty, 21%
Graduate 

Student , 41%

Postdoctoral 
Associate, 16%

Research Staff, 
10%

Others, 11%

Figure 4 MFIX User categories 
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provided. About 33% of the users reported “not sure” presumably because they had 
recently started using MFIX. The response “no success” in some cases may mean that the 
model results did not agree with experimental data because of a deficiency in the 
mathematical model, which in the context of the present discussion would be a successful 
application of the software. Most of the users who indicated no success had used MFIX 
for less than a year and described their expertise level as 'Basic'. On the other end of the 
spectrum, users who indicated high success had been using MFIX for 3+ years and 
described themselves as advanced users who were comfortable making changes in the 
source code. 
 
Figure 6 shows how the respondents used MFIX in their research.  The responses that 
were blank or not specific (e.g., “general”) were discarded; the responses that could be 
counted in multiple categories were counted in all the applicable categories. All told there 
were sixty five responses.  Just as MFIX was originally developed for coal gasifiers and 
fluidized bed combustors 48% of the applications were in the categories Energy (coal 
gasification and combustion, biomass combustion) and Fluidization (bubbling fluidized 

beds, risers, particle flow, gas-solids flow).  This is possibly because many users learned 
about MFIX from research papers or from web searches. About 12% of the applications 
are in the related category of Chemical Reactors (fluid catalytic cracking, fluid bed 
reactors, and polymerization) and 14% in multiphase flows (multiphase microfluidics, 
slurry flow, gas-liquid). But the applications have been extended to other areas; 
Geophysical (volcanic granular flows) has become a distinct category with 8% of the 
responses and 18% of the responses were for other applications (microchannel heat 
exchanger, powder flow). We could not assess certain other uses of code stated in the 
registration form (e.g., to check how a certain formula is coded) because such incidental 
users did not respond to the survey. 

Figure 5 Success rating in using MFIX 

Highly 
Successful, 

11%

Successful, 
39%Not sure, 33%

Not successful, 
17%

 
A second survey was conducted to collect detailed information from twelve principal 
investigators known to the MFIX team. They were asked to provide a brief description of 
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the problem being solved, the years of usage, significant outcome (e.g., graduate thesis, 
papers, improved algorithms or theory, migration of code/algorithm into other software, 
applications, improvements to design and so on), and to comment on their experiences 
with the “open source model” of information transfer (What worked well for the user and 
what needs improvement?). 
 
The responses regarding the research topics and significant outcome are summarized in 
Table I.  There are also several groups not included in the survey that have published 

research results using MFIX [e.g., 21, 22, 23, 24]. These demonstrate that the OS 
availability of MFIX has significantly contributed to research and education is gas-solids 
flow.  The advantage of model validation by a community of users, in addition to the 
MFIX team, is being realized. Surprisingly no user stated this as an advantage, perhaps 
taking this advantage for granted. 

Energy
28%

Fluidization
20%Chemical 

Reactors
12%

Multiphase
14%

Geophysical
8%

Others
18%

Figure 6 Different categories of MFIX usage. 

 
 
Table I. Investigators, Affiliations, Research Topics, and Significant Outcome 
Research Topics Significant Outcome 
R. Fan, D. L. Marchisio and R. O. Fox, Iowa State 
University: Implemented Direct Quadrature Method of 
Moments (DQMOM) in MFIX to simulate particle 
aggregation and breakage in a fluidized-bed. 

PhD thesis and 
publications [25, 26]. 

R. Fan and R. O. Fox, Iowa State University: CFD model 
validation of a polyethylene pilot-scale fluidized bed at 
Univation. 

Model validated and used 
to locate the hot spots in 
the reactor [27]. 

G. Bergantz, University of Washington: Simulate a) 
high-Reynolds number volcanic eruptions and associated 
multiphase gravity currents, and b) low-Reynolds number 

Three papers (with more 
on the way), numerous 
presentations, one Ph.D. 
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Research Topics Significant Outcome 
chaotic convection in magma chambers. Results used as an 
aid-in-interpretation of geological processes that cannot be 
visualized in real-time, or are too hazardous to instrument 
under natural conditions. 

thesis and another in 
progress. 

F. Battaglia, N. Xie, Iowa State University:  Modeling of 
elutriation of char from a bubbling fluidized bed; eventually 
simulate the simultaneous elutriation and solid-gas reaction 
of char particles in the gasification reactor. 

Elutriation data compared 
with simulation results 
[28].   

F. Battaglia, R. O. Fox, N. Xie, Iowa State University: 
Implement the novel algorithm in situ adaptive tabulation 
(ISAT) to solve complex chemistry calculations in a fast and 
efficient manner. 

ISAT technique speeded 
up a silane pyrolysis 
reactor simulation by a 
factor of 48 [29, 30]. 

