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ABSTRACT

General flow equations for the flow of gas and solid particles of
different sizes and densities were developed. A collection of particles
of the same size and density are considered to form a continuum —a
particulate phase. Thus the flow of a mxiture of gas and particles is
described using multiphase flow equations.

The empirical information used in the model are as folliows., The
gas—particle momentum transfer term used is a generalization of the
correlation used by Gidaspow and Ettehadieh (1983) in their single
particle size fluidized bed model. A generalization of the solids
stress term used by them is also used to prevent the solids volume
fraction from becoming unrealistically large. To describe the momemtum
transfer between the particulate phases an approximate expression was
derived. A general purpose computer program to solve the multiphase
flow equations based con the K-FIX program (Rivard and Torrey, 1977) was
developed. The model was applied tec a variety of gas-solids flow
problems involving one or two particle types.

The model was applied to the study of mixing in a fluidized bed by
a bubble. The initial condition was that of two segregated layers of
particles: the upper layer consisting of 230 um particles of density 2.6
g/cm3 and the bottom layer consisting of 800 um particles of density
2.91 g/cm3. At time zero a central jet was turned on and the grid flow
was increased to keep the large particles at minimum fluidizaéion. The
computations, carried out up to 0.56 s, showed a bubble in the bottom

layer and the mixing induced by the drift benind that bubble. The upper

¥iil



layer expanded considerably as seen in an experiment. However, the
computations did not go far encugh to predict bubbles in the upper
layer.

Energy equations were added to a single particle version of the
computer model and heat transfer from bed to wall was studied. The
large healt transfer coefficients characteristic of fluidized beds were
computed without an enhancement of heat transfer by turbulence. They
agreed with measurements reported by Ozkaynak and Chen {1980) within the
accuracy of estimated thermal conductivity of solids.

A viscosity term was added to model radial velocity profiles in a
pneumatic conveyor. The velocity profiles were similar to one of Lwo
contradicting sets of published experimental data. The computations
predicted nearly flat velocity profiles. One-dimensional simulation to
study segregation in a pneumatic conveyor for a binary mixture was
carried ocut. The results were compared to experimental data.

Three multiphase flow models were studied to determine critiecal
flow conditions. It was found that the dense phase transport may be
limited by a critical velocity egual to /"E7E;— where G is an "elastic®

modulus of the powder and Py is its density.

Xiv



7.1

CHAPTER I

INTROGDUCTION

The modeling of fluldized beds using hydrodynamic equations started
Wwith the Davidson model in 1961. Davidson's medel accurately predicted
many features of the bubble moticn in a fluidized bed. During the later
years several investigators attempted hydrodynamic modeling of the
fluidized bed (Jackson, 1963; Murray, 1965; Pigford and Baron, 1965;
500, 1967; Ruckenstein and Tzeculescu, 1967). But as the models became
more detailed and hence more complex, they alsoc became analytically
intractable,

The energy crisis in the 70's made it necessary to look at
alternative sources of energy. This spurred interest in the use of
fluidized:bed gasifiers and combustors to utilize coal more efficiently
and cleanly. The scale-up of these reactors to large scale units is
difficult, This lead to the development of detailed numerical medels
for fiuidized bed reactors by Systems, Science, Software (Scheneyer, et
al., 1981) and JAYCOR (Scharff, et al., 1982). A parallel development
at IIT, Chicago, produced a single particle model for an isothermal
fluidized bed (Ettehadieh, 1983; Gidaspow and Ettehadieh, 1983). The
model was based on the K-FIX program (Rivard and Torrey, 1977) developed
at the Los Alamcs Scientific Laboratory.

The attraction for a hydrodynamic model is due to its wider
applicability (ie. the esase with which any restrictive assumptions may
be lifted) and its ability to predict transient behavior of the locail
variables. It is hoped that these predictions may be appiied fruitfully

to improve practical designs. For example:



1. An understanding of the mixing of coal particles in a bed of
limestone particles could lead to a better design for a coal
injection system in a fluidized bed combustor.,

2) It is necessary to know the motion of solid particles near a heat
exchanger tube to study the corrosion/erosion rates.

3} The mechanism of bubble eruption at the bed surface could lead to
a better understanding of the entrainment process,

Uy It may be important to know the local heat transfer
characteristies in some reactor applications.

5) Prediction of the relative velocities between particles may be
useful in agglomeration/attrition studies.

It should be pointed out that hydrodynamic modeling is not without
its inherent pitfalls and is not an alternative for careful
experimentation. In fact due te the too few physical inputs a badly
formulated problem could easily stray away [rom the reality and hence
some experimental comparison is a must in the initial developmental
stages of the modei. The experimental efforts at IIT is a reflection of
this necessity (Gidaspow, Lin and Seo, 1983).

The IIT model can predict the evolution, prepagation and eruption
of a bubble in a single particle fluldized bed as depicted in Figure 1.1
(Gidaspow, Syamlal, and Seo, 1685). The solids velocity vector plots
for the same simulation are shown in Figure 1.2. Note that the model
correctly predicts the solids circulation around the bubble and the
powerful wake motion behind the bubble. The mechanism of soiids
transport due to the wake can be easily visualized.

In this thesis we intend to explore futher applications of the

hydrodynamic model. In many practical applications of interest,the use
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1.6

of a single prarticle fype may be too restrictive., Hence we extend the
basic model using multiphase flow equaticons. Later on, the addition of
energy equations and viscosity terms are considered.

In Chapter II the multiphase flow equations and the necessary
constitutive relations are developed., Also incliuded is a discussion of
the initial and boundary conditions to be used., In Chapter III the
model is used to study the mixing induced by a bubble in a segregated
bed of two particulate phases. In Chapter IV energy equations are added
to the basic hydrodynamic equations in an effort to check whether the
model can predict the enhanced heat transfer rate in a fluidized bed.

In Chpater V a viscosity term is added and the model is applied to study
pneumatic conveying. In Chapter VI one of the interesting features of

the equations, the predicticon of a 'eritical flow', is explored.



CHAPTER II

MULTIPHASE HYDRODYNAMICS

The Governing Equations

The central theme of this thesis is the application of multiphase
Flow equations to fluidization and pneumatic conveying. The eqguations
and the necessary constitutive relations are developed in this
chapter. These equations have been discussed and debated upon in
several publications such as Soo (1967}, Ishii (1975}, Pai (1977,
Lyczkowski, Gidaspow and Solbrig (1983).

The derivation of multiphase flow equations may be done using
volume averaging of the single phase flow equations. It is necessary to
make several drastic assumptlions, eventually, to get the equations in a
solvable form. The details of such a procedure are easily found in
literature and are not presented here.

Here we will consider a multiphase system consisting of particles
and a gas. The solid particles could he of different densities and
diameters., Following a suggestion of Soo (1967) we consider that
particles of identical densities and diameters form a continuum - a
particluate phase., For example if we have a mixture of two types of
particles, which differ in diameter, density or both diameter and
density, we treat them as two distinct particlate phases.

In a practical situation, however, there is & distribution in the
particle diameters and densities. Then it would be necessary“to

diseretize such a distribution and consider it as several particulate
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phases. Each of these particulate phases will be identified by some
characterlstic diameter and density, which are some average values of
the discretized distribution,

The major weakness of the model lies in the necessity for
discretization. When there is a very broad distribution in the particle
properties, the number of particluate phases to be defined become very
large for getting reasonable accuracy. Then the number of equations to
be solved become intractably large (Pai, 1977). There are situations,
however, such as segregation or entrainment in a fluidized bed where it
is sufficient to study the dynamics of a binary or a fertiary mixture
for a better pnysical understanding (Valenzuela, 1983). Thus, there is
sufficient motivation for developing and utilizing a multiparticle
model.

Actually the phases cannot coexist at the same spatial location.

Hence we define a phase volume fraction g, Ffor the phase "k" over a

K
volume much larger than max ]dk3] but smaller than the volume of the

computational region. The microscopic density may now be modified as

WP (2.1)

Now the pseudo-fluids with the macroscopic densities pé are considered
to form interpenetrating continua - one gas phase and possibly several
particluate phases. Dues to the presence of interfaces it is necessary
to consider interphase mass, momentum and energy transport. Here we do
not consider any interphase mass transport. The drag terms in the
momentum equations given later account for the interphase momentum

transport. The equations of motion may be derived just as in the case
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of a single phase with suitable sourée terms such as drag terms. The
set of equatlions used here for an isothermal case is given below, Note
that the subscript "i" is used to indicate the gas phase.

Continuity Equations

AT (skek) + V. (ekpkvk) = 0 (2.2)

Momentum Equations

? R . 0 o
= (Dkuka) + ¥ {;kpkvkvk) = EkV P+ pLELE * GkVEl
N
+ ) L (v2 - V& (2.3}
R
where,
N
E €, = 1 (2.4)
e

The gas phase is considerd tc be ideal and the particulate phases

are conslidered to be of constant densities.

p, = RT {(2.5)
™ Psk for k 2 2
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Gas-Particle Interaction

Gidaspow and Ettehadieh (1983) for their single particle model
derived the gas-particle friction term from the Ergun equation and from
Wen and Yu's {1966} correlation. These constitutive relations have been

generalized as folleows,

150 (1 = &) e m 175 o | Vim V] e,
Ky, =K, = 3 * 0.2 £ £,¢ 0.8
KooK e (d ) (d, ¢.)
1 P kPx
£ [ Vv, =V | pLE
- 3¢,k (d¢‘; Ko (e,) 0.82¢e,21.0
k'k {(2.6)
where,
w2 635
fle)=¢e, ° (2.7)
2}_; 3'687
CDR = ﬁgk(i + 0.15 Rek ) Rek< 1000
= 0.4l Re, 2 1000 (2.8)
ang
d v, -V PL1E;
Re, = K K (2.9)
k Wi

Suppose that we have a bed of identical particles. While using a
multiparticle model we have a chicice of treating this as a single
particlulate phase of volume fraction e, or as several particluate

phases such that their volume fractions add up to e, 1In the first case
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we get a single momentum equation and in the latter case several
momentum equations. The drag relations have been generalized in such a
way that these momemtum equations correctly add up to the single
momentum equation in the former case.

A check on such a generalization would be to compute the minimum
fluidization velocity as predicted by these equations. However, it

should be noted that there is no well defined Um in a multiparticle

r
case as there is in the single particle case (Yang and Keairns, 1983).
Our eguations also indicate this. Consider equation 2.3 in one

dimension at a "minimum fluidization" condition. We get
g

aw ¥
0= - g, 22 -7 K, ¥, - p, €, & (2.10)
dy g = 2 £

for the gas phase and

dp

0= -5 g0 * Ky - 8 (2.11)

bk

for the particulate phases. Summing all these equations we get
N
- = o= i P\ B {(2.12)

which is the expected result that the weight of the bed is supported by
the pressure drop. However, equations 2,10 and 2.1% form an over
determined sysiem for Vl. The reason for this is that theremis an
interaction between the particulate phases, which is missing in equation
2.11. These interaction terms are not easily defined and depend upon'

the flow history. For this reason, as shown in Figure 2.1, we observe a
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2.7

hysteresis between the branch with increasing gas velocity and the
braneh with decreasing gas velocity (Yang and Keairns, 1883).
Maintenance of the uniformity of the mixture and reproducibility of the
results is poor {Rowe, and Nienow, 1975; Chiba etal., 1979). With this
in mind we try some rbugh comparisons, We hope that 2.10 and 2.12

define the Um in some average sense as follows

f
N N
} PLEE = L Ky, U . = p,g =0 (2.13)
K o= 1 k7k K = 2 k mf
The Umf calculated using equation (2.13) is compared to the experimental

value and to the computed value using an equation due to Rowe and Nienow
(1975) in Table 2.1.

