
The Fifth World Congress on Particle Technology, Orlando, Florida, April 23-27, 2006
Session: TWD30 Selected Topics in Fluid-Particle Systems

Experiences with the open source model for disseminating
information in computational gas-solids flow

M. Syamlal, T.J. O’Brien, U.S. DOE

S. Benyahia, Fluent Inc.
A. Gel, Aeolus Research, Inc.

National Energy Technology Laboratory
PO Box 880

Morgantown, WV 26505

S. Pannala, Oak Ridge National Laboratory

ABSTRACT

National Energy Technology Laboratory (NETL) has been developing advanced gas-
solids flow models and promoting their use in the design of multiphase flow reactors
encountered in fossil energy processes for over two decades. In addition to the successful
use of the models to help with the design of fossil energy systems such as gasifiers, this
research resulted in a general purpose gas-solids computational fluid dynamics code
called MFIX. In 2001, MFIX was made open source (http://www.mfix.org). Since then
over 750 researchers from 250 research institutions world-wide have downloaded the
code, of which a recent survey has shown that at least 10% have become regular users of
the code. Nearly 50 % of the respondents, who have been using the code for several
years, indicated significant success in their research with MFIX. Over 40% of these users
are graduate students, and the code has been used to complete several masters and Ph.D.
theses. The enhancements to the code resulting from the academic research have
migrated into the main code repository, the quality of which is ensured with extensive
testing conducted periodically. The “open source model” provides a new method for code
verification as many eyes are able to examine the source code. The use of MFIX has gone
beyond its originally intended applications, primarily fluidization, to others, such as
volcanology. This makes extensive model validation possible as different users exercise
different configurations of the model for their applications. The “open source model”
appears to be a particularly effective approach in the emerging field of computational
gas-solids flow, where the theory and numerical techniques are rapidly evolving. In
addition to the code, the MFIX website hosts several mailing lists that foster technical
discussions among the users; an open citation index for literature on gas-solids flows is
also maintained. Thus the open source code acts as a vehicle for collecting, verifying and
disseminating information, and facilitating collaboration among users. The tools used for
the collaboration, examples of successful transfer of information, and experiences with
the “open source model” of information transfer and code verification are discussed in
this paper.

KEYWORDS: multiphase flow, open source development, gas-solids flow, verification
and validation, high performance computing, computational fluid dynamics (CFD)

 1

The Fifth World Congress on Particle Technology, Orlando, Florida, April 23-27, 2006
Session: TWD30 Selected Topics in Fluid-Particle Systems

I. INTRODUCTION
The term Open Source Software came into existence in 1998, although such software
existed even before that [1, 2]. In the previous year a lesser known term, Bazaar
development model was coined to label a community style software development
process. The open source (OS) development model enunciated by these labels has
revolutionized business software1 development as exemplified by highly successful
software products such as the operating system Linux and the webserver Apache. In spite
of this demonstrated success, it appears that the OS model is rarely used for science
software development [3]. The question whether the OS development model holds
promise in science software development is actively being debated. To that debate we
add the present discussion on our experience with an OS gas-solids flow code. In
particular we discuss the impact made by an OS gas-solids flow code on research and
education and how the code itself was enriched because of the OS development approach.

It has been conjectured that scientists are reluctant to adopt the OS development approach
for three reasons [3]: One, the extra time required for maintaining and documenting code
is not appealing because scientists do not get credit for published open source codes.
Scientists gain recognition through publications based on new ideas, in contrast to OS
business software developers that gain recognition by distributing their code. Two,
scientists may worry about loss of revenue by freely distributing potentially
commercializable code. This again is in contrast to OS business software developers, who
are usually motivated to counter commercialization. Three, scientists may worry about
loss of reputation caused by adverse comments about the code or lack of recognition
when users do not acknowledge the OS code in their papers. The first two reasons were
not concerns to us when our gas-solids flow code was made open source. The code was
being used internally at National Energy Technology Laboratory (NETL) by several
people. So some amount of code and user documentation was necessary. Nothing more
was done for making the code open source. Technology transfer was a greater concern
than commercialization, for which OS method of distribution was ideally suited. The
third was indeed a concern for the developers, and this paper will show that the
experience turned out to be positive.

The discussion in this paper pertains only to science software that is used for research.
This should be contrasted with the use of such software for the analysis and
troubleshooting of devices used in industry or in a lab. In those cases the theory behind
the software is not the object of the investigation; the simulation results (most likely
combined with other empirical information) is used for the design or improvement of a
device or a process. Commercial software is ideally suited for that type of usage because
of the availability of a user-friendly software interface and a dedicated support team.
Much research precedes the development of the mathematical models and numerical
techniques that form the basis of commercial software. The research software used for
developing the mathematical models and numerical techniques is the topic of the

1 The terminology business software is used for operating systems, compilers, productivity software, etc. in
contrast to science software such as computational fluid dynamics, stress analysis etc.

 2

The Fifth World Congress on Particle Technology, Orlando, Florida, April 23-27, 2006
Session: TWD30 Selected Topics in Fluid-Particle Systems

discussion in this paper. Specifically we discuss the area of computational gas-solids flow
where the mathematical models and their solution methods are constantly evolving. This
discussion is important because gas-solids flow is an active area of research where papers
are being published based on closed (commercial and academic) and open source codes.

The OS experience reported here is for the gas-solids flow code called MFIX developed
at NETL. The information on user experience was collected from two user surveys
(conducted to help formulate the future plans of MFIX.) The surveys enabled us to
determine who used the software, how it was used, how successful the users were and
what were the significant outcome. The survey results and information on the experience
of the developers are presented here to shed light on how well the OS development model
worked in the case of MFIX.

We start with a brief overview of open source development model in Section II. In
Section III we discuss the construction of science software and the role played by
verification and validation. And we discuss the advantages and disadvantages of using
OS development methodology. The background and OS features of MFIX are given in
Section IV. The OS experience with MFIX is described in Section V. The impact on
research and education in computational gas-solids flow and user experiences with MFIX
are given in that section. How MFIX itself was enriched from the open source
development model is also discussed in that section. The future plans of MFIX and
concluding remarks are given in section VI.

II. Open Source Development
The term "Open Source Software" came into existence in 1998, coined in a strategy
meeting triggered by Netscape's announcement of the release of Navigator source code
[1, 2]. Open source software refers to computer software whose source code is freely
available to study, change, and improve its design. A number of software products was
always freely available in the source code form (e.g., NETLIB repository, TEACH code
from Imperial College, KFIX and KIVA from Los Alamos National Lab). The
distinguishing feature of the OS label is that the software is provided with a license (e.g.,
GPL, LGPL) that requires the users to follow some simple rules (e.g., inclusion of GPL
license header in each source file). This type of licensing played a crucial role in the
development of open source software products. Furthermore a new way of developing
and maintaining software, made possible by Internet and identified by Raymond [4],
made a big impact in the world of business software.