F. Battaglia, J. Sun, Iowa State University: Modeling of 
segregation in gas-solids fluidized beds. The effect of 
particle rotation was introduced using an effective coefficient 
of restitution. 

Results compared with 
experimental data 
demonstrated the effect 
of particle rotation on 
bubble dynamics [31, 
32]. 

L. Oger, University of Rennes and S.B. Savage, McGill 
University: Modelling of air-gravity conveyors (airslides), in 
which the flow of the granular material is enhanced by the air 
that is forced through the bottom of the conveying trough. 
Need to integrate frictional effect of the air on the grains. 

No results to report yet.  

S. Dartevelle, Los Alamos National Lab: MFIX-family 
codes used as quality assured numerical tools to explore 
multiphase dynamics (e.g., dust explosions) in the Yucca 
Mountain Project drift/repository, Nevada, the proposed site 
for the first permanent geologic repository for high-level 
radioactive waste in US. Quality assurance testing must 
reproduce the shock features commonly seen in 
underexpanded (supersonic) axisymmetric jets and the 
correct velocity profiles in multiphase axisymmetric 
turbulent matched jet 

PhD Thesis, research 
papers and reports [33, 
34, 35, 36, 37]. 
 

N. Siegel, Sandia National Labs: Development of a solar 
receiver. Characterize the flow dynamics of a curtain of free-
falling ceramic particles, heated by concentrated solar energy 
within an open cavity solar receiver to temperatures in excess 
of 900 ○C. 

A series of 2D and 3D 
MFIX models were 
initially used.  Current 
models, solved using 
Fluent®, have helped to 
identify several important 
design concerns. 

Y. Makkawi, R. Ocone, Heriot-Watt University: Simulate 
bubbling fluidised beds (Group A/B and B particles) and 
compare predictions with Electrical Capacitance 
Tomography data. Identified limitations in the model 
predictions and determined their cause (no cohesive force; no 

Proposed and tested 
modifications for solving 
the model limitations 
identified [38, 39]. 
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Research Topics Significant Outcome 
frictional stress above void fraction 0.5). 
S. Sundaresan, Princeton University:  Over the past 8 
years, used the software  
(a) to study the statistical properties associated with 
time-dependent, spatial inhomogeneities that occur in 
fluidized suspensions. Gathered fluctuation statistics and 
used this information to construct closure relations for 
filtered two-fluid models. 
b) to simulate flows at high particle volume fractions, where 
frictional stresses dominate. 

Several papers and 
presentations [40, 41, 42, 
43, 44, 45]; completed 
four PhD theses, one in 
progress [46, 47, 48, 49]. 
 
Improved theory: 
a) Frictional stress model 
b) Concept of filtered 
two-fluid models 

T. Pugsley, University of Saskatchewan: Working with 
MFIX for approximately four years for modeling dense 
phase fluidized beds containing fine catalyst powder (e.g. 
FCC stripper). 

One MSc thesis, two 
refereed journal 
publications, and other 
reports and presentations 
[50, 51]. 

U. Imke, Forschungszentrum Karlsruhe GmbH:  Simulate 
heterogeneous catalyses in micro-channel heat exchangers 
using a porous body approach. 

Still under development, 
no significant results until 
now. 

M. Weber, J. Galvin, and C. Hrenya, University of 
Colorado: (a) Implementation of cohesive forces into the 
discrete-particle framework using a square-well potential. 
(b) Studying segregation/mixing of dense binary mixtures in 
fluidized beds.  Emphasis is on investigating the various 
driving forces for segregation, especially driving forces that 
arise from a non-equipartition of granular energy. 

MS thesis and journal 
article [52]. Started 
incorporating the 
multitype particle kinetic 
theory of Iddir and 
Arastoopour [53]. 

 
The responses to the question about what worked well for the user are as follows: 

• Open source access  
• Well written code 
• Well organized web site that is regularly updated 
• Discussion forum and archived messages 
• Questions are answered quickly, issues resolved quickly 
• Training of students at NETL in summer 

 
G. Bergantz (University of Washington) said that “the open-source model has been very 
successful because the code is very well documented so that users can see where various 
tasks are assigned and how they inter-relate, the MFIX team has managed to keep the 
process of code updates robust and well maintained, and the community of users and 
contributors are mostly already well trained in CFD and theories of multiphase flow.” He 
emphasized that to be successful, “open-source approach needs some of the 'care-taking' 
and oversight activities of the MFIX team, to manage where code improvements are best 
implemented. Without this oversight capacity, the open-source model would falter and 
various versions of the code would emerge with questionable validation, etc.” 
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Regarding what needs to be improved the comments were as follows: 
• Ability to represent complex geometry is needed. 
• With continual changes it is often difficult to repeat/reproduce work that was 

conducted using an older version.  This causes one to suspect either the new 
version of the code or previous work and conclusions. 