Particle-Particle Interaction

A particle-particle friction term must be included in the equations
toc handle the momentum exchange between the particulate phases,
Arastoopour, Lin and Gidaspow (1980) observed that such a term is
necessary to give a correct segregation among particles of different
sizes in a pneumatic conveyor. An equation for such an interaction in &
dilute mixture has been suggested by Soo (1967). A similar expression
was also used by Nakamura and Capes (1976). Greenspan and Ungarish
(1982} did not use such an interaction term For the settling of a
multiparticle mixture. Arastoopour, Wang and Weil (1982} experimentally
studied such an interaction in a pneumatic conveyor.

Here we intend to derive an approximate expression to cbﬁpute the
momentum exhange between particulate phases in a dense bed. The task is
to model the momentum exchange between phases "k'" and "&" given the

local valiues of the field variables €y EQ, PlrPys dk’ dQ and the
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rejative velocity ng at an instant. We also assume that only binary

interactions are important,
We use an approach similar to Bagnelid (1954) to get the average

separation between the particles of phase "k" and "¢" . Consider a

collection of particles with modified diameters dk and dQ '

they form a random close packed structure as shown in Figure 2.2,

such that

9

Figure 2.2. Definition Sketech for a Two Particle System
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Table 2.1 Compariscon of Minimum Fluidization Velocities of
Multiparticle Systems

Components Experimental Rowe and Equation

Nienow (1975) (2.13)

g, We % e o Upr Uy g Upp
(um) (cm/s) (cm/s) (cm/s)
568 16.7
Mixture 452 16.7
A 284 25.0 0.355 2.59 2.33 1.85
155 16.6
102 25.0

Mixture 569 50.0

B 284 50,0 0.394 9.14 12.08 17.59
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The maximum sclids volume fraction of a random close packed

*
d and the

%
structure ¢ may be calculated as a function of dk » dy

k&

composition using the following empirical formula due to Fedors and

Landel (1979),

X
k
€ip = [( N q}i} + (1 a) {1 @k) @E] [@nk + (1 ¢2} @k} (-p—k
&
i
¢
K
for X, <
k @k + {1 @k) ®%
= (1 - a) [ @k v (1 - @& ¢£}(1 - Xk) + @k
*y
for ¥ z {(2.14)
k @k + (1 ék) @Q
where
d *
g ¥ ¥
a=v < (d zd )
d K 2 (2.15)
K

¢k, ¢1 - Solids volume fraction at maximum packing in a single

particle system for phases "k and "&" respectively.
*
£
K
g Ty
Now
a
% (dy * 3
£ = € 3



3
=g, (1 +3) (2.17)
where
Ak
g = — {2.183
K dk
Similarily
* 3
g, = &y (1 + SR) (2.19)
A
s, = 2 (2.20)
g di

To continue the derivation we have to make the assumption that

8, =8, =8 (2.21)
to get
dR
a =y (2.22)
d
k
where we have assumed that di b dk' Otherwise the indices "k"

and "L" should be interchanged in all the expressions. Also

O (2.23)



Now from equations 2.17, 2.19 and 2.21

¥ ) %
e T Fk T g
3
= (ek + EE) (1 + s) {(2.24)
and
€ A

s = (k) - (2.25)

Kk g

giving the average distance between the particles as

A T G g Y
ke 2 2

- L( ) - 1] {2.26)

it should be pointed out that it is not certain whether the average
collision distance as given by equation (2.26) is appropriate for all

values of €l and ag. In the limiting case of maximum packing, it does

give the correct value of zero distance of separation. Later we will

see that in the limit of ¢ + {0, also the expressicn for particle

k' g
particle interaction reduces itself to Nakamura and Capes's (1976G)
equation for the dilute case,

Consider the collision of a pair of particles separated¢by a

distance Ak as shown in Filgure 2.3.

L



l/’ﬂ“\\ ',-’-'~'\\
/ \\ ,t \\
— / 3 : 1
A
dy +d = Ml >~
X { -
1! l ] ;l
\ ,’- N ’
A ’ “ L

Figure 2.3 Definition Sketeh for a Collision

In a volume AV the number density of "k™ particles
S 5 (2.27)

Since the "k'" particle has to move through an average distance
of Akk before encountering an "g" particle, the average frequency of

collision is given by

v
kel (2.28)

Aeg

The volume of collision per "k" particle is given by {Figure 2.3)

T ) N
3 {dk + dQ) T (g, + d ) A (2.29;
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From equations 2.27 and 2.29 the total collision velume
AV i T

= _ e [ 3 (d, + d,) + o { dk + di) Akﬂj {2.30)
6

Total number of collisions = Number of "L" particles in the collision

volume of '"k" particles (Equation 2.30)

AV m | 2 2
= ';"'— , Ei( L "“6“ {dk + dﬂ,) + T (dk + dﬂ) Akﬁ.] _T_r \ (2.31})
5 9 )
Numbers of collision/units volume/unit time
_ total number of collisions (sz)
AV Aki
€ E
~ k-2 2 3
= —5—5— (4 v dp) Ld o +vd v 5a, 0|V, | (232
b S X,
6 kg

2 Tk
=a (1 + e) mz:mgz sz
T 3 3
=d, pd, p
HEE K
_a { . e) 6 K k'L T8 v (2.33)
(d e +d p.) <k
K k g e

where e is the coefficient of restitution and ¢ is & correction factor

to give the average value.

The total rate of momentum transfer between phase'k" ané ret from

equations 2.32 and 2.33



2
3
coetwed e epy (v d)) (d+dpt S a0 | V| Y,

A {d

Using the value of A we can deduce that the particle- particle

KQ

fricticon coefficient is given by

2 £ 1,3
(d, + d) 1+ 3 (—2—) "7 |y

Kk T E
k% ) 3 3 £ 13
2 ( d v d p,) [(—KE

kK Pk o Py e ' £y ) 1 (235

e {1 + &) € P8Py

Though the above expression was derived for the momentum exchange in a
dense bed it can be easily verified that it tends to the expression
given by Nakamura and Capes (1976) as (ak + ez) tends Lo zerc.

The Solids Stress Term

Giadaspow and Ettehadieh {1983) used a solids stress term in their
equations to hope to make the characteristics real and thereby to make
the problem well posed as an initial value problem. Physically such a
term prevents the solids volume fraction from becoming unrealistically
large.

To ensure that the momentum equations correctly add up, as in the
case of gas-particle drag we have the following simple choices for
generalizing the solids stress term for the case of more than cne

particulate phase:

1. e G (e,) Ve, (2.36)

2. -G, (e)) Vg, (2.37)
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or a linear combination of the above two cases. C(onsider a region of
large total solids volume fraction into or out of whieh a number of
particulate phases are flowing., Both the terms given above will compute
a force of large magnitude. However, only equation {(2.36) guarantees
the correct directlon of the force le. the direction of decrsasing total
sollds volume fraction. Equation (2.37) may or may not give the correct

direction depending upon the direction of the gradient of ¢ Hence

K
here we use equation (2,36) as the sclids stress term. Later on we will
see that even this choice of the solids stress term leads to certain
difficulties in the treatment of boundary conditions, It seems that the
correct direction should be given by the gradient of deviation from the
maximum packed state
ie. - G (e,) V (e, - ¢ ) (2.38)
where e* is the void fraction at a maximum packing for the given
composition of the particulate phases. The precise nature of E* being
unknown, such a formulation is not attempted here,

We will use the following expression for G (g,} which in the

absence of any flow can predict a packed state of the particles with a

very small void fraction gradient.

G =g, exp {g, (s* - e,)] {2.39)

where

3

g, = 1.5 x 10 and g, = 500



*
and ¢ may be varled according to the void fraction at the maximum
packing expected. A typical value would be 0.4,

The Initial and Boundary Conditions

The problem specification is complete with the preseription of
appropriate initial and boundary conditions. Here we will discuss the
general approach with reference to fluidized beds and prneumatic
conveyors.

A natural initial condition for the fluidized bed is that of
minimum fluidization state, where sclids are net mixing and the gas is

percolating at the Um When there are more than one particulate phase

f
and 1f all the particulate phases are well mixed a minimum fluidizgation

condition at the mixture Um may be prescribed. If Lthe particulate

f

phases are segregated, Um for the smallest sized particles may be

f
specified. In a pneumatic conveyor uniform gas flow wWith or without
solids may be prescribed as an initial condition. In all the above
cases the pressure distribution in the computational region is linear
and should be presecribed accurately.

Correct specification of the boundary ccndition is very
important. Improper handling can make the numerical solubtion unstable
{(Moretti, 1969). The theory of characteristics may be used to handle
the boundary conditions correctly (Koo and Kuo, 1977; Gough, 1979:
Chakravarthy, 1983). The boundaries we consider permit only one
dimensicnal flow and hence for simplicity we look ai the equations in
one space dimension. For the case of a single particulate phése the
characteristic equation is

€102 ) 2
7 (A“"Vi) ()\”Vz) R A ()\ "VZ)

2




2
2 (}\"V]_}
- €,p; (A = V,) - G e,e, (——gm— "1] = 0 (2.40)

£
g

and for two particulate phases the characteristic equation is

€1PzPs 2 2 3 2 2
TT———— ()\ - V\) (A - Vg} (A - Vg) T OE PaDs (A " Vz) (A - vg)
C
g

2 2 2 2
- Eyp3P3 (A = V) (A - Vy) - eggpype (A - V) (A - V)

£1E3p G 2 2
e (= V) () V)
C
g
E1€2050 2 2 2
= e (A = V) k= V) 4 ereapG (X - V)
C
B

+g,8,p,G (A - V) =0 (2.41)

For the fluidized bed as well as the pneumatic conveyor at the inflow

and outflow boundaries
g, * 1.0 ; €,, 85 » 0.0
and G » 0.0

Then equations 2.40 and 2.41 give the characteristic directions as
Ay o =V, £C (2.42)

Aayy =V, (2.43)



Asys = ¥V, (2.44)
The following intative interpretation seem to be in order. Equation
2.42 shows that the characteristic directions are similar to those of
the gas dynamics equations, The disturbances propagate at nearly the
sonic velocity. Equations 2.43 and 2.44 say that the solids volume
fraction and the solids velocity propagate with the respective sclids
velocity in a dilute mixture. Physically this makes excellent sense.

It is known that the number of boundary conditions necessary at any
boundary 1s equal to the number of characteristics issuing from that
boundary and entering the domain of interest (Lax, 1954). Hence we may
summarize the necessary boundary cconditions as follows.

1. Inflow boundary

in a fluidized bed zero sclids velocity at the inlet approximately
describes the contact discontinuity above the distributor plate. In a
pneumatic conveyor the solids velocity and volume fraction should be
specified.

In both the fluidized bed and the pneumatic conveyor for gas [low
only one condition may be specified, since only one of the
charagteristics peint into the computational region. An appropriate

specification is a econstant mass flow rate such as

p, V¥, = const. (2.45)

Moretti (1968) criticizes the use of such a constant value at subsonie
boundaries. However, here this 1s the only reasonable way of handling
the inflow boundary, since the average flow rate may be experimentally

measured.
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2. Qutflow boundary

For the solids it is not necessary to specify any condition unless
the solids velocity become negative. For the gas flow, again there is
only one characteristic pointing inwards. Presgription of constant
pressure is an appropriate choice since we consider only subsonic flows.