Raymond calls the new model the Bazaar model and contrasts it with the traditional
Cathedral model used by commercial software developers. These models originate from
opposing views about software debugging [4]. In the Cathedral model the software is
developed by a few experts; every effort is made to release the software only after all the
bugs are fixed. Thus the users and developers are delineated into two separate groups.

In the Bazaar model the code is developed over the Internet with the full participation of
the users. Raymond credits Linus Torvalds for the invention of this process: "… Linus's
cleverest and most consequential hack was not the construction of the Linux kernel itself,

 3

The Fifth World Congress on Particle Technology, Orlando, Florida, April 23-27, 2006
Session: TWD30 Selected Topics in Fluid-Particle Systems

but rather his invention of the Linux development model" [4]. Raymond claims that
bugs will be discovered at a rapid rate in this model because the source code is available
for public testing, scrutiny, and experimentation. In contrast, an inordinate amount of
time and energy is spent by a few developers hunting down bugs in the Cathedral model.
In the Bazaar model the boundary between developers and (at least some) users blur.
Raymond predicts that, although individual vision and brilliance will matter during the
initiation of software projects, software will increasingly be developed in an open-source
manner with full user participation in the future. In this paper we will use the terminology
OS development, synonymous to Bazaar model, to mean the availability of the software
in source code form as well as its development in full public view, promoting user
participation globally.

All the evidence that support the open source development model, however, comes from
business software products which are comparatively large (millions of lines of code) and
have a large number of users (thousands). Science software products are relatively small
(thousands of lines of code) with a smaller user base (tens). So does the OS development
model have any advantages in science software development? It turns out that it does for
the reasons cited by Raymond, but for an even more important reason discussed in the
next section.

III. Open Source Development in Science
Before we can discuss the advantages of OS development of science software, we will
need to discuss how such software is constructed and the role played by verification and
validation. The term verification is an equivalent of debugging; the term validation,
however, applies to the underlying mathematical model and, therefore, transcends
debugging.

The subject of verification and validation of computational fluid dynamics software has
been discussed in a number of papers [e.g., 5, 6, and 7]. To focus our discussion we use
Figure 1, which is a modified form of a figure cited by Oberkampf and Trucano [5]. The
purpose of science software is to describe a useful part of reality (e.g., gas-solids flow),
expressed by an underlying mathematical model and an associated numerical technique,
so that the software can be used for analyzing, designing and troubleshooting devices.
The mathematical model, expressed in the language of partial differential equations
(PDE), can be written concisely [e.g., 9]. A crucial step in mathematical modeling
research is confirming whether the mathematical model accurately describes the relevant
part of reality. This step is called validation and is defined by American Institute of
Aeronautics and Astronautics (AIAA) as “the process of determining the degree to which
a model is an accurate representation of the real world from the perspective of the
intended uses of the model” [5]. This is done by solving the mathematical model and
comparing the solution with experimental data. Simple mathematical models can be
analytically solved and the solution compared with data to establish the validity of the
model, which we call analytical validation. This is rarely possible with gas-solids flow
models, and hence the boxes reality and mathematical model are connected with a
dashed-arrow. Note that it is trivial to establish that two mathematical models are
identical; it can be done simply by comparing the governing equations. We make this

 4

The Fifth World Congress on Particle Technology, Orlando, Florida, April 23-27, 2006
Session: TWD30 Selected Topics in Fluid-Particle Systems

Figure 1 Verification and validation of computational software [5]

REALITY

Mathematical
Model

Computational
Model

Computational
Software

Solution
Verification

Model
Validation

Code
Verification

Analysis

Numerical
Analysis Programming

Simulation

Analytical
Validation

remark because it is important to know whether two published mathematical models are
the same. We will show later that it is nontrivial to establish the equivalence of models by
using numerical solutions.

To obtain solutions from complex mathematical models, first the mathematical model is
expressed in a solvable form called a computational model, consisting of the discretized
PDE and an algorithm for solving the discretized equations. The computational model
can be written only much less concisely and accurately [e.g., 8]. It is less concise because
details extraneous to the mathematical model need to be included (e.g., discretization
methods, consideration of mesh topology, solution technique). It is much less accurately
written (in a practical sense) because researchers often leave out details of the
computational model in the documentation (e.g., how a certain average is computed or a
limit is determined when a term becomes singular). So for a given mathematical model it
is not easy to directly establish that the corresponding computational models are
equivalent.

The computational model written in a computer language is the computational software.
This is not a direct translation. The software contains much more information than that
contained in the computational model, such as input and output processing, error
checking, guarding against round off errors, and so on. The computational software,
therefore, becomes voluminous; for example the mathematical model in MFIX is written
in about 25 pages, say 1,000 lines of mathematical code [9], where as the corresponding
software contains about 100,000 lines of FORTRAN code (even excluding data files and
post processing codes). Unlike the computational model, the computational software is
always complete. It has all the details available in one place: the source code. Developers
are meticulous about ensuring the accuracy of the code, although they are less careful

 5

The Fifth World Congress on Particle Technology, Orlando, Florida, April 23-27, 2006
Session: TWD30 Selected Topics in Fluid-Particle Systems

about documenting the computational model. Even when a developer carefully
documents the computational model at some point in time, the inevitable evolution of the
computational software soon makes that documentation obsolete. For a given
computational model, however, it is impossible to directly establish that the codes of two
computational software are equivalent.

Of course, the difficulty mentioned above is merely theoretical; nobody attempts such a
comparison of computational software. In reality researchers are only interested in
comparing two mathematical models, and a two step verification process is used to
establish the equivalence of the computational software with the mathematical model.
The term verification is defined by AIAA as “the process of determining that a model
implementation accurately represents the developer’s conceptual description of the model
and the solution to the model” [5]. In the solution verification step the developer ensures
that the computational model gives the solution to the mathematical model within a
specified tolerance. For completing this step, access to the source code is not essential. In
the code verification step the developer ensures that the computational model is correctly
translated into computer code. Access to the source code is essential for completing this
step. Once the computational software is verified it is considered to be the equivalent of
the mathematical model. The solution given by the computational software is then
considered to be the solution of the mathematical model and can be used to compare two
mathematical models or a mathematical model with reality.

The verification of complex software is a crucial and laborious endeavor, which is
practically never complete, especially when the theory and numerical techniques are
evolving as in gas-solids flow [7]. Every time the theory or the numerical technique in
the software is changed, bugs invariably get introduced. So the presence of a large
community of users engaged in the verification and validation of such complex software
is an advantage. This is an advantage readily enjoyed by commercial software. The user
base of OS software must reach a critical mass for the OS software to enjoy this
advantage. Then OS software offers additional advantages as discussed in the following
paragraphs.