• Documentation needs to be updated and made thorough. 
• There are often parts of the code that are not documented at all and users become 

aware of some of the code’s capabilities only after browsing through source code. 
• Some efficient tutorial that one can use to learn how the code is configured (what 

the main program is, what each routine does and in what sequence they are called) 
will be useful for students. 

 
The above discussion shows that the OS availability of MFIX has had much impact on 
research and education in computational gas-solids flow.  Now we will show that MFIX 
itself was enriched through the OS development process.  Table II summarizes major 
contributions to MFIX code from external contributors, who again happen to be all 
graduate students (at the time of making the contribution).  In most cases these 
developers sought the advice of MFIX team, but the development itself was not done 
under CVS control.  The code modifications were later merged with MFIX CVS by one 
of the MFIX team members. 
 
Table II.  Major capabilities added to MFIX by graduate students 
Capability Contributor University 
Granular energy equation K. Agrawal Princeton U. 
Frictional flow model A. Srivastava Princeton U. 
Lees-Edwards boundary condition P. Loezos Princeton U. 
DQMOM R. Fan Iowa State U. 
ISAT N. Xie Iowa State U. 
Discrete Element Model (DEM) D. Boyalakuntla Carnegie Mellon U. 
Cohesion model in DEM M. Weber U. of Colorado 
SI units capability S. Dartevelle Michigan Technological U. 
Koch and Hill drag correlation C. Sutton Lehigh U. 
 
 
Table III lists some of the significant bugs detected and reported by various external 
users.  Some bugs (items 1, 2, 3) were caught through code verification (i.e., the users 
simply reading the source code.) So the benefit of code verification through many eyes 
reading the source code as claimed by Raymond is being realized.  Some bugs were 
identified during solution verification, but the users then read the source code and 
reported the location of the bug (items 4, 5), again vindicating Raymond’s claim.  In 
some cases the problem was detected through solution verification (items 6, 7, 8) but the 
users could not identify the cause of the problem.  These programming errors (item 6) or 
defects in the computational model (items 7, 8) were later resolved by MFIX team.  Some 
bugs got exposed when the user employed a compiler different from that used by MFIX-
team (which is another form of code verification.)  Some bugs were merely compiler 
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quirks (item 9) and some were applicable only to SMP mode of execution not often used 
by MFIX team (item 10), but some others were potentially dangerous (item 11).  
 
 
Table III.  MFIX bugs reported by users 
No Bug report Contributors (Affiliation) 
1. Partial slip boundary condition K. Agrawal (Princeton U.) 
2. Granular energy equation source terms S. Dartevelle (Los Alamos), J. 

Galvin (U. Colorado) 
3. Cylindrical coordinate stress terms J. Galvin (U. Colorado) 
4. Problem with Cp in the energy equation U. Imke (Forschungszentrum 

Karlsruhe GmbH) 
5. Inner radius in cylindrical coordinates J. Pasini (Cornell U.) 
6. Solid-body rotation problem A. Srivastava (Princeton) 
7. Species mass balance problem T. McKeen (U. Saskatchewan) 
8. Momentum deficit in cyclic simulations A. Andrews (Princeton) 
9. Compilation problems L. Oger (U. of Rennes) 

10. Open-MP bugs S. Dartevelle (Los Alamos) 
11. Uninitialized variables S. Dartevelle (Los Alamos) 
 

VI. Concluding Remarks 
In this study we show that the OS software MFIX has made significant contributions to 
research and education in gas-solids flow. The vast majority of the external users were in 
universities. The advantages of many eyes verifying the code was realized, in both 
solution verification and code verification. So the OS development model worked very 
well in the case of MFIX. 
 
The MFIX team is taking steps to modernize the software.  The MFIX-NG project was 
started last year to create software composed of open source components. The new 
software will have the capability to express mathematical equations in a high-level script 
language.  This will allow researchers to readily change and experiment with new 
mathematical formulations with a few lines of code in a single file. 
 
In a related effort a test harness has been developed to conduct software regression tests 
by adopting the OS testing environment QMTest [54]. Such testing seeks to uncover 
regression bugs or software functionality that previously worked stops working. 
Typically regression bugs occur as an unintended consequence of code changes.  The test 
harness checks out the most recent version of MFIX nightly, builds executables, and runs 
several test cases.  Problems encountered during testing are automatically emailed to the 
development team, and the results of the tests are posted on MFIX website, which all 
users can view.  This will help to catch and correct problems early on and reduce the time 
required for fixing regression bugs because the bugs can be correlated with the changes 
made the previous day.  Also the test harness will ensure the quality of the evolving 
software on a daily basis. 
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After the product of MFIX-NG project becomes accepted by the users, the team will 
maintain MFIX with no additional feature enhancements so that the software can be used 
to generate high quality numerical data that can be used for solution verification of other 
computational gas-solids flow codes. 
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