3. Sclid wail

At a solid wall we know for certain that the normal velocities are
zero. Thus the task here is to ascertain whether it is consistent with

the mathematical equations, For simplicity consider only one

particulate phase. Now setting V, =V, = 0 in equation 2.40 we get
€102 4 G e,e, 2
= A T (e.py * €,p; * ——5—) A
C C
R £,6, = 0 8 (2.46)

Since we have to prescribe two conditions at the boundary we should have
two +ve roofts and two -ve roots for this fourth order equation., Thus
the necessity for a non-zero solids stress term, G, is evident from
equation 2.46., If G was zero two of the roots will vanish and we get
only one +ve root which is incompatible with our initial assumption.
Further to get the required roots, then we should have, two +ve roots

2
for s = A which implies that

G e,e, 2e,

€1p, v E5py 3 > T Y pae,G (2.47)
Cg g

It can be easily verified that egquation (2.47) is always true.
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Letting Vv, = V, = V, = 0 in equation 2.41 immediately shows that
two of the A's are zero which imply that we can get only two +ve roots
at most. This is clearly an incompatibility due to the inaccurate
formulation of the solids stress term. We can live with the existing
formulation provided that in the wall region the solids are not well

mixed.



CHAPTER III

MIXING OF PARTICLES IN A FLUIDIZED BED

An understanding of the mixing in a fluidized bed is of great
importance in many applications of the [luidized bed. For example, in a
fluidized bed combustor, it is important to know how coal particles mix
in a bed of limestone particles. This is necessary for a proper design
of the coal injection system., For this reason numerocus studies have
been reported in the literature on the mixing in a fluidized bed. A
review of this literature has been given by Rowe and Nienow (1976) and
Valenzuela (1982).

The models for mixing and segregation are mainly diffusion models
(Kunii and Levenspiel, 1969; Shi ‘and Fan, 1984) or models which consider
the convective contribution (Rowe, Nienow and Agbim, 1972; Gibillaro and
Rowe, 1974). It is evident that the single most important controlling
factor for mixing is the bubble motion (Rowe and Nienow, 1976). Here we
intend to study the mixing caused by & bubble using the hydrodynamic
model developed in the previous chapter. The motivation for this being
the wider applicability of hydrodynamic models and the advantage that
these models may be extended to practical situations involving chemical
reactions.

A computer code was developed based on the equations presented in
the previous chapter. The method is essentially an extension of the K-
FIX algorithm (Rivard and Torrey, 1977). The details of the .numerical
method and a user's manual are given in Appendix A. The model was
applied to several hypothetical problems. Some of the results obtained

are presented in Appendix B. In this chapter we present the results for
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the simulation of mixing of two types of particles in a fiuidized bed,
These results have been compared to some limited experimental data. The

properties of the two particle types used are presented in Table 3.1.

Table 3.1. Simulation Conditions for a Two Particle System
Pp
d, Upe (cm/s)
(um) (g/cmd) Experiment  Using Equation 2.13
Baillotini 820 2.94 50.6 63.4
Glass beads 241 2.42 .1 7.6

The gecmetry of the fiuidized bed system is shown in Figure 3.1,
The initial condition used was that of two separated layers of particles
with the denser (Ballotini) particles at the bottom. Air flowing at a
velocity of 12.2 cm/s kept the top layer of finer particles (glass
beads) in a fluidized state. At time zero a central jet was turned on
at a velocity of 5 m/s and the grid flow was increased to 50.6 cm/s,
The boundary conditions are as given below.
B.C.: 1 at y =20

€ = 1.0

¥V, p, = Constant; i.e. a specified constant mass flux of

gas through the jet and the grid regionﬂ



T 39.37 -
Cin
FREE BOARD
584
38.44 T GLASS
e = 0.449
14.61 :
T BALLOTIN}
g = 0.M
14.61
1l
¥ ¥ ¥ ¥ F— % ¥ ¥
T\g = A6 cnvs
VvV, = 3 s

R | = 1.0

Figure 3.1.

Geometry of the System for the Mixing Experiment

3.3
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B.C.: 2 aty =1

n]
1

atmospheric; i.e. the bed is open to atmosphere.

B.C.: 3 at x = O

o
il
=
[
il
Loy
Wi
|

= {; 1.e. symmetry was assumed at the

B.C.: & at x = W

<
H
ot
N
i
«
12
i

= {0; i1.e. zeroc normal velocity due to the
the presence of the wall.

The simulation was carried out for the passage of one bubble
through the bed. The intention was to study the behavier of the bubble
as it crosses the boundary between the denser and lighter particles.
Some limited experimental data in fterms of photographs of the bed in
operation and in a collapsed state at the end of 0.5 s of operation are
available. The denser particles were dyed blue to distinguish the
different particulate phases. The volume fraction data of the two
particulate phases at equal intervals of time were converted into a
series of density plots and these plots were studied as a movie.
Differently colored dots were used to distinguish between the two
particulate phases. The bubble induced mixing can be clearly seen in
the movie. A few frames from the movie are presented here. Here black
dots are used in the density plots and two separate sets of plots are
used for the two different particulate phases,

Figures 3.2a-f show the density plots for the volume fracticn of
the denser particles. The formation of a bubble in the bottém layer (of
denser particles) and its propagation can be easily seen. The
characteristic sharp boundary at the lower part of the bubble and the

more diffuse boundary at the upper part can be easily seen. But as the
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bubble reaches the interface between the particulate phases, the bubble
loses its sharp boundaries and flattens ocut. The denser particles are
not pushed intc the lighter particle layer by the upper surface of the
bubble. The denser particles drain back into the bottom layer. 1In a
single particle case also tnhnis is true as it is evident from the
pictures given by Rowe et al. (1965). Unlike the single particle case,
the bubble is not well defined in the upper layer of lighter particles
(See Figures 3.3 a-e). Also we do not see the transport of the wake
phase of dense particles into the upper layer. 1In a photograph of the
experiment, such a wake phase could not be detected, Beeckmans et al.
{1985) report that when the density difference is sufficiently large
almost complete shedding and replacement of the wake may occur just
above the density discontinuity. After the bubble leaves the lower
layer of the bed the formation of a drift of dense particles, behind the
bubble can be seen. In Figure 3.4 the shape of the drift layer
predicted by the simulation has been compared to experimental data. In
the experimental case the bed was collapsed at the end of 0.5 s.
Figures 3.3 a-e show the behavior of the lighter particles (upper
portion). The predominant phenomenon in this case is that of bed
gxpansion. Since the average velocity in the bed is roughly eight times
the Umf of the lighter particles, there is considerable expansion in
this layer. Figure 3.5 shows the experimental data of the interfaces
after the first bubble leaves the bottom layer of dense particles. The

average bed expansion data are compared in Table 3.2.
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Table 3.2. Comparison of Fracticnal Bed Expansion Data

Bed Expansion

Particle Type Experiment Theory
Ballotini 1,48 1.18
Glass Beads 2.51 2.4u7

No well defined bubble can be detected in the upper layer. In the movie
of the simulation a slug formation at the interflace could be seen. The
mixing mechanism as predicted by the theory is clear from Figures 3.2f
and 3.3d-e. After the bubble leaves the dense particle layer and as the
drift forms behind the bubble, the denser particles move towards the
center into the drift layer. These particles are replaced by the
descending lighter particles away from the center. This seems to be the
mechanism of mixing in this case. The lighter particles can be seen to
concentrate away from the central jet region, due o the interaction
with the denser particles. Although this trend is apparent in the
experimental data (See Figure 3.5}, firm conclusions can be drawn only
from precise measurements of the volume fractions in this mixing

layer, This weould be essential for a full verification of the
constitutive relation used here for the particle-particle

interactions. The simulation indicates a convenient point where the
transient volume fractions could be measured Tor a more detailed

comparison.



Figures 3.6a-e show the gas velocity vector plots at various
times. The typical slow bubble profile in which the gas takes a short-
cut through the bubble can be ssen in the bottom layer. After the
passage of the [irst bubble, a small second bubble can also be seen.
Again, there is no evidence of a bubble in the upper layer.

Figures 3.7a-e show the dense solids velocity vector plots at
various times. Initially a small amount of the dense particles get
mixed with the lighter particles and hence are carried upwards. They
eventually get well mixed with the light particles to form a very dilute
mixture (g, = 0,002). The bubble and the circulation of solids in its
wake and the relatively staghant regions near the side walls are also
clear from these plots.

Figure 3.8a-e show the light solids veloegity vector plots at
various instants. As aiready seen in the density plots here also we can
see the rapid expansion of the upper layer and can see that the solids
slow down after the expansion is complete. In Figure 3.8e a layer of
the particles can be seen being sucked down. Figures 3.8d-e show
further mixing. The lighter particles can be seen to stay away from the
central jet region and the stagnant region of dense particles near the
walls.

Thus in this chapter we have demonstrated the possibility of
studying the mixing process in a fluidized bed using a multiparticle
model. Though not fully experimentally verified the model.is capable of

predicting the mechanism of the mixing process.
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CHAPTER TV

HEAT TRANSFER FROM A FLUIDIZED BED

Fluidized beds find application as excellent heat transfer media.
The transition te fluidized state is accompanied by a remarkable
ingrease in the bed to wall heat transfer coefficient. Such a drastic
change is a result of the peculiar hydrodynamics in the fluidized
state. Thus it has been a subject of intense investigation for the past
several years. A review of these studies may be found in Gelperin and
Einstein (1971}, Botterill (1975} and Saxena et al. {1978).

The complexity of the heat transfer phenomena in the flulidized
state is attested by the large number of correlations available for
computing the heat transfer coefficlent. But these formulae are valid
only within the limits of the experimental conditionis on which they are
based, and may differ by almost two corders of magnitude from the actual
coefficients in some cases (Gelperin and Einstein, 1971). Hence, the
investigators are motivated to study the mechanism of heat transfer more
closely.

From the early 50's investigators started proposing mechanistic
models for predicting the heat transfer coefficlent. As pointed out by
Gelperin and Einstein (1971), these models may be broadly classified as

follows, on the basis of the dominating mechanism:

1, Models based on conductive heat transfer through the fluid boundary
laver near the heat transfer surface. These models have the major

drawback of neglecting the thermal-physical properties_of the solid.
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2. Models using the assumption that the dominant part is played by the
solids, in the transferring the heat. These models are unsuitable
for gas [luidized beds.

3. Models based on the poatulate that heat is transferred by "packets!
of solids which are periocdically replaced from the heat transfer
surface by gas bubbles. This mechanism breaks down for ¢ greater
than 0.7.

The last mechanism originally due to Mickley and Fairbanks has been
extensively used in various modified forms. Later in this work we will
find that the "packet® model is similar to the continuum approach
developed here, in some respects.

The packet model gives the local instantaneous heat transfer
coefficient in terms of a penetration mechanism as:

k p, C 1,2
n = (20 8y '/ (4.1)

P
Here, ”rp" is the time for which the packet was in contact with the heat
transfer surface. Although, such detalled models describe the means by
which surface £o bed heat transfer takes place, they are of limited
application because they require a knowledge of parameters which are not
easily available (Botterill, 1975, Ozkaynak and Chen, 1980).

For large particle [luidized beds, a gas convection model of heat
transfer was proposed by Adams and Welty (1979). 1In their work, the
neat transfer from a horizontal tube is modeled using bounda}y layer
equations, for the gas phase. The average interstitial gas velocity is
calculated from an approximate analytical solution of the two-phase flow

equations. The mechanism of heat conduction to the solid phase is
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neglected. A transfer mechanism by means of turbulence is introduced.
Such a mechanism was earlier used by Gallowa} and Sage (1970). The
particle sizes used in both of the studies mentioned above are about an
order of magnitude larger than those considered here.