The solution verification step consists of comparing solution given by the code to
analytical solutions or highly accurate numerical solutions, to ensure that the errors
caused by spatio-temporal discretization, solution procedure, and round-off are within
acceptable limits. The mathematical model of the complexity expressed in MFIX cannot
be verified in its entirety through solution verification. So solution verification is done for
parts of the model in isolation (e.g., parabolic flow profile, convection of a species,
chemical reactions in a plug-flow configuration). The breadth of such studies expands
when a community of users conducts solution verification studies. The results of such
studies (e.g., species mass balance, momentum deficit) helped fix bugs in MFIX.
Although both closed source and OS software give users equal opportunity to conduct
solution verification, OS software gives the user the ability to identify and fix bugs in the
source code, in addition to merely reporting problems. This is an advantage because it
reduces the burden on the developers.

 6

The Fifth World Congress on Particle Technology, Orlando, Florida, April 23-27, 2006
Session: TWD30 Selected Topics in Fluid-Particle Systems

Furthermore, OS software allows all users to conduct code verification even without
being prompted by a bug. This often happens when a new user reads the code trying to
learn the implementation details of a particular equation. Only the few developers of the
closed-source code are able to do that. This is the advantage of OS development cited by
Raymond [4].

In the model validation step the simulation results are compared with experimental data
to assess the validity of the mathematical model. It is assumed that the computational
software has been verified and hence its results are truly the solutions of the underlying
mathematical model. The model “validation involves a process, not a single test or
comparison” [7]. When the model is able to reproduce many different sets of
experimental data, researchers gain confidence in the validity of the underlying
mathematical model. Also testing constitutive relations using the same base code ensures
that the observed improvement in the predictive capability of the model truly results from
the new constitutive relation and not from a peculiarity in its numerical implementation.
So validation studies conducted by a community of users improve the confidence in the
mathematical model expressed in a computational software product.

As a tool for model validation OS software has two advantages over closed-source
software. One, because OS software is freely available, the opportunities for reproducing
published results is greatly increased. Reproducing and verifying reported results
constitute the vital peer-review process in science. Researchers routinely verify
mathematical derivations presented in research papers. Many experimental studies are
also duplicated and verified2. So “making the source visible is akin to publishing the
proof of a theorem for a mathematician or opening his lab books for others to see in an
experimental setup” [3]. Closed-source software simply does not allow such peer-review.

The more important advantage of OS software is that it exposes all the implementation
details. Closed-source software hides the details of the computational model. While
comparing published results, questions often come up regarding the mathematical model
(e.g., the equations, boundary conditions, constants) and implementation details (e.g.,
how certain limits are evaluated). Even though the mathematical model is usually fully
stated in a manual or a paper, being able to double check the model from the code is an
advantage. For example, D. Boyalakuntla (ORNL) recently detected typographical errors
in two equations in [43] by reviewing the corresponding MFIX code. With the
computational model the situation is even worse: a full description of the computational
model is seldom available. In fact, certain parts of the computational model in
commercial software may even be guarded as proprietary information. Also the tendency
in commercial software is to ensure robustness and “it is well known that robustness is
often achieved at the expense of numerical accuracy” [6]. The use of closed-source code
for research, therefore, suffers from the disadvantage that questions about the model
cannot be readily settled. Sometimes it is difficult to establish whether a difference in the

2 As the experiments have become more and more complex it has become difficult to reproduce
experimental facilities and, hence, community experimental facilities got developed (e.g., Large Hadron
Collider at CERN). Perhaps a similar need arises for community software as the models become more
complex.

 7

The Fifth World Congress on Particle Technology, Orlando, Florida, April 23-27, 2006
Session: TWD30 Selected Topics in Fluid-Particle Systems

predictions of two software products truly reflects the difference in the underlying
mathematical models or their implementations. This would not have been an issue with
fully verified and validated software. Since verification and validation are practically
never complete for complex models, this is a practical issue and OS software offers an
advantage. This an important advantage unique to science software, understandably not
discussed by Raymond [4].

Although OS software overcomes the difficulties with peer review, it has certain
disadvantages. One, for its existence OS software needs a core group of researchers
supported over a sufficient period of time. That is usually not feasible with OS software
as the main objective; OS software materializes as a byproduct of projects with other
objectives. Two, for realizing the advantage of community verification and validation, the
user base must achieve a critical mass. This is hard to achieve with science software with
its often limited number of features. Three, to maintain good quality of the software and
thereby attract other developers, the OS team needs to follow good software development
processes. A poorly written and documented code is practically closed-source even when
the source code is freely distributed. Writing readable and maintainable code is not the
highest priority of most researchers, who are trying to solve an immediate problem. Four,
the software and its usage needs to be documented, which is often not done when the
primary focus of the researchers is the solving of scientific or engineering problems.
These are not of concern in commercial software development because companies can
hire people specifically for developing code, ensuring software quality, conducting
testing, and writing documentation. Furthermore, the successful commercial software by
definition is sustained by a large user base.

If the advantages of OS software are realized by researchers and institutions begin to
value OS software contributions, then the difficulties identified in the previous paragraph
may be overcome. In fact, it is a recent trend that government agencies such as the U.S.
Department of Energy are encouraging open source approach in several projects funded
by them. It is important to determine whether the stated advantages of OS science
software are borne out by experience. In Section V we will present data based on MFIX
experiences. Before that we need to discuss the background of MFIX and its OS features.

IV. MFIX Background and OS Features
MFIX (Multiphase Flow with Interphase eXchanges) development started at NETL in
1991. The main goal was to develop a tool for modeling fluidized bed reactors such as
coal gasifiers, commonly encountered in fossil fuel plants. A major software requirement
was the capability to do 3D simulations. Another was the capability to detect and report
input errors. Experience with other codes showed that much time is lost in tracking input
errors. Such errors caused either the simulation to crash without reporting any useful
error message or, worse, the simulation to go on for a long time producing erroneous
results. Another requirement was to produce a well commented and documented code.
The first version inherited the numerical technique of Harlow and Amsden [10], found in
an early version of the IIT code [11, 12]. It was completed by January 1993.

 8

The Fifth World Congress on Particle Technology, Orlando, Florida, April 23-27, 2006
Session: TWD30 Selected Topics in Fluid-Particle Systems

All the variables used in that version were described in comment statements, the
equations documented in a theory manual [13], and the numerical technique, code
architecture and user instructions documented in a user’s manual [14]. The first set of
gasifier simulations were conducted in 1995 [15], and the code is now routinely used at
NETL for gasifier modeling [e.g., 17]. The public distribution of the code through
Energy Science and Technology Software Center (www.osti.gov/estsc/) started in 1995.
It appears that few users obtained the code from that source because the authors never
received any request for help from such users.