A critical test for the hydrodynamic model developed here would be
its ability to predict the enhanced heat transfer rate in a fluidized
bed as discussed above. Here we use the multiphase flow equations
discussed in Chapter II for a single particle size, and add energy
equations as discussed below.

Energy Equations

The energy equations are written in a form found in the K-FIX

computer code (Rivard and Teorrey, 1977} as given below:

?..g(gp Ig}+-§m(gnggU)+-§——(Ep Igv)
- [%%d + gz (eU ) + g? (V)]
h, (T, - ?g) +
gE (K e ;;E} ¥ %§ (Kge 2;5} -2
S (1 -e)p I 1+ [(1-e)p I U]+ [0 -¢€)pIV]
ot s s % 8788 oy 3 sms
= - P {%E (1 - g) + %E LGo-e) U]+ %; [ -ey v}

+ hv{?g - TS) (4.3)
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3 BTS BTS
+ "é-'}-g [:KS“ - E) -a—g—] + [KS“ - ) “é”y""“']

These equations can be derived from the single phase equations
using the volume averaging technique and approximating some of the
resultant surface integrals. Noterthat the two phase constitutive
equations are different freom the single phase constitutive equations.
The gas phase being continuous, its constitutive equations need not be
modified, The gas phase is considered to be ideal and its specific heat
and thermal conductiviiy are considered to be constants., For the
particulate phase, the specific heat is the same as that for the
material of the particles. However, particulate phase heat transfer,

and interphase heat transfer need further considerations.

Boundary and Initial Conditions

Refer to Figure 4.1 for bed dimensions, the particle diameter, and
other data used in the numerical calculations reported here.
The boundary conditions (B.C.) used are as follows:

B.C.1: At ¥y = 0 we have

pgvg = Cj that is we prescribe a constant gas mass flux through

the distributor plate. Tg = 298°K,

B.C.2: At t = L, we have P = atmospheric and V., = 0, that is, we

have a wire mesh to prevent solid carry-over from bed.

B.C.3: At x = 0, Ug = U, = 0, and T, = 298°k.

B.C.4: At x = W, Uy = Uy - 0 and T, = 373°k.

The initial condition is assumed to be that of minimum fluidization and

the solids and gas at a uniform temperature of 298°k.



e W= O Q7 ) et

FREE BOARD
L=0.6m
£ .=0.386
mf T, = 373K
‘___/ w
0.3m

HHHHHI

V._;j =0.4m/s
Vg =0.4-3.8m/s

Tg = 298K

Figure 4.1. Typical Data For Numerical Cocmputations

.5



4.6

4 free board of the same size as the initial bed height is provided
to allow for bed expansion. A floating size free board has also been
used. At time zero the gas flow is increased.

Interphase Heat Transfer

Tne interphase heat ;ransfer term is written in a form hv (?g -

Ts)‘ The heat transfer occurs primarily through a gas film surrounding
the individual particle. We have to use empirical correlations for
predicting h,. There is a large number of correlations available for
packed bed gas-solid heat fransfer. 3ome of them may he adapted for
fluidized bed conditions. Three correlations from Zabrodsky (1966),
Gelperin and Einstein (1971), and Wakao et al. (1979) are shown in
Figure 4.2 for comparison. The former fwo ceorrelations are suitable for
fiuidized bed interphase heat transfer, However, these correlations are
known to differ from certain experimental data by 100 to 200%. In this
study we use correlations taken from Zabrodsky as shown in Table 4.1,
Also, the interfacial area needed from computing h, is calculated based
on the surface area of equally sized spherical particles. It 1s known
that if a hot gas is injected into a cold bed, the gas is quenched by
the time it flows past the first row of particles. Simulations using
Zabrodsky's correlations predicted the rapid quenching of a hot gas
flowing into a coid fluidized bed. Moreover, since the difference Iin

temperature between the phases is not large, fthe error due to the use of

above correlations can be neglected,
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Table 4.1 1Interphase Heat Transfer Correlations
If ¢ < 0.8
Nyp = 0.106 Re S Re < 200
N = 0.123 (2 ﬁe)O"SB 7 2000 > Re > 200
up dp 3 &
N = 0.61 » Re 97 5 Re > 2000
up D
If e > 0.8
- 0.67 -
Nyp = (2 + 0.16 e ) s, Re < 200
- 0.6 "
Nyp = 8.2 fe . 3 1000 > Re > 200
p =
N = 1.06 Re¥""T . g Be > 1000
up P
[ ) e )7
_ d o [V -V )+ (U -uU
where Re = P& g S S
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Particulate Phase lHeat Transfer

The heat transfer between the particles poses a major difficulty in
formulating the equations. 1In equations (4.3) it is written in the
standard Fourier-law form of 2 (K (1 - &) QI) ste. Here K. is not the

ax s 9% 5
conductivity of the material of the particles, but that of a collection
of particles considered together as a particulate phase. There is no
work known to the author dealing with the constitutive relatlon for KS
in a fluidized bed. In the detailed models proposed so far particle-
particle interaction is usually neglected, assuming polnt contact
between the particles, Bauer and Schlunder (1978) point out that in a
packed bed point contact between the particles, which is usually
assumed, does not correspond te the actual situation. In a fluidized
bed the situation is slightly different due to the collisions and
abrasions among the particles. It will be seen later that these
phencmena appear to enhance the particulate phase heat Transfer in a
fluidized bed. In this study the particulate phase heat transfer is
assumed to be significant.

Particle to particle tranafer is a complex phenomenon, involving
contact conductance, conductien through the thin layer of gas sticking
to the particles, and radiation. Thus there might be some overlap of
mechanisms when empirical correlations are used for calculating
interphase heat transfer and particulate phase heat transfer. However,
this is not a great concern here since in the near the wall region where
the particulate phase heat transfer is significant, the inteffhase heat
transfer is insignificant.

There is not a great deal of experimental evidence on the rele of

particulate phase heat transfer. Conclusions based on the dependence of
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heat transfer coefficient on the thermal conductivity of the particulate

material, K., might be misleading. 1In a model proposed by Botterill

p
(1975), there is a strong dependence of the heat transfer coefficient on
the thermal conductivity of the particulate material. Zabrodsky et al.
(1978), however, cite éxperimental data in which fluidization using
glass beads and copper shots gave similar heat transfer coefficients,
Thus they conclude that at large residence times of particles at the
heat transfer surface the influence of Kp is negligible. Though the
above assertion may be partly true, the particulate phase heat transfer
is by no means insignificant. Wen and Chang, as cited by Botterill
(1975), estimated that 10 to 35% of the total heat was transferred by
particle/particle transfer. Another way of analyzing this mode of
transport might be by looking at the effective conductivities of packed
beds, as shown in Figure 4.3. There a correlation due to Baskakov
(Gelperin and Einstein 1971) for effective bed conductivity is shown
together with the two extreme conditions: KS = Kp and Ks = 0. The
fallacy of ”KS = Q" is obvious. Also, shown is a theoretical prediction
due to Maxwell (Parrott and Stuckes, 1375), where he considers the
dispersed phase as being covered by a film of continuous phase to get

the effective conductivity of the mixture as: !

Kbed _ 1+ 2Kg/KS -2 - €) (Kg/x5 - 1) ()
K 1+ K /K + (1 - &) (KK -1 '
g «’Ks ( ) ( g'Ks )

Even this model predicts a conductivity smaller than that of
Baskakov's. Hence, we conclude that it is essential to consider
particulate phase heat transfer and that this mode of transport takes

place parallel to the gas phase heat transfer.
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A good approximation for the particulate phase conductivity is the
effective radial thermal conductivity of so0lids in a packed bed. Nayak
and Tien {1978) used a statistical thermedynamic approach to calculate
the coordination number distributions and subsegquently to calculate tThe
lattice conductivity using a Helm formula. This appears to be a
promising approacn for medeling fluidized bed particulate heat
transfer. However, such an extension is not being attempted here due Lo
the lack of sufficient experimental dataz to test the model. Here we use
a model due to Zehner and Schlunder (Bauer and Schlunder, 1978) for the
effective radial conductivity of packings. Neglecting the radiation and
Smoluchowski effects, the equations reduce to the following:

*

. :
EE“={1"‘/1~E}+/1—€{¢R+(1-¢)A)\so} (4.5)

1 - 10/9
<)

.25 (—

us)
i

for spheres

3

7.26 10

1§

¢

For glass/air system the above formula is shown in Figure 4.4, Note
that in the operating region of fluidized beds (e > 0.4), Kg is

significantly smaller than K., and is more comparable to K This might

P g’
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be‘the reason for the apparent absence of the influence of Kp on the
heat transfer coefficient as reported by Zabrodsky et al. (1978}.

In some of the detailed models it is customary to assume a gap of
0.1 dp" between the particles and the wall. Though, there is an
inerease in the bed porosity near the wall {QOzkaynak and Chen, 1980;
Pillai, 1977), it is not realistic to assume such a gap in a continuum
model. For an average bed porosity of 0.45, Gelperin and Einstein
{1971) use a wall porosity of 0.476. Such a wall effect is neglected in
this study.

Numerical Sclution

The set of nonlinear partial differential egquations 18 solved for

u., u

s s ¥V, VvV , €, Tg’ Ts and P using the ICE method (Rivard and

g 8 B
Torrey, 1977; Ettehadieh, 1982). Velocities of sach phase are centered
on the cell boundaries. Quantities such as density, porosity
temperature and pressure are centered at the center of the mesh,.
Porosities at other locations are found by linear interpolation. Flux
terms in continuity and momenfum egquations are full donor—-cell
differenced. Convective terms in the momentum equations are advanced In
time explicitly, whereas all exchanges of mass, momentum and energy,
when they occur, are treated implicitly. The resulting finite
difference equations are sclved by a combination of point relaxation,
Newton's and secant iteration method, without any linsarization.

Due to the vigorous circulation of the solids, the bulk of the
fluidized bed is practically isothermal. Trial simulations éroved that
the significant mechanism in the bed to wall healt transfer is a

transient transport phenomenon very clese to the wall. This conforms to

the "packet model" of Mickley and Fairbanks in which they consider the



mechanism o be transient conduction to a packet of particles which
resides at the heat transfer surface for a short while. Also there is
no evidence of a steady-state film of gas or solids near the wall
offering a resistance to heat transfer {(Saxena et al., 1978). For
"eapturing' such a transient phenomenon we need much finer computational
cells near the wall than those used for the hydrodynamic simulation,
The hydrodynamic equations were solved using coarse grids to minimize
computational time. The energy equations were alsc solved over this
computational grid except for a column of cells near the wall. These
were divided into subecells for better resolution. The velocities
required in these subcells were computed assuming a linear variation.
The number of subcells was increased till convergence was obtained, as
shown in Figure 4.5,

The primary goal in this study has been to use the continuum
approach to model fluidized bed heat transfer and to establish that the
enhancement of the heat transfer coefficient is predictable using simple
mechanisms., In addition, we compare our results with the experimental
data of Ozkaynak and Chen (1980) for a vertical tube immersed in a
uniformly fluidized bed. In a uniformly gas-fluidized bed bubbles form
at random over the distiributor plate. However, there is a preferential
formation of bubbles near the wall, due to the higher porosity in that
region. In the computer simulation, we use a non-uniform gas flow rate
at the distributor plate; the gas flow rate near the wali'is higher
compared to the rest of the bed. However, 1t was found that"the average
heat transfer coefficient is insensitive to any particular gas [low rate

distribution and that it is sensitive only to the total gas fliow rate.
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A summary of the simulation conditions used to simulate Ozkaynak and

Chen's experiment is shown in Table 4.2.

Table 4.2 Conditions for the Heat Transfer Simulaticn

Particle diameter (um) 610
Particle thermal (W/m°K) 0.89

conductivity

Particle heat capacity 753.6
1r o
(é/Kg K)
Particle density (Kg/M3) 2.470

Results and Discussions

In Figure 4.6 transient bed averaged heat transfer coefficients for
various gas flow rates are shown. The bed averaged wall-to-bed heat

transfer coefficient is defined as:

VA (4.6)

The transient behavior is similar in all the cases. Initially
there is a rapid decay in the value of heat transfer coefficient as a
temperature profile develops intc a nearly static bed. But there are
two more phenomena taking place simultaneously in the bed: 1)} bed

circulation, which disrupts the development of the temperature profile
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and thus tends to inerease the heat transfer coefficient, 2) growth and
propagation of the start-up bubble, which tends to decrease the heat
transfer coefficient. The effect cof above three mechanisms is more
pronounced at higher gas f{low rates. After 0.5s the heat transfer
coefficients reach a nearly oscillatory steady state. Hence, we compute
the time averaged heat transfer coefficients by integrating the
instantaneous heat transfer coefficients from 0.5 to one second.

In Figure 4.7 the average heat transfer coefficients are plotted as
& function of U-Uppr, together with experimental data of Ozkaynak and
Chen and the predictions of a correlation due to Wender and Cooper
(Ozkaynak and Chen, 1980). Curve 1, shows the theoretical predictions

wnen Kg = K As expected, the predictions are much nigher than the

P
experimental values., However, the theory correctly predicts the sharp
rise in the heat transfer coefficients in the beginning, and the
leveling off thereafter. Curve 2 shows the thecretical prediections when
the Zehner and Schlunder model for K  was used. Now the theoretical
predictions are reasonably close to the experimental data. It may be
that the actual Ks should be higher than that predicted by Zehner and
Schlunder model. It must be emphasized that no fitt{ing parameters have
been used in the computer simulations. It can be seen that the
prediction of the continuum model is superior to the predictions of the
correlation,

In Figure 4.8, the propagation of thermal waves into the bed is
shown for different time intervals after startup in terms ofwthe gas
temperature profiles. Ozkaynak and Chen (1980) observe that the thermal

waves penetrate up to a depth of one particle diameter from the wall.

In Figure U4.8a, b we observe the same phenomena, It is seen that as
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time passes the temperature profile becomes steeper. After about 0.4s
the change in the temperature profile is not much; i,e. some kind of a
“thermal eguilibrium" has been reached near the wall. It is also seen
that the behavior of the thermal waves at different gas flow rates is
similar.

In Figure 4.9 the instantanecus local heat iLransfer coefficients at
two different locations in the bed are shown. The effect of the startup
transients is visible at both the locations. At the higher location,
which is nearly at the top of the bed, the startup transients may be
seen to leave the bed at about 0.5s. After this there are nearly
regular fluctuations in the local heat transfer coefficients. In Figure
4.10, the porosity, axial gas velocity, and axial solids velocity at the
iower location are shown. Qualitatively we can correlate the local heat
sransfer fluctuation to the local poresity fluctuation. To some extent
there are some fluctuations in the local gas velocity also, whereas the
local solids velocity remains steady. However, from the above figures
it is clear that the behavior of the heat transfer coefflecient is not
amenable to a simple qualitative treatment.

One of the useful aspects of the continuum apprecach is its ability
to provide detailed information on the local behavior of the
variables. Figures 4.8 and 4.10 are examples. Further, in Figure #4.11
the gontribution to the heat transfer coefficient from the particulate
phase and gas phase heat transfer are shown. Such quantities are not

easy Lo measure.
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CHAPTER V

DILUTE PHASE TRANSPCRT

Radial Velocity Profiles

The computations presented in the previous chapters were for the
dynamics in the dense beds. The same equations may be used for
simulating dilute phase transport such as in pneumatic conveyors., Here
we present two studies involving a dilute transport system. For the
first case we modify the equations developed in Chapter II1 by

introducing viscosity terms in the momentum equations as shown below:

3 -
T (pkEk) + 7 s (ekpkvk} =0 (5.1)
]
T (pkekvk) + V. (akpkvkvk) =~ g VP +p &g
N
+ G Ve, + ) K Vg = V)
(AR
+ ¥ . €kukV Vk (5.2)
wnere
N
T oe, =1 (5.3)
=1 I%¢

The constitutive relations are given in Chapter II.
Vertical pneumaiic conveying under the conditions shown in Table
5.1 was modeled using the above equations in two dimensions for a single

particle size.



Table 5.1 Conditions for the Pneumatic Conveyor Simulation
Particle diameter 1mm
Pipe diameter 10em
Height of the conveyor Um

Solids loading

Mass flowrate of solids

(Mass flowrate of air ) 8.74, 16.54
Air veloceity at the inlet 15m/a
Void fraction at the inlet 0.996, 0.992
Solids velocity at the inlet 12.8, 13.5 m/s

These conditions are similar to those used by Vollheim (1963). A set of
velocity profiles given by him has been reproduced in Figure 5.1. In
this figure we find that the gas velocity shows a maximum away from the
axis of the pipe. Another surprising feature is that even in the
absence of solids the gas velocity profile is nearly parabolic.

Figure 5.2 shows the computed gas velocity profiles at four axial
locations along the pipe. A value of 1.0 peoise was used as the solids
viscosity. The profile is nearly flat excepf for a short region near
the wall. This is clearly at variance with Vollheim's data. Figure 5.3
shows the corresponding scolids velocity profiles. These profiles are
similar to the gas velocity profiles with an average slip of 3m/s.

Figure 5.4 shows the solids volume fraction profiles. At the entrance
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the solids tend to accumulate near the wall. However, further away from
the entrance the distribution is nearly uniform.

To study the effect of solids viscosity, computations were repeated
using a value of 10.0 poise as the s0lids viscosity, Figure 5.5 shows
the computed gas velocity profiles. As expected,the profiles are not
flat anymore, However, these profiles are still not similar to those of
Vollheim (1963). Figure 5.6 shows the corresponding solids velocity
profiles. The influence of viscosity 1s similar to that on the gas
velocity. Buf the magnitude of the sclids velocity at the center iIs not
affected by the solids viscosity as in the case of gas velccity. Thus,
as the solids viscosity is increased the slip increases to about 5
m/s. Filgure 5.7 shows a slight increase 1n the solids volume
fraction. This compensates for the reduction in the average solids
velocity as evident from Figure 5.8,

Computations were also carried out at a higher solids loading.
Vollheim's data show that the maxima of the gas velocity profiles are
more pronounced at higher solids loading. Computed gas velocity
profiles at a higher solids loading, as shown in Figure 5.9 does not
have such a behavior. The solids velccity profiles, as shown in Figure
5.10 are also similar to those in the previocus cases. As expected,
Figure 5.11 shows an increase in the sclids volume fraction.

Figure 5.12 shows the rapid development of the axial gas velocity
when a concentrated mixture (porosity = 0.8) is fed at the inlet.

Figure 5.13 shows the corresponding change in the solids velacity,
These figures show a relatively rapid initial cnange folliowed by a

smooth change to attain a state of constant slip between the phases.
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The predicted friction factors are compared to those given by a
correlation due to Leung and Wiles (1976}, as follows. The friction
factor for solids flow is defined as

Mg (- BVS/BP) wall

f_ = 5
/2 psVS

The correlation recommended by Leung and Wiles (1976) is

1

fs = 0.05 Vs (VS in m/3)

The calculations are summarized in Table 5.2

Table 5.2 Comparison of Two Pneumatic Conveyor Simulations

.16

Simulation: 1 Simulation: 2
us(g/cm 8) 1 10
ps(g/cm) 2.9 2.9
Y (em/s) 1200 900
(- avS/ar)wali(1/S) 2100 700
Predicted f_ 1 x 1073 6 x 1073

Correlation f_ 4.1 x 1073 5.6 x 1073
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From Table 5.2 a solids viscosity of 10 poise appears to be more
appropriate, However, it should be noted that the calculations given
above are only approximate.,

Segregation in a Pneumatic Conveyor

The equations developed in Chapter II, in one dimension and two
particle sizes were used to simulate a segregation experiment due to
Nakamura and Capes {1976).

Nakamura and Capes (1976) studied the pneumatic conveying of
several binary mixtures and proposed an algebraic equation model to
predict the observed segregation of the finer particles. The
segregation of the finer material was measured as a ratio of its weight
fraction in the test section to its weight fraction at the inlet.
Usually this ratio is less than one, since the {iner particles move
faster than the larger ones. The algebraic equation model of Nakamura
and Capes {(1976) predicts this phenomena reasonably well. Arastoopour,
Lin, and Gidaspow (1980) used three hydrodynamic models to predict the
pressure drop and segregation in a similar situation. It was found that
the pressure drop could be predicted very well by using the correct
value of inlet veoid fraction. However, the segregation was being over
predicted. As correctly observed by them, the discrepancy was due to
the absence of binary collisional friction forces in their ordinary
differential equation model. Arastoopour, Lin, and Weil (1982)
corrected the equations by introducing a particle-particle interaction
force of the form used by Nakamura and Capes (1976). The seéregation
could then be predicted well.

The simulation conditions are shown in Figure 5.14, The initial

and boundary conditions used for the simulation are as given below.
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— J = 6l
Ly 4
TEST SECTION 525 m
o
9 m dj =26
g
h A j = 2
v, = 9.5-260 ms
“ﬁ, = .83, 33.62 kg/m™ s
di = [.08 mm
d, = 21.90 mm
Py o= 29 ;z’cm'3

Figure 5.14. Pneumatic Conveying of a Binary Mixture
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B.C.1., At y = 0, pgvg = C, that is we prescribe a constant mass flux,
Also v,, £€,, V3, and £, are prescribed, B.C.2. Af y = L, we have P =
atmospheric. I.0. Uniform conditions similar to B.C.1 are prescribed
through out the column. It should be noted that relatively large solids
velocities were specified at the inlet to facilitate rapid acceleration
of the particles to their final velocities. This was necessary due to
the coarse grids used for simulation. 1In Figure 5.15 the asolids
velocities at different gas flow rates are shown along the length of the
column. It can be seen that the acceleration takes place gquite rapidly
along the ecolumn and that in the test section the velocity is fully

developed. The average segregaticn for a time interval is calculated as

follows.

61

6 i
2 ; 82-/): : (1 - e,.)
Average Segregation = J=26 73 "J =26 J

VACEEEN
e23/ (1 = €1y)

Figure 5.16 shows the predicted average segregation as a function
of gas [flow rate. The agreement at high flow rates is good. At low
flow rates the gas velocity is smaller than the terminal velocity of the
larger particles., However, they are conveyed due to the interaction
with the fine particles. The predictions of fhe model in this region
are poor, possibly due to the lack of convergence. In Figure 5.17 the
solids velocities have been plotted with the experimentally measured
average solids velocity. The agreement with the experiment is

reasonably good.
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5.22

T I Y i T ] Y "
0.9 [ -
o
A
N A +
7
Q
=
E.: 08 b -
& PRESENT MCDEL
= A EXPERIMENTAL DATA
0 - S - EZ!("'G!)
Y Gzi/("é\i) ™
Ws = 33.6 -!.(l
L m*s .
.6 1 | 3 | L { 1
9.5 12.5 15.5 8.5 215
Vg. m/s
Figure 5.16. Segregation in a Pneumatic Conveyor as a Function

of the Gas Velocity
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CHAPTER VI

CRITICAL MULTIPHASE FLOW

In the previous chapters we looked at numerical simulations based
on the multiphase flow equation that predicts an important flow behavior
known as critical flow. The understanding and prediction of critical
multiphase flow is important in many new energy technologies. For
example, c¢ritical flow determines the rate of coolant loss in
hypothetical accidents in pressurized water and breeder reactors,
Critical flow guides the design of pressure protection systems that
involve safety-relief valves. Critical flow determines the maximum
throughput and choking of coal-fiuld mixtures in coal gasifliers and coal
liquefaction reactors. Since mulitiphase critical flow rates are often
an order of magnitude smaller than corresponding critical gas flow
rates, unexpected and sometimes disastrous results may occur if a design
does not properly take into account this substantially different flow
rate,

In this chapter we confine our attention to one-dimensional flows
and a single particle size. We will also study momentum equations
different from those presented in Chapter II.