MFIX is a general-purpose computer code for describing the hydrodynamics, heat
transfer and chemical reactions in fluid-solids systems. It solves a generally accepted set
of partial differential equations for the conservation of mass, momentum, and energy for
multiple phases [e.g., 9, 18]. It has been used for describing bubbling and circulating
fluidized beds and spouted beds. MFIX calculations give transient data on the three-
dimensional distribution of pressure, velocity, temperature, and species mass fractions.
MFIX provides rudimentary meshing capability with three-dimensional Cartesian or
cylindrical coordinate systems. Simulations are set up using an input data file, and in
some cases user-defined subroutines are also needed. Two post processing codes are
used for visualizing the results and retrieving data in the form of tables.

The code underwent several revisions since 1995. The numerical technique used in the
code was changed to a technique based on SIMPLE [19]; several high resolution
discretization methods were added in 1996 [8]. Many improvements were made through
a project under the Multiphase Fluid Dynamics Consortium and collaboration with Oak
Ridge National Lab (ORNL). In 1998 the Fortran 77 code base was translated into
Fortran 90 using the translation software VAST-90. Subsequently the code was
parallelized to run on shared memory processors (SMP) and distributed memory
processors (DMP) [16]. In 1999 version tracking of MFIX was started by using the CVS
(concurrent versioning system; http://ximbiot.com/cvs/) software.

The website http://www.mfix.org was launched in 2001 for distributing the source code
and disseminating information related to computational gas-solids flow. By February
2006 over 750 researchers from over 250 research institutions world-wide had
downloaded the code. The website typically receives between 5000 and 10000 hits every
month. The MFIX OS license allows people that registered at the website access to the
source code. No redistribution of the code is permitted, however. Several collaboration
tools available on MFIX website promote the OS development model:
• Source code revision control: CVS is used for source code revision control. CVS

allows several developers to work on the same file at the same time and to merge
their revisions of the code. CVS records all the changes in the code; all previous
versions of the code are for ever archived in the database. Therefore, developers can
easily retrieve any version of the code by specifying the desired date and time. So a
version referred to in a publication is for ever available for public scrutiny (provided
the authors preserve the data files and user-defined routines, if any.) With the CVS
web interface users can view the day-to-day changes made in the source code. As
shown in Figure 2 the web interface gives the file name, version number of the file,

 9

http://www.osti.gov/estsc/
http://www.mfix.org/

The Fifth World Congress on Particle Technology, Orlando, Florida, April 23-27, 2006
Session: TWD30 Selected Topics in Fluid-Particle Systems

age of the file, name of the developer that checked in the latest version, and
comments about the changes made. The interface allows users to graphically
compare two versions of the files and pinpoint the differences. All users can check
out code from CVS, but the main developers act as gatekeepers for checking code
into CVS.

• Tests and tutorials: The MFIX directory contains over forty test cases and thirteen

tutorial cases. The test cases test various features of the code in isolation (e.g., fluid
flow without solids), and typically run in a short period of time. When a new feature
is added to the code, a new case to test that feature is also added to the test-cases
directory. The tutorial cases are realistic cases that test a combination of features of
the code (e.g., combined fluid-solids flow). These cases can be used to learn about
setting up simulations.

Figure 2 CVS web interface

• Documentation: When the initial version of MFIX was developed three manuals
documenting the theory, user interface and numerical techniques were written [13, 14,
and 8]. It is nearly impossible to synchronize these detailed manuals with a code that
is constantly evolving. So the approach taken is to maintain two minimalist manuals
that are constantly updated; a readme file that lists all the user inputs and an
MFIX_equations file that lists the current set of equations [9]. The equations file is
version controlled and is a citable web document. In addition, the documentation
section also contains all the developer notes, written for each new feature
implemented.

• Communication: The communication between the users takes place through several
mailing lists. The popular OS software SYMPA (http://www.sympa.org/) has been
adopted for this purpose. The main mailing list mfix-help@lists.mfix.org is where
users post help-requests. In the OS software world there is no guarantee that users
will always get help. Reported bugs and projects of interest to MFIX team will
always get the team’s attention. Other help requests may get a reply from the MFIX
team or other users. Some users reported that they received help within twenty four
hours of reporting a problem. All the discussions are archived. So users are able to
search the archive for past discussions about a topic. In addition to the mfix-help
mailing list, there are over 20 different mailing lists covering different aspects of
multiphase flows: numerics, granular physics, discrete element methods, chemical
reactions, visualization, validation, applications such as gasification, etc.

 10

http://www.sympa.org/
mailto:mfix-help@lists.mfix.org

The Fifth World Congress on Particle Technology, Orlando, Florida, April 23-27, 2006
Session: TWD30 Selected Topics in Fluid-Particle Systems

• Open citations (http://www.mfix.org/open_citations/index.php): This section of the
website lists papers relevant to computational gas-solids flow. The discussion board
allows people to submit information about relevant papers as well as include
comments about the papers. The database is searchable; for example, one can easily
list all the papers of a particular author or topic. This part of the website has not
progressed very well perhaps because it has not been well publicized.

• Three forms of downloadable code are available:
o CVS version – The users can view the latest changes in the code and

download desired files. This ensures that the development is done under full
public view.

o Development version – Every day the previous day’s version of the entire
code is gathered and placed on the web site for downloading. The only
guarantee is that this version will compile and link to produce an executable.

o Stable version – Released once or twice a year after a major revision or
several minor changes and bug fixes. This version is tested and guaranteed to
work with all the test and tutorial cases.

V. OS Experiences with MFIX
In this section we will examine the OS experiences with MFIX. The development and
application work done by the MFIX team (mostly the present authors) has been excluded
from this discussion so that the OS experience can be highlighted. First, we will describe
how MFIX has contributed to research and education in computational gas-solids flow.
Then we will examine how MFIX itself was enriched through the OS development
process.

To collect information on MFIX usage, two surveys were conducted. The first survey
was conducted online and input was solicited from all MFIX users. The details about the
survey are given in Gel et al. [20]. The survey was conducted to guide the future
development of MFIX [20]. So the participants included MFIX team members as well.
The main findings from the survey are reported here to identify the users’ profiles and
applications.

The first survey resulted in responses from seventy users with wide-ranging backgrounds
and application needs. So at least 10% of the people that downloaded the code became
users of the code. Figure 3 shows the distribution of the MFIX users based on the number
of years they have been using MFIX. The majority of the users have around one year
experience, whereas 30% have one to three years of experience. Most experienced users
consisted about 9% of the user community. This seems reasonable, as MFIX became an
open-source code only in 2001. Also many users will remain in the category 1-3 years of
experience as many of them are graduate students.

Figure 4 shows the affiliations of MFIX users: 41% are graduate students, 21% are
faculty members, and 16% are post doctoral associates. So the survey results show that
almost eighty percent of the users are in the universities. Only four respondents identified
themselves as industrial researchers (excluding MFIX team members) and another as an

 11

http://www.mfix.org/open_citations/index.php

The Fifth World Congress on Particle Technology, Orlando, Florida, April 23-27, 2006
Session: TWD30 Selected Topics in Fluid-Particle Systems

attorney. This is not surprising since the software is set up for research type applications.
We believe that this is a representative sample based on our experience with requests for

help, although the survey could be biased because of the reluctance of industrial users to
respond.

0 years,
13%

1 year, 49%

2 years,
24%

5 & more
years, 9%

3 years, 6%

Figure 3 Distribution of survey respondents by years of experience

Figure 5 shows the percentage of MFIX users that consider the use of MFIX in their
projects successful. Nearly 50% indicated they had success with MFIX in their projects,

among these 11% indicated they were highly successful. The other half was split between
being not sure (33%) or not successful (17%). The percentage of successful users is
encouraging because MFIX is an expert user’s software with minimal user support

Faculty, 21%
Graduate

Student , 41%

Postdoctoral
Associate, 16%

Research Staff,
10%

Others, 11%

Figure 4 MFIX User categories

 12

The Fifth World Congress on Particle Technology, Orlando, Florida, April 23-27, 2006
Session: TWD30 Selected Topics in Fluid-Particle Systems

provided. About 33% of the users reported “not sure” presumably because they had
recently started using MFIX. The response “no success” in some cases may mean that the
model results did not agree with experimental data because of a deficiency in the
mathematical model, which in the context of the present discussion would be a successful
application of the software. Most of the users who indicated no success had used MFIX
for less than a year and described their expertise level as 'Basic'. On the other end of the
spectrum, users who indicated high success had been using MFIX for 3+ years and
described themselves as advanced users who were comfortable making changes in the
source code.

Figure 6 shows how the respondents used MFIX in their research. The responses that
were blank or not specific (e.g., “general”) were discarded; the responses that could be
counted in multiple categories were counted in all the applicable categories. All told there
were sixty five responses. Just as MFIX was originally developed for coal gasifiers and
fluidized bed combustors 48% of the applications were in the categories Energy (coal
gasification and combustion, biomass combustion) and Fluidization (bubbling fluidized

beds, risers, particle flow, gas-solids flow). This is possibly because many users learned
about MFIX from research papers or from web searches. About 12% of the applications
are in the related category of Chemical Reactors (fluid catalytic cracking, fluid bed
reactors, and polymerization) and 14% in multiphase flows (multiphase microfluidics,
slurry flow, gas-liquid). But the applications have been extended to other areas;
Geophysical (volcanic granular flows) has become a distinct category with 8% of the
responses and 18% of the responses were for other applications (microchannel heat
exchanger, powder flow). We could not assess certain other uses of code stated in the
registration form (e.g., to check how a certain formula is coded) because such incidental
users did not respond to the survey.

Figure 5 Success rating in using MFIX

Highly
Successful,

11%

Successful,
39%Not sure, 33%

Not successful,
17%

A second survey was conducted to collect detailed information from twelve principal
investigators known to the MFIX team. They were asked to provide a brief description of

 13

The Fifth World Congress on Particle Technology, Orlando, Florida, April 23-27, 2006
Session: TWD30 Selected Topics in Fluid-Particle Systems

the problem being solved, the years of usage, significant outcome (e.g., graduate thesis,
papers, improved algorithms or theory, migration of code/algorithm into other software,
applications, improvements to design and so on), and to comment on their experiences
with the “open source model” of information transfer (What worked well for the user and
what needs improvement?).

The responses regarding the research topics and significant outcome are summarized in
Table I. There are also several groups not included in the survey that have published

research results using MFIX [e.g., 21, 22, 23, 24]. These demonstrate that the OS
availability of MFIX has significantly contributed to research and education is gas-solids
flow. The advantage of model validation by a community of users, in addition to the
MFIX team, is being realized. Surprisingly no user stated this as an advantage, perhaps
taking this advantage for granted.

Energy
28%

Fluidization
20%Chemical

Reactors
12%

Multiphase
14%

Geophysical
8%

Others
18%

Figure 6 Different categories of MFIX usage.

Table I. Investigators, Affiliations, Research Topics, and Significant Outcome
Research Topics Significant Outcome
R. Fan, D. L. Marchisio and R. O. Fox, Iowa State
University: Implemented Direct Quadrature Method of
Moments (DQMOM) in MFIX to simulate particle
aggregation and breakage in a fluidized-bed.

PhD thesis and
publications [25, 26].

R. Fan and R. O. Fox, Iowa State University: CFD model
validation of a polyethylene pilot-scale fluidized bed at
Univation.

Model validated and used
to locate the hot spots in
the reactor [27].

G. Bergantz, University of Washington: Simulate a)
high-Reynolds number volcanic eruptions and associated
multiphase gravity currents, and b) low-Reynolds number

Three papers (with more
on the way), numerous
presentations, one Ph.D.

 14

The Fifth World Congress on Particle Technology, Orlando, Florida, April 23-27, 2006
Session: TWD30 Selected Topics in Fluid-Particle Systems

Research Topics Significant Outcome
chaotic convection in magma chambers. Results used as an
aid-in-interpretation of geological processes that cannot be
visualized in real-time, or are too hazardous to instrument
under natural conditions.

thesis and another in
progress.

F. Battaglia, N. Xie, Iowa State University: Modeling of
elutriation of char from a bubbling fluidized bed; eventually
simulate the simultaneous elutriation and solid-gas reaction
of char particles in the gasification reactor.

Elutriation data compared
with simulation results
[28].

F. Battaglia, R. O. Fox, N. Xie, Iowa State University:
Implement the novel algorithm in situ adaptive tabulation
(ISAT) to solve complex chemistry calculations in a fast and
efficient manner.

ISAT technique speeded
up a silane pyrolysis
reactor simulation by a
factor of 48 [29, 30].

F. Battaglia, J. Sun, Iowa State University: Modeling of
segregation in gas-solids fluidized beds. The effect of
particle rotation was introduced using an effective coefficient
of restitution.

Results compared with
experimental data
demonstrated the effect
of particle rotation on
bubble dynamics [31,
32].

L. Oger, University of Rennes and S.B. Savage, McGill
University: Modelling of air-gravity conveyors (airslides), in
which the flow of the granular material is enhanced by the air
that is forced through the bottom of the conveying trough.
Need to integrate frictional effect of the air on the grains.

No results to report yet.

S. Dartevelle, Los Alamos National Lab: MFIX-family
codes used as quality assured numerical tools to explore
multiphase dynamics (e.g., dust explosions) in the Yucca
Mountain Project drift/repository, Nevada, the proposed site
for the first permanent geologic repository for high-level
radioactive waste in US. Quality assurance testing must
reproduce the shock features commonly seen in
underexpanded (supersonic) axisymmetric jets and the
correct velocity profiles in multiphase axisymmetric
turbulent matched jet

PhD Thesis, research
papers and reports [33,
34, 35, 36, 37].