With the possible exception of some in the Los Alamos group, there
appears now to be a concensus that critical flow can be modeled in terms
of the vanishing of the determinant (Boure, 1978), explained below. For
details, see Rasouli, Gidaspow and Shin (1981).

The conservation of mass, and momentum equations for each phase can
be written as:

1) ou _ (6.1)

Azt *Bxg
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where U is & vector of dependent variables such as void fraction,
pressure, and gas and liquid velocities, t is time and x the distance in
one dimensional flow. A, B and C are functions of U and differ from
model to model. The characteristic determinant for the system of

equations (6.1} is
4 Ak, *+ Bi, l =0 (6.2)

When we set cone of the characteristic slopes in Equaticn (6.2) to zero,
some information, such as pressure, cannot propagate upstream. Then,
physically, the system governed by Equation (6.1) does not know that,
say, the pressure in the reserveir was reduced below a critical
pressure. Setting A, to zero in the characteristic polynomial gives

Bl =20 {(6.3)

The same condition is cbtained from the steady state version of the

conservation equations

g &Y _ ¢, (6.4)

as explained in detail by Boure (1978).

Steady Gas-5S0lids Flow

We will consider here the three hydrodynamic models discussed by
Arastoopour and Gidaspow (1979) for pneumatic transport. However to
each équation set we add a solids stress term as discussed in Chapter

II.
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Annular Flow Model (Equations of Chapter II). The steady state

equations for this case are

eV . -
p V Zg ED 0 de/dx = 0
g8 c g
g
*ps\fs 0 0 (1—s)ps dp/dx = 0
-G 1 spgvg (1*€)pSVS dVg/dx = ~{ps(1—e) + spg)g
gV -~V )
-G 3 g 3 _
1-€ % 0 PsVs dvs/d% B 1-g s
(.65)

-3

where G is the "elastice" modulus due to the particle to particle force,

The critical condition as given by equation {(6.3) in this case is

2
1- v

Vz _ G, ( E)pg 2
2

5 pg Vg (6.6}
€ pg (~% - 1}
C

g

The two limiting cases are

i) Vg = Q or flow in a vacuum, Pg = 0 giving

VS =y G {(6.7)
p
ii) When® e - 1 equation {6.6) correctly reduces £o the condition
v =¢C 6.8
g g ( )

that is for a pure gas we get chocking at the sonic flow rate if

equation (6.6) is satisfied at the exit of a pipe. But for choking to
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take place within the pipe (or within the domain of equation (6.5)) a

compatibility condition as given below should be satisfied (Boure,

1978). v, ;
0 5 £p 0 '
C g i
g .
0 0 0 {%—e)ps §= .
-(ps(1-€) + (Epg)g 1 epgvg (1--s)ps\fs
v -V |
BV 1 . y (6.9)
i~ ps ﬁs 5
Upon simplifying equation (6.9) we get
2 2
v Vv
BV -V) (1 - e —%) = (1~e) e pg (1 - -5) (6.10)
g s C S c
g g

For Vg << Cg equation {(6.10) is similar to the minimum fluidization
condition. In a situation such as norizontal transport where g = 0 the
compatibility condition reduces %o

vV o=V (6.11)

implying a homogeneous f{low,

Relative Veloeity Model., The relative velocity model of Gidaspow

{1978) is described by



& Ve s
v - £ 0 ] de/dx
Pa's o Py €
g
“QSVS 0 0 ps(1*5) dp/dx
-G 1 gp V (1-g)p V dv /dx
Pe'g Ps's g
-G 0 1 1 dv _/dx
[pS(T-E) 8"
(v "VS)]

The critical condition in this case is gi

2

ven by

eV p e(1-g)V
ep ( G ) ¢ p V) (1 - —B) ¢ Py
gV -V 5 S
g 5 C C
B g

+ 1~g)p V. =0
ps( )V,

1

(G”QSVS)

6.5

-Eps(1“s> * pge] g

B i

LEPS(1“E) (Vg*VS)H_

(6.12)

{(6.13)

The two limiting conditions give similar results as in the previous

case.
i) Vg = 0 gives V_= Y G_

ii) g =1 gives ¥ = C
g g g

The compatibility condition in this case is given by

2

eV
- - - g - -
B{Vg US) {1 Cz )+ g 935(1 e){i-¢

B

(ps(1—a} + pge) g Vg(Vg~Vs) 5{%—s)ps

+

2

Vg
—)

C
g

=0

2
C
g Pg

{(6.14)

(6.15)

(6.16)
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If Vg << Cg equation (6.16) simplifies to the minimum fluidization
condition
S(Vg - US) =8 o e(l-g) (6.17)

and when g = 0, it gives

implying a homogeneous flow.,

Pregsure Drop in Fluid Phase Model. The equation describing this model

is
| eV 7] - T
p v i Ep 0 de/dx 0
E B C g
g
*pSVS 0 0 (1“5)98 dp/dx 0
-G 1 Engg (I—E)ps\fs dvg/dx -(p8(§~e) + E:Qg)g
B(V -V )
-G E 5
. 1~¢ 0 0 psvs dvs/dx A L e(1-¢) P8 N
(6.19)
The eritical condltion is given by
2
2 E
(G-p V) (1 -—=%) =0 (6.20)
5's c
g

which reduces to the same limiting conditions as in the case of the
previous models. This compatibility condition is given by

8(V -V ) eV

{1-g) (T(—'Ig_:i;':—?;_ - psg) 1 - zg) = 0 (6.213)
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which also reduces to the same limiting conditions as in the case of the

previous models.

vV G/p5 critical condition.

In absolute vacuum {i.e. p=0) all three models reduce themselves to

de /dx 0
]

"
w1
L)

dVS/dx ~p.8 (6.22)

e —i Lo o

from where it can be easily seen that /_575; is the speed of
propagation of void fraction disturbances in a bed of particles. Thus
in a choked granular flow the.discharge rate is limited by this
propagation velogity.

Discharge From a Hopper

Altiner and Davidson {1980) studied the discharge rate from an
aerated hopper for three particle sizes (159, 276 and 390 microns
diameter) and found the superficial solids velocity [vs{t-e)} at

Vg = 0 to be approximately 17 cm/s. Assuming that the flow is choked
at the exit of the hopper, the so0lids velocity will be governed by
/m673;. G is given by
G=1.5 20—3 exp ((0.4% - £)500) dynes/cm? (6.23)
and
pg = 2.6 gm/cm?®

Now using a value of ¢ = 0,411 we get

VS(E—E) = 19.9 cm/s
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which compares well with the experimental value. However, further study
is necessary to get a correct form of G.

Critical Flow From a Fluidized Bed

The multiphase flow model developed here was used to calculate the
discharge rate of solids from a pressurized fluidized bed. The
computational region is as shown in Figure 6.1.

Computational difficulties were anticipated due to the rapid change
in the flow field near the orifice. Usage of a very fine spatial noding
is, however, not a practical solution in this case (Trapp and Ransom,
1982). The preliminary computations could be carried out only up to
8m/s. The results are summarized in Figure 6.2, The histories of gas
and solid velocity profiles indicate the possibility of choking
oceurring at the orifice. Hancox et al. (1980) got similar veloeity
profiles with a maximum at 2m/s for a blow down problem. They attribute
the maxima to a choking phenomenon. In our calculations, however, we
could not see the choking condition as given by equation (6.6} being
satisfied in the duration of 8m/s. It is possible that the present
computer code could not handle the onset of choking well. Computational
difficulties may be removed by using the characteristic directions to

handle the boundaries.
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7.1

CHAPTER VII

SUMMARY AND RECOMMENDATIONS

The central theme of this thesis has been the application of
multiphase flow models to dense and dilute phase gas-solids flows.
General equations for a mixture of particles were developed. In these
equations similar particles were assumed toe form a continuum — a
particulate phase. A computer model has been developed based on these
equations.

To model systems with more than one particulate phase it is
necessary to introduce a particle-particle interaction term. An
approximate formula was derived to model this term. The model was
applied to several gas-solids flow systems with a bilnary mixture of
particles. Some of these computational results were compared to
experimental data with reasonable success.

Fluidized beds are excellent heat transfer media due to the large
heat fransfer rates. A critical test for a fluidized bed hydrodynamic
model is its ability to predict the experimentally observed large heat
transfer coefficients. Energy equations were added to the hydrodynamice
model and it was verified that the model predicts large heat transfer
coaefficients which compared favorably with experimental data.

A viscosity term was added to model radial velocity profiles in a
pneumatic conveyor. The velocity profiles were similar to one of two
contradicting sets of published experimental data. The computations

predicted nearly flat velocity profiles. One-dimensional simulation to
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study segregation in a preumatic conveyor for a binary mixture was
carried out. The results were compared Lo experimental data.

Three multiphase [{low models were studied to determine critical
flow conditions. It was found that dense phase {ransport may be limited
by a critiecal velocity equal to J—§7E; where G is an "elastic" modulus
of the powder and Py is its density.

The computer program developed here can be used to study a variety
of problems. Unfortunately, it is not fully validated and optimized for
production mode rung. Hence, the feollowing steps seem to be necessary
for further development:

i. Some experimental study is necessary to ascertain the nature

of the solids stress tern,

2. Comparison of the theoretical predictions with the
instantaneous sclids volume fraction and the solids velocity
data in the mixing layer should be made to validate the
constitutive relation used for particle-particle interaction,

3. Simulation of a fast bubble has not been made so far, which is
necessary for a full validation of the hydrodynamic model for
fluidization.

4, The bubbles predicted at present have a smeared boundary.
Incorporation of some method similar to the volume of fluid
method (Hirt and Nichols, 1981) to get a sharper bubble
boundary should be explored. Ancther possibility is to shift
the location of the solids volume fraction from the cell
center to the cell boundaries to properly handle the jump in

velocity.
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In future computations the assumption of symmetry at the
center should be avoided since it is not a correct boundary
condition.

The program presented here is in modular form and lacks
optimization. Alsoc it requires large computational time.
There is ample scope for program refinement to improve
computational efficiency. A better, but more involved,
alternative is to vectorize the program for cost effective
computing on a CRAY.

The program in its present form cannot march quickly towards a
steady state. Through an implicit treatment of the convective
terms this could be rectified.

The program permits inflow from bottom and left boundaries
only and out flow from the top and right boundaries. It is
suspected that the particular computational sweep used in the
program may be introducing a bias in the flow directions.

This problem needs some attention.
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A MANUAL FOR THE MULTIFIX PROGRAM
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The MULTIFIX program solves a set of partial differential equations to describe
the flow of a gas—solids mixture. The program allows the deseription of the flow
of solid particles of different sizes. Each size of particles is treated as a con-
tinuum— a particulate phase, with a characteristic diameter.

The transient solution is carried out in a two—dimensional region. Rectangular,
cylindrical or one-dimensional spherical coordinaﬁes may be used to set up a
problem.