N. Siegel, Sandia National Labs: Development of a solar
receiver. Characterize the flow dynamics of a curtain of free-
falling ceramic particles, heated by concentrated solar energy
within an open cavity solar receiver to temperatures in excess
of 900 ○C.

A series of 2D and 3D
MFIX models were
initially used. Current
models, solved using
Fluent®, have helped to
identify several important
design concerns.

Y. Makkawi, R. Ocone, Heriot-Watt University: Simulate
bubbling fluidised beds (Group A/B and B particles) and
compare predictions with Electrical Capacitance
Tomography data. Identified limitations in the model
predictions and determined their cause (no cohesive force; no

Proposed and tested
modifications for solving
the model limitations
identified [38, 39].

 15

The Fifth World Congress on Particle Technology, Orlando, Florida, April 23-27, 2006
Session: TWD30 Selected Topics in Fluid-Particle Systems

Research Topics Significant Outcome
frictional stress above void fraction 0.5).
S. Sundaresan, Princeton University: Over the past 8
years, used the software
(a) to study the statistical properties associated with
time-dependent, spatial inhomogeneities that occur in
fluidized suspensions. Gathered fluctuation statistics and
used this information to construct closure relations for
filtered two-fluid models.
b) to simulate flows at high particle volume fractions, where
frictional stresses dominate.

Several papers and
presentations [40, 41, 42,
43, 44, 45]; completed
four PhD theses, one in
progress [46, 47, 48, 49].

Improved theory:
a) Frictional stress model
b) Concept of filtered
two-fluid models

T. Pugsley, University of Saskatchewan: Working with
MFIX for approximately four years for modeling dense
phase fluidized beds containing fine catalyst powder (e.g.
FCC stripper).

One MSc thesis, two
refereed journal
publications, and other
reports and presentations
[50, 51].

U. Imke, Forschungszentrum Karlsruhe GmbH: Simulate
heterogeneous catalyses in micro-channel heat exchangers
using a porous body approach.

Still under development,
no significant results until
now.

M. Weber, J. Galvin, and C. Hrenya, University of
Colorado: (a) Implementation of cohesive forces into the
discrete-particle framework using a square-well potential.
(b) Studying segregation/mixing of dense binary mixtures in
fluidized beds. Emphasis is on investigating the various
driving forces for segregation, especially driving forces that
arise from a non-equipartition of granular energy.

MS thesis and journal
article [52]. Started
incorporating the
multitype particle kinetic
theory of Iddir and
Arastoopour [53].

The responses to the question about what worked well for the user are as follows:

• Open source access
• Well written code
• Well organized web site that is regularly updated
• Discussion forum and archived messages
• Questions are answered quickly, issues resolved quickly
• Training of students at NETL in summer

G. Bergantz (University of Washington) said that “the open-source model has been very
successful because the code is very well documented so that users can see where various
tasks are assigned and how they inter-relate, the MFIX team has managed to keep the
process of code updates robust and well maintained, and the community of users and
contributors are mostly already well trained in CFD and theories of multiphase flow.” He
emphasized that to be successful, “open-source approach needs some of the 'care-taking'
and oversight activities of the MFIX team, to manage where code improvements are best
implemented. Without this oversight capacity, the open-source model would falter and
various versions of the code would emerge with questionable validation, etc.”

 16

The Fifth World Congress on Particle Technology, Orlando, Florida, April 23-27, 2006
Session: TWD30 Selected Topics in Fluid-Particle Systems

Regarding what needs to be improved the comments were as follows:
• Ability to represent complex geometry is needed.
• With continual changes it is often difficult to repeat/reproduce work that was

conducted using an older version. This causes one to suspect either the new
version of the code or previous work and conclusions.

• Documentation needs to be updated and made thorough.
• There are often parts of the code that are not documented at all and users become

aware of some of the code’s capabilities only after browsing through source code.
• Some efficient tutorial that one can use to learn how the code is configured (what

the main program is, what each routine does and in what sequence they are called)
will be useful for students.

The above discussion shows that the OS availability of MFIX has had much impact on
research and education in computational gas-solids flow. Now we will show that MFIX
itself was enriched through the OS development process. Table II summarizes major
contributions to MFIX code from external contributors, who again happen to be all
graduate students (at the time of making the contribution). In most cases these
developers sought the advice of MFIX team, but the development itself was not done
under CVS control. The code modifications were later merged with MFIX CVS by one
of the MFIX team members.

Table II. Major capabilities added to MFIX by graduate students
Capability Contributor University
Granular energy equation K. Agrawal Princeton U.
Frictional flow model A. Srivastava Princeton U.
Lees-Edwards boundary condition P. Loezos Princeton U.
DQMOM R. Fan Iowa State U.
ISAT N. Xie Iowa State U.
Discrete Element Model (DEM) D. Boyalakuntla Carnegie Mellon U.
Cohesion model in DEM M. Weber U. of Colorado
SI units capability S. Dartevelle Michigan Technological U.
Koch and Hill drag correlation C. Sutton Lehigh U.

Table III lists some of the significant bugs detected and reported by various external
users. Some bugs (items 1, 2, 3) were caught through code verification (i.e., the users
simply reading the source code.) So the benefit of code verification through many eyes
reading the source code as claimed by Raymond is being realized. Some bugs were
identified during solution verification, but the users then read the source code and
reported the location of the bug (items 4, 5), again vindicating Raymond’s claim. In
some cases the problem was detected through solution verification (items 6, 7, 8) but the
users could not identify the cause of the problem. These programming errors (item 6) or
defects in the computational model (items 7, 8) were later resolved by MFIX team. Some
bugs got exposed when the user employed a compiler different from that used by MFIX-
team (which is another form of code verification.) Some bugs were merely compiler

 17

The Fifth World Congress on Particle Technology, Orlando, Florida, April 23-27, 2006
Session: TWD30 Selected Topics in Fluid-Particle Systems

quirks (item 9) and some were applicable only to SMP mode of execution not often used
by MFIX team (item 10), but some others were potentially dangerous (item 11).

Table III. MFIX bugs reported by users
No Bug report Contributors (Affiliation)
1. Partial slip boundary condition K. Agrawal (Princeton U.)
2. Granular energy equation source terms S. Dartevelle (Los Alamos), J.

Galvin (U. Colorado)
3. Cylindrical coordinate stress terms J. Galvin (U. Colorado)
4. Problem with Cp in the energy equation U. Imke (Forschungszentrum

Karlsruhe GmbH)
5. Inner radius in cylindrical coordinates J. Pasini (Cornell U.)
6. Solid-body rotation problem A. Srivastava (Princeton)
7. Species mass balance problem T. McKeen (U. Saskatchewan)
8. Momentum deficit in cyclic simulations A. Andrews (Princeton)
9. Compilation problems L. Oger (U. of Rennes)

10. Open-MP bugs S. Dartevelle (Los Alamos)
11. Uninitialized variables S. Dartevelle (Los Alamos)

VI. Concluding Remarks
In this study we show that the OS software MFIX has made significant contributions to
research and education in gas-solids flow. The vast majority of the external users were in
universities. The advantages of many eyes verifying the code was realized, in both
solution verification and code verification. So the OS development model worked very
well in the case of MFIX.