The program can be applied to a variety of gas-solids flows of practical interest
such as fluidization,pneumatic conveying, ete. It can also be used to liquid-solids
flows and with some modifications to gas-liquid-solids flows.

The numerical method is based on the one due to Harlow and Amsden {1975)
which was subsequently used in the K-FIX program (Rivard and Torrey, 1977).
Earlier a single particle size version was used to study fluidization (Gidaspow and
Ettehadieh, 1983).

THE DIFFERENTIAL EQUATIONS

The differential equations are written in a form suggested by Soo(1967). The
continuity and momentum equations are written for the gas phase and each of the
particulate phases. Note that the subscript “1” is used to indicate gas phase.

Continuity Equations

d
i Pkek) + Viepppv) =0 (8.1)
Momentum Equations

8
57 PeervE) + Vilepppvpvy) =~ VP + prepg+GVe
ET,
N
+ E Kpi(vy—vy) (8.2)
[=]
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where,
N
Z € =1 (8.3)
k=1
Fquation of State
_ P
Pl =Pk fork > 2 (8.4)

These equations are supplemented by the constitutive relations for the interphase
momentum transfer and the solids stress.

Gas—Particle Friction

150(1 — € )egpy  L75p1]vy — vileg

Kiyp=K;; = -+ 0.2< e <08
s e1(dg o)’ (2 dk)
3 €1[V1 —-Vklplek
w e (O € 08 ey <10 (85
1Dk @otr) fler) <eg < (8.5)
where,
fler) =729, (8.6)
__ 24 0.687
Cpp = R%(J, +0.15Re)7) Rey, < 1000
= 0.44, Rey. > 1000 (8.7)
and
dglvi = vilorer
Rep, == (8.8)
3] .
Solids Stress
Gp =0 fork==1

== g] €} ea:p[gg(e* - 61)] fork=2,..,N (8.9)
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Particle-Particle Friction

prpreeldy + dp)?

K u = F(l+e v —vil (8.10)
ke l54 1 prd} + pyd
where
i 1
F 36kl+(€k‘+‘ﬁl)3

Cal|pt

1
4(e,§, —(ep + )

) (8.11)

et = (P — P + (1~ a)(1—24)®)}[Pf + (1~ ‘i’k)‘i’l]%:ﬁ + @
@

®p +(1—Pp)%

= (1= a)[®p + (1 — Bp)Pf(1 - Xy} + P

forXy <

Py
forX), > TR TR (8.12)

d
2 = Ei- whendy, > d; (8.13)
X k 8.14
F= 0T (&14)

&, ®; — volume fractions at maximum packing

These constitutive relations may be easily changed by some program modifications.
The problem definition is complete with the specification of appropriate boun-

dary and initial conditions. The program has the capability of treating a variety

of boundary and initial conditions.



THE FINITE DIFFERENCE EQUATIONS

The computations are carried out using a mesh of finite difference cells fixed
in a two-dimensional space {Eulerian Mesh}. A typical computational cell is shown
in Figure 8.1. The scalar variables are located at the cell center and the vector

variables at the cell boundaries.

The continuity equation is differenced fully implicitly as follows.

"lewen)] = "lewrdlf = 5 M erorrug]
3 ;
— 5 "leror)ur)! (8.15)

The angular brackets represent a donor cell differencing as shown below,

i (exprr); if (uk),«,.*.% > 0;
ELOLTIUL u .
((epprr) L)g = I\.)r-{-'é (eppPET)iv1s if (”k);+_§, <0
(fkﬂk"): o (e 1 >0
— (u . 8.16
(k)i 7 | (expkr);i if (%),-4,% <. (8.16)
and
o0 1
N . +_
(eppp)vel = (up)'F 2 (ekor) if (o)’ f >0;
| 4 .
(exop) ™, it ()T E <0,
_ 1
_(UA)J'"%{("APU; 1 i ()T 2 >0 (8.17)
: o “
(expr) if (ve)’ "2 <0

The donor cell differencing helps to prevent a cell from getting drained completely

giving negative volume fractions and also aids computational stability.

The momentum equations are differenced over a staggered mesh of computa-

tional cells (Figure 8.2). The difference equations are
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; ; 8t a1 1
"Hepprur)], = PR, ~ 5 iy " Py - P)
3 v | | |
+6tY "KI, Bty — uy )
2_:1 L ( L)W%
i{ ﬂ+1 G j ﬂ+1 . —_ “ Jm 8 18
+ 2= (Gl 1 ((e1)ig1 — (e1)s) (8.18)
2
i+ j+i 6t i+ : ;
n+l(€kﬂk”k); 2 = (CEPEVE k):' 2”,3_; n+1(€k); ] n+1(P3+1--PJ)£

N L1 .1
i+ i+
(=1

5t j+ 3 : -
R (/S ] (CYAREAC) BN AL

All the explicit terms have been lumped into the tilde quantities as shown below.

ot

E@PETR, 1 = Mererup) 1 — o5 Mlewruenu,
2 ? 1 9
5t ;
— 5 ekprug)upl, ! (8.20)
i+ 3 n ity 6t o, i+3
(CEPEVE); = erppvp); ° - = {(epprvpriugl;
H
61 i+ %
=57 "llerprvp)veli - expigdt (8.21)

As explained before the angular brackets represent the donor cell differenced

quantities. For example,
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if (v)! <o

In the momentum equations the pressure , the drag and the solids stress terms are

implicitly differenced. Also note that the drag terms are linearly implicit which is

necessary for the particular method of solution adopted here. There are no other

restrictions on the form of the drag relations. In calculations involving dense beds

it is necessary to have the solids stress term differenced implicitly. If dense regions

are absent in the computational regime this term may be differenced explicitly to

save computational time.

Equations (8.3), (8.4), (8.15), (8.18), (8.19) form 2 + 3N coupled nonlinear al-

gebraic relations for the 2 + 3N variables viz. P,py, ¢, Vi, UL . The calculations

start with a known initial distribution of the above variables. At each computa-

tional cycle their values are updated by solving the finite difference equations.
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THE SOLUTION TECHNIQUE

An iterative technique is used to solve the finite difference equations given in
the previous section. To facilitate the particular method of solution the equations
are recast in the following form. The momentum equations could be collected

together in a matrix form. Thus equation (8.18} gives

N \
5#2[{“—!*61,01 —§tKy9 ~6tK | pr
{=1 Uy
N
—6tK9y 5ty Kop+egpy ... ~8tKopn “2 ]
o | : -
N uN.
~0 LK\ —-6tK pro 5tZKN[ +ENPN
\ i=1 /
[ (Epron) — Loy P —PY + BG((e)ipr —(@)i) )

(e5p593) — ghea "TH(Pi1 — PY + ££Go((e1)i1 — (e1)i)

and equation (8.19) gives



N
5tZI{1[+61p1 ~8tK 9 —6tK N \
[==] U]
N
—~0tK oy 51‘2!{2[4—62[}2 ""6t‘K2N v2 _
e . -
N UN
~6tK pry —6tKpNg ... 6t) Knj+enon
\ i=1 /
[ (e - e (B - PY 4 By (e - () )
(e27393) — fheg "H(PJH*P") + %Gz((ﬁz):’“ —(€1)J)

" K J’ N .
| (ENPRTN) — fhen ”H(PJH —*PJ) + ff:GN((q)”l "—(61)’)/
(8.25)

The gas continuity equation (Equation (8.15) for k = 1) can be written as

. . ; &t ]
D‘E — wn+1(€1.01)}? +" (elpl)';! leyon n+l((€1plr)u1)?
3

ot n+1((5191)vl){ (8.26)

"6z
where D‘z is the residue of the gas continuity equation, which should be equal to
zero for absolute convergence. To solve the finite difference equations the pressure
in each computational cell is corrected iteratively such that D“Z meets a conver-
gence criterion. The iterations are continued till the convergence criterion is met in
all the computational cells simultaneously. The details of this iterative procedure
are given below.
1. Calculate the tilde quantities using equations (8.20) and (8.21).
2. Calculate the drag coefficients using equations (8.5) through (8.14).
3. Estimate the new time level velocities solving equations (8.24) and (8.25).

4. Calculate ﬁf , approximately given by



1 oD} ¢ + (61) (
= — 5
oP? (o rilér)

2 a1 1
+ %((51)?+2+(€1)? 2)

J J
Fiv %(q)H _% + o, ‘12.(51),-__ l)
(8.27)

5. Correct the pressure iteratively. Refer to Figure 8.3 which gives the details of
this procedure in terms of FORTRAN variables.The computations start with the
left-bottom corner fluid cell. Pressure corrections are done in a cell till convergence
is obtained or the number of iterations exceed an inner iterations limit. Then the
computations proceed from left to right and from bottom to top till the entire
computational regime is covered. At the end of such a computational sweep, if
convergence was not obtained in any of the cells, the sweeps are repeated. The
number of such sweeps are restricted by an outer iterations limit. The iterative

procedure for a single cell involves the following steps.

a. Calculate Dfl using equation (8.24). If ID? | < 8 gotostepe

b. If |Df| > §; the pressure in the cell needs to be adjusted. Initial adjustments
are done using Newtons method,

whip] = el a5
where w is a relaxation parameter near unity. Newton's method is continued till
D{ changes sign. After D'}- changes sign the next pressure correction is done using

a secant method (Refer to Figure 8.4a), where

Pi—Ps
# = D=1

There after the pressure corrections are done using a constrained two sided secant
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method as illustrated in Figure 8.4b. Given the three points 1, 2, and 3 of which 1
and 2 bracket the desired pressure and 3 lies between them, the pressures P4 and
Pp are determined by straight line extrapolation and interpolation, respectively.
The new estimate of the advanced time pressure is then computed as "+1P? =
%(PA + Pg). Ii the pressure P4 should lie outside the interval Py to Py, it is
given the value L(P) +Ps). After "+1PJ is estimated , point 2 is discarded and
points 1 and 3 are retained as improved bounds for the next pressure estimate.
c. Calculate the velocities using equations (8.24) and {8.25).

d. Calculate the liquid mass fluxes.

e. Solve the solids continuity equations for ¢, .

f. Using equation (8.3) find the new value of ¢; .

g If [D{[ > bg go to step a.

At the beginning of the simulation the distribution of the field variables is
given by the initial conditions. Uniform iritial conditions can be specified using
the input data. Non-uniform initial conditions should be programmed.

Several boundary conditions around the computing mesh perimeter are pro-
grammed in the code:

No-slip rigid walls,

Free-slip rigid walls,

Prescribed inflow,

Continuative outflow,

Prescribed outflow pressure.
The rigid walls can be specified along any mesh boundary. The free-slip wall can
serve as a reflective plane of symmetry. Two inflow opening each can be specified
along the bottom and left boundaries. Similarly two outflow openings each can be
prescribed along the top and right boundaries.

The boundary conditions are enforced using the fictitious boundary cells
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shown in Figure 8.1. For rigid walls the tangential velocities in the fictitious cells
are set by reflection for a free-slip wall and by reflection with a change in sign
for no-slip walls. The continuative outflow boundaries are gradient free in their
normal direction.

Flow around rectangular obstacles may be calculated by specifying rectan-
gular obstacles in the computing mesh interior. Obstacles are built from rectan-
gular cells. Their boundaries can be a combination of free-slip and no-slip rigid
walls. The obstacle boundary conditions are enforced in the same way as they are
around the mesh perimeter. To enforce the velocity boundary condition properly,
obstacles must be at least two cells wide.

The fluid cells, the boundary cells, and the obstacle cells are distinguished
by the program using cell flags. The different cell lags and the éorresponding cell
types are given below.