The MFIX team is taking steps to modernize the software. The MFIX-NG project was
started last year to create software composed of open source components. The new
software will have the capability to express mathematical equations in a high-level script
language. This will allow researchers to readily change and experiment with new
mathematical formulations with a few lines of code in a single file.

In a related effort a test harness has been developed to conduct software regression tests
by adopting the OS testing environment QMTest [54]. Such testing seeks to uncover
regression bugs or software functionality that previously worked stops working.
Typically regression bugs occur as an unintended consequence of code changes. The test
harness checks out the most recent version of MFIX nightly, builds executables, and runs
several test cases. Problems encountered during testing are automatically emailed to the
development team, and the results of the tests are posted on MFIX website, which all
users can view. This will help to catch and correct problems early on and reduce the time
required for fixing regression bugs because the bugs can be correlated with the changes
made the previous day. Also the test harness will ensure the quality of the evolving
software on a daily basis.

 18

The Fifth World Congress on Particle Technology, Orlando, Florida, April 23-27, 2006
Session: TWD30 Selected Topics in Fluid-Particle Systems

After the product of MFIX-NG project becomes accepted by the users, the team will
maintain MFIX with no additional feature enhancements so that the software can be used
to generate high quality numerical data that can be used for solution verification of other
computational gas-solids flow codes.

VII. References
1. “Open-source software” article in Wikipedia from URL

http://en.wikipedia.org/wiki/Open-source_software
2. “History of the Open Source Initiative” from URL

http://www.opensource.org/docs/history.php
3. Zaleski, S., “Science and Fluid Dynamics should have more open sources,” from

URL http://www.lmm.jussieu.fr/~zaleski/OpenCFD.html
4. Raymond, E.S., "The Cathedral and the Bazaar" , 1997, from URL

http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/
5. W. L. Oberkampf and T.G. Trucano, March 2002, “Verification and Validation in

Computational Fluid Dynamics,” SANDIA REPORT, SAND2002-0529.
6. Roache, P.J., 1998, “Verification of codes and calculations,” AIAA J., 36, 696-702.
7. Grace, J.R. and Taghipour, F., 2004. Verification and validation of CFD models and

dynamic similarity for fluidized beds. Powder Technology, vol. 139, pp. 99-110.
8. Syamlal, M. December 1998. MFIX Documentation: Numerical Techniques.

DOE/MC-31346-5824. NTIS/DE98002029.
9. Benyahia, S., M. Syamlal, T.J. O’Brien, “Summary of MFIX Equations 2005-4”,

From URL http://www.mfix.org/documentation/MfixEquations2005-4-1.pdf, March
2006.

10. Harlow, F.H., and A.A. Amsden, 1975, "Numerical Calculation of Multiphase Fluid
Flow," J. of Comp. Physics, 17, 19-52.

11. Gidaspow, D., and B. Ettehadieh, 1983, "Fluidization in Two-Dimensional Beds with
a Jet; 2. Hydrodynamic Modeling," I&EC Fundamentals, 22, 193-201.

12. Syamlal, M. and D. Gidaspow, 1985, "Hydrodynamics of Fluidization: Prediction of
Wall to Bed Heat Transfer Coefficients," AIChE J., 31, 127-135.

13. Syamlal, M., W. Rogers, and T.J. O'Brien, 1993, "MFIX Documentation: Theory
Guide," Technical Note, DOE/METC-94/1004, NTIS/DE94000087, National
Technical Information Service, Springfield, VA.

14. Syamlal, M., 1994, "MFIX Documentation, User's Manual," Technical Note,
DOE/METC-95/1013, NTIS/DE95000031, National Technical Information Service,
Springfield, VA.

15. Syamlal, M., S. Venkatesan, S.M. Cho, 1996, “Modeling of Coal Conversion in a
Carbonizer”, Proceedings of Thirteenth Annual International Pittsburgh Coal
Conference, Vol. 2, ed. S.-H. Ciang, University of Pittsburgh, Pittsburgh, PA, 1309-
1314, September 3-7.

16. E. D'Azevedo, S. Pannala, M. Syamlal, A. Gel, M. Prinkey, and T. O'Brien, 2001,
“Parallelization of MFIX: A Multiphase CFD Code for Modeling Fluidized Beds”
presented at Tenth SIAM Conference on Parallel Processing for Scientific
Computing.

17. Guenther, C., M. Shahnam, M. Syamlal, J. Longanbach, D. Cicero, and P. Smith,
2002, “CFD Modeling of a Transport Gasifier," Proceedings of the 19th Annual

 19

http://en.wikipedia.org/wiki/Open-source_software
http://www.catb.org/%7Eesr/writings/cathedral-bazaar/cathedral-bazaar/

The Fifth World Congress on Particle Technology, Orlando, Florida, April 23-27, 2006
Session: TWD30 Selected Topics in Fluid-Particle Systems

Pittsburgh Coal Conference, Pittsburgh, PA, September 23-27.
18. Gidaspow, D., 1994, Multiphase Flow and Fluidization: Continuum and Kinetic

Theory Descriptions, Academic Press, New York.
19. Patankar, S.V., 1980, Numerical Heat Transfer and Fluid Flow, Hemisphere

Publishing Corporation, New York.
20. A. Gel, S. Pannala, M. Syamlal, T. J. O'Brien and E. S. Gel, 2006, “Comparison of

Frameworks for Next Generation Multiphase Flow Solver, MFIX: A Group Decision-
Making Exercise,” Concurrency Computat. Pract. Exper. (accepted for publication)

21. S.J. Gelderbloom, D. Gidaspow, and R.W. Lyczkowski, 2003, “CFD Simulations of
Bubbling/Collapsing Fluidized Beds for Three Geldart Groups,” AIChE J., 49, 844-
858.

22. De Wilde, J., 2005, “Reformulating and quantifying the generalized added mass in
filtered gas-solid flow models,” Physics of Fluids, 17, 113304.

23. X. Wang, C. Zhu, R. Ahluwalia, 2004, “Numerical simulation of evaporating spray
jets in concurrent gas–solids pipe flows,” Powder Technology 140 56– 67.

24. Sutton, C.R. and Chen, J.C., 2004, “Dynamic behavior of local solids concentration in
fluidized beds: experimental validation of an Eulerian-Eulerian model” presented at
the 2004 AICHE annual meeting, Austin, TX.

25. R. Fan, D. L. Marchisio, R. O. Fox, 2003, “DQMOM model for gas-solid fluidized
bed with aggregation and breakage”. Computational Fluid Dynamics in Chemical
Engineering III, Davos, Switzerland, May 25-30.

26. R. Fan, D. L. Marchisio, R. O. Fox, 2004, “Application of the Direct Quadrature
Method of Moments to Poly-Disperse, Gas-Solid Fluidized Beds”. Powder
technology, 139 (1): 7-20.

27. R. Fan, R. O. Fox and M. E. Muhle, 2005, “CFD Validation of a Polyethylene Pilot-
Scale Fluidized Bed”. 3rd European conference on the reaction engineering of
polyolefins, Lyon/France, June 20-24.

28. Xie, N., Battaglia, F. Timmer, K.J. and Brown, R.C., November 2005 , “Modeling of
elutriation phenomenon in fluidized beds”, 2005 American Physical Society, Division
of Fluid Dynamics, Chicago, IL.

29. Xie, N., Battaglia, F., and Fox, R. O., 2004, “Simulations of multiphase reactive
flows in fluidized beds using in situ adaptive tabulation”. Combustion, Theory, and
Modelling, 8 (2), 195-209.

30. N. Xie, MS Thesis, August 2002, “Simulations of multiphase reactive flows in
fluidized beds using in-situ adaptive tabulation method”, Iowa State University.

31. Sun, J. and Battaglia, F., 2006, “Hydrodynamic modeling of particle rotation for
segregation in bubbling gas-fluidized beds”. Chemical Engineering Science, 61, pp.
1470-79.

32. Sun, J. and Battaglia, F., 2004, “Effects of Particle Rotation on the Hydrodynamics
Modeling of Segregation in Gas-Fluidized Beds”, ASME Fluids Engineering Division
(Publication) FED, Proceedings of the ASME Fluids Engineering Division,
IMECE2004-62316, Vol. 260, pp. 745-753, Anaheim, CA.

33. S. Dartevelle and G.A. Valentine, 2005. Early-time multiphase interactions between
basaltic magma and underground repository openings at the proposed Yucca
Mountain radioactive waste repository, 32, L22311, doi:10.1029/2005GL024172,

 20

The Fifth World Congress on Particle Technology, Orlando, Florida, April 23-27, 2006
Session: TWD30 Selected Topics in Fluid-Particle Systems

Geophysical Research Letters. Also in LA-UR-05-5614, Los Alamos National
Laboratory, Los Alamos, New Mexico.

34. S. Dartevelle, 2005. Comprehensive Approaches to Multiphase Flows in Geophysics.
Application to non-isothermal, non-homogenous, unsteady, large-scale, turbulent
dusty clouds. I. Basic RANS and LES Navier-Stokes equations, LA-14228, pp.51,
Los Alamos National Laboratory, Los Alamos, New Mexico.

35. S. Dartevelle, 2004. Numerical modeling of geophysical granular flows: 1. A
comprehensive approach to granular rheologies and geophysical multiphase flows, 5,
Q08003, doi:10.1029/2003GC000636, G-cubed.

36. S. Dartevelle et al., 2004. Numerical modeling of geophysical granular flows: 2.
Computer simulations of plinian clouds and pyroclastic flows and surges, 5, Q08004,
doi:10.1029/2003GC000637, G-cubed.

37. S. Dartevelle, 2003, Numerical and granulometric approaches to geophysical granular
flows, Ph.D. dissertation thesis, Dept. Geological and Mining Engineering, Michigan
Technological University, Houghton, Michigan.

38. Makkawi, Y. T. and Ocone, R., Validation of CFD model for fluidised bed over broad
ranges of operating conditions. 5th World Congress on Particles Technology, 23-27
April 2006. Orlando FL- USA. Submitted.

39. Makkawi, Y. T., Wright, P. C. and Ocone, R., 2005. The effect of friction and inter-
particle cohesive forces on the hydrodynamics of gas-solid flow: a comparative
analysis of theoretical predictions and experiments. Powder Technology. Submitted.

40. S. Sundaresan, 2000, “Perspective: Modeling the Hydrodynamics of Multiphase Flow
Reactors: Current Status and Challenges”, AIChE J., 46, 1102.

41. K. Agrawal, P. N. Loezos, M. Syamlal, and S. Sundaresan, 2001, “The Role of
Meso-Scale Structures in Rapid Gas-Solid Flows”, J. Fluid Mech., 445, 151.

42. P. Loezos and S. Sundaresan, 2002, “The Role of Meso-Scale Structures on
Dispersion in Gas-Particle Flows”, in Circulating Fluidized Beds VII, Eds. J. R.
Grace, J. Zhu, and H. I. de Lasa, Can. Society of Chemical Engineering, Ottawa, pp.
427-434.

43. A. Srivastava and S. Sundaresan, 2003, “Analysis of a Frictional-Kinetic Model for
Gas-Particle Flow”, Powder Tech., 129, 72.

44. A. T. Andrews, P. N. Loezos, and S. Sundaresan, 2005, “Coarse-Grid Simulation of
Gas-Particle Flows in Vertical Risers”, Ind. Eng. Chem. Res., 44, 6022 – 6037.

45. A. T. Andrews and S. Sundaresan, 2005, "Closure relations for filtered two-fluid
model equations," in preparation.

46. K. Agrawal, 2000, The role of meso-scale structures in rapid granular and gas-solid
flows, PhD Thesis, Princeton University, Princeton, NJ.

47. A. Srivastava, 2002, Dense phase gas-solid flows in circulating fluidized beds, PhD
Thesis, Princeton University, Princeton, NJ.

48. P. Loezos, 2003, An investigation into dense and dilute gas-particle flow, PhD
Thesis, Princeton University, Princeton, NJ.

49. A.T. Andrews IV, thesis to be defended in early 2006.
50. T. R. McKeen and T. S. Pugsley, 2003. "Simulation of a Cold Flow FCC Stripper at

Small Scale using Computational Fluid Dynamics." Int. J. Chem. Reactor Eng. 1,
paper A18.

 21

The Fifth World Congress on Particle Technology, Orlando, Florida, April 23-27, 2006
Session: TWD30 Selected Topics in Fluid-Particle Systems

51. McKeen, T., and Pugsley, T., 2003. Simulation and experimental validation of freely
bubbling bed of FCC catalyst. Powder Technology 129, 139-152.

52. Weber, M.W., and C.M. Hrenya, 2006, “Square-well Model for Cohesion in
Fluidized Beds,” Manuscript accepted for publication in Chem. Eng. Sci.

53. H. Iddir and H. Arastoopour, 2005, "Modeling of Multi-Type Particle Flow Using
Kinetic Theory Approach", AIChE Journal, 51, No. 6, 1620-1632.

54. “QMTest, A General Purpose Testing Framework”
http://www.codesourcery.com/qmtest/

 22

	I. INTRODUCTION
	II. Open Source Development
	III. Open Source Development in Science
	IV. MFIX Background and OS Features
	V. OS Experiences with MFIX
	VI. Concluding Remarks
	VII. References