Flag Cell Type
1 Fluid cell

(84

Solid cell with free-slip boundaries

3 Solid cell with no-slip boundaries
4 Continuous outflow boundary cell
5 Specified influx inflow cell

6 Specified inflow pressure

7 Specified outflow pressure
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PROGRAM ORGANIZATION

A flow chart of the program with the various subroutines is given in Figure

8.5. An alphabetical listing of the various subroutines and their functions are as

follows:

BDRY

BETAS
CNVERT

EOSG
FLIC
INDEX
INTER
ITER
KDRAGG
KDRAGL
KDRAGS
MASFG
MASFK
MATS
NEWP

PROG
SETC
SETUP
STXTRA
TAPERD

Set velocity boundary conditions. Reflect cell

center quantities.

Calculate g2

Calculate initial values of microscopic and

macroscopic densities.

Calculate the gas density and the speed of sound in gas.
Sets cell flags based on input data.

Calculate indices for array quantities.

Calculate particle-particle friction coefficient.

Perform the iterative solution of the difference equations.
Gas-solids drag for low solids concentration.

(Gas-solids drag for high solids concentration.

Select KDRAGG or KDRAGL.

Caleulates mass fluxes for the gas.

Calculates mass fluxes for the solids.

Calculates the matrix components for velocity calculation.
Calculates the new estimate of advanced time pressure from
three (P,D) points.

Control the program flow and outputting.

Sets the C array used to store necessary constants.
Initialize the radii and all the field variables.

Initialize constant pressure out flow boundary cells.

Read the restart file.
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TAPEWR Write the restart file.
TILDE Calculate the tilde quantities,
UGMOMF Calculate the radial momentum flux of gas.
ULMOMF Calculate the radial momentum flux of solids.
VELSK Calculate the velocities at the cell boundaries.
VGMOMF Calculate the axial momentum flux of gas.
VLMOMF Calculate the axial momentum flux of solids.

INPUT DATA
1. NAME {format 40A2) Problem identifier
2. 1B2,JB2,NSOLID (format free); IB2 - the number of cells in the radial direction
+ two fictitious cells; JB2 - the number of cells in the axial direction + two fictitious
cells; NSOLID - the number of particulate phases.
3. (SCALE(I), I=1,4) (format free); SCALE(1) - the length scale; SCALE(2) - the
velocity scale; SCALE(3) - the density scale; SCALE(4) - the temperature scale.
4. ITC,DR,DZ,JH (format free); ITC = 0 {or rectangular coordinates, = 1 for
cylindrical coordinates, = 2 for one dimensional spherical coordinates; DR - ér;
DZ - 6z; JH - no of rows from the bottom in the axial direction in which solids
are initially present.
5. (KFLIN{M), M==1,4) (format free); Cell flags for the inflow openings; KFLIN(1)
- Bottom-Left; KFLIN(2) - Bottom-Right; KFLIN(3) - Left-Bottom; KFLIN(4) -
Left-Top.
6. (FLO(M), M==1,8) {format free); Coordinates for the inflow openings; FLO(1),
FLO(2) - r coordinate for Bottom-Left opening; FLO(3), FLO(4) - r coordinate for
the Bottom-Right opening; FL.O(5), FLO(6) - z coordinate for the Left-Bottom
opening; FLO(7), FLO(8) - z coordinate for the Left—-Top opening.
7. {KFLOUT(M), M==1,4) (format free); Cell lags for outflow openings; KFLOUT(1)
- Top-Left; KFLOUT(2) - Top-Right; KFLOUT{(3) - Right-Top; KFLOUT(4)
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- Right-Bottom.

8. (FLO(M), M==9,16) {format free); Coordinates for the outflow openings; FLO(8),
FLO(10) - r coordinate for the Top-Left opening; FLO(11), FLO{12} - r coordinate
for the Top-Right opening; FLO{13), FLO(14} - z coordinate for the Right-Top
opening; FLO(15), FLO(16) - z coordinate for the Right-Bottom opening.

9. (NSL(M), M==1,4) (format free); Indicates free-slip or no-slip boundary condi-
tion for rigid walls around the computing mesh perimeter. Values of 0 for free-slip
or 1 for no-slip are assigned for Bottom, Left, Top, and Right boundaries in that
order. These values are ignored across inflow and out flow openings.

10. NO (format free); number of obstacles.

11. (NSO(N), (OB(M,N), M==1,4), N==1,NO) (format free); NSO(N) == 0 free-slip
for obstacle N or 1 no-slip for obstacle N; Obstacle N is defined by the coordinates,
OB(1,N) - r coordinate of left side, OB(2,N} - r coordinate of right side, OB(3,N)
- z coordinate of bottom, and OB(4,N} - z coordinate of top.

12. (DK(K), K=1,NSOLID) {format free); Characteristic diameters of the particu-
late phases.

13. (RK(K)}, K==1,NSOLID) (format free}; Microscopic densities of the particulate
phases.

14. UO,VO,PO,EPO, TEMPO,GRAYV (format free); UO - initial radial gas velocity;
VO - initial axial gas velocity; PO - initial pressure; EPO - initial void fraction
; TEMPO - initial temperature; GRAV - gravitational accleration in z-direction;
Non-uniform initial data may be specified by modifying the subroutine SETUP.

15. In flow data in the order given below (format free)

T Gas Velocity
radial axial pressure €1 temperature
Bottom-Left UINL VINL PINL EPINL TEMPINL

Bottom-Right UINR VINR PINR EPINR TEMPINR
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Left-Bottom UINB VINB PINB EPINB TEMPINB
Left-Top UINT VINT PINT EPINT TEMPINT
16. ITD (format free}; ITD < 2 no restart; ITD > 2 read the initial data from a
restart file.
17. TIME, TSTOP DT, CYCLE (format free); TIME - initial time of the problem;
TSTOP - the time at which the calculation is to stop; DT - the time step 6¢;
CYCLE - the number of the computational cycle at which the calculation is to
begin.
18. TPR, TDUMP (format free); TPR - the time interval for storing data on a disk
file which may be printed; TDUMP - the time interval for binary output to a disk
file which may be used as a restart file.

SETTING UP A PROBLEM

First of all choose an appropriate coordinate system from rectangular, cylindri-
cal or one dimensional spherical coordinates. Use the symmetries of the problem
to reduce the computational region. Specify free-slip walls along the lines of
symmetry. F'ix the coordinate system such that the inflow is from the computing
mesh bottom or left and the outflow is from the top or right. The outflow boundary
should be located in such a way that the flow is normal to the outflow boundary.

Program non-uniform initial conditions, if any, by modifying the subroutine
SETUP.

Specily ér and 6z according to the degree of resolution required. Sometimes
these dimensions are governed by the sizes of inflow or outflow openings. Discretize
the computational regime using integral number of divisions in r and z directions
The total number of computational cells are typically 100 - 1500.

The time step, 8¢, is limited by the fluid tranpsit time through a cell. Thus

min.(ér, §2)

6t P T
max. velocity
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Note that there is no sonic time step limitation, since the method is a generalization
of the ICE technique. However, in some cases the time step required for proper

convergence could be much less than what is given by the above expression.



A List of FORTRAN Symbols
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In the following list of FORTRAN symbols the array quantities are indicated

by an index. They are all part of a common block. The array dimensions of most

of them need to be changed when the input data file is changed. The indices shown

in the following table and the respective array dimensions to be used are: 1-> IB2

1] -> IB2 * JB2 ; K -> Number of particulate phases ; N -> Total number of

phases ; the rest are left unchanged unless othewise specified.

FORTRAN
Symbol
ABETA( 1J )

APPU( M, 1T )

APPV( M, 17 )

AU(N, N)

AUI(N, N )

AV( N, N)

AVI(N, N)

Definition

-;7 Computed in BETAS and ITER.

|

r-component of -(Kkl){ﬁt as

off-diagonal elements and 6t Z{L}(K ki)f

as diagonal elements. M -> N*(N+1)/2 where N is the
total number of phases

z-component of —(K H)fnét as

off-diagonal elements and 5tE[le(K H)‘Z

as diagonal elements. M -> N*(N+1)/2 where N is the

_ total number of phases

Components of the matrix in equation (24) for
the location ¢+ ~21~,j
Components of the matrix in equation (24) for
the location ¢ — %—,j
Components of the matrix in equation (25) for
the location 1,7 4+ —%

Components of the matrix in equation (25) for

L et

the location ¢,j —



BU( N )

BUI( N )

BV( N )

BVI(N)

C( 100 )
CONV( 17 )
CYCLE

DG

DK({ K )
DKF( K, K )
DR

DT

DTODR
DTODZ
DTORBDR( I )

DTORDR( 1)
DZ

D1, D2, D3
EP(1J )
EPINB
EPINL
EPINR

The vector in equation (24) for the location
i+15

The vector in equation (24) for the location
i - :_]é't j

The vector in equation {25) for the location
i+ 3

The vector in equation (25} for the location
|

Ll g

Storage for constants initialized in SETC.

8g - Convergence criteria computed in BETAS
n - The calculation cycle

j : .
D} - Defined in equation (26)

dy - Characteristic diameter of phase &

6tpkpl(dk+dg)2
2(prdy+0yd7)

Values of D? (See Figure 8.4)
7

(e1);

Input data line no. 15

Input data line no. 15

Input data line no. 15
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EPINT
EPN(1J)
EPO

EPSL( K, K )
EPSTAR
EPSU( K, K )
FL(1J)

FLO( M )
GEP( 100 )

GRAV
I
B

IB1
B2
1J

1JB

IJBR

LJL

LM

P
LJR

Input data line no. 15
e )?
Input data line no. 14
(D — Bp) + (1= a)(1— @4)8))[Pf + (1~ &)@/

*
€

(1 a)(@) + (1 — 2,)8]

Cell flags set up in FLIC

Input data line no. 6 and 8

Table of solids stress for explicit treatment

if desired

g - Input data line no. 14

¢ - Computing mesh column index

Number cells in the radial direction

excluding the two fictitious columns; IB = IB2-2
IBl =1IB2-1

Total number of cells in the radial direction
Index of quantities for cell i,j; IJ == [ 4 (J-1)*IB2
Index of cell centered quantities associated with
cell 1,j-1; see PROG

Index of cell centered quantities associated with
cell i+1, j-1; see INDEX

Index of cell centered quantities associated with
cell i-1, j; see PROG

Index of cell 1, j-1

Index of cell i, j+1

Index of cell centered quantities associated with

cell i+1, j; see PROG
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IJRR

T

HTL

UTR

UTT

MJ

IMIM

IMJP

INDS( 5, 17 )

IPJ
rIM
IPJP
ITC
ITD

8.26

Index of cell centered quantities associated with
cell i+2, j; see INDEX

Index of cell centered quantities associated with
cell i, j+1; see PROG

Index of cell centered quantities associated with
cell i-1, j+1; see INDEX

Index of cell centered quantities associated with
cell i+1, j+1; see PROG

Index of cell centered quantities associated with
cell 1, j+2; see INDEX

Index of cell -1, }

Index of cell i-1,j-1

Index of cell i-1, j+1

Storage of IJR, 1JL, IJT, 1JB, and IJTR

for each i,j

Index of cell i+1, j

Index of cell i+1, j-1

Index of cell i+1, j+1

Input data line no. 4

Input data line no. 16

J - Computing mesh row index( z - direction)
Number of cells in the axial direction

excluding the two fictitious rows; JB = JB2-2
JBl = IB2-1

Total number of cells in the axial direction
Input data line no. 4

Index for the phases



KPGU( K, 17 )
KPGV( K, 1J)
MMUG
NAME( M )
NIT

NO

NPHASE
NSL( M )
NSO( M )
NSOLID

OB( M, N)
P(1)

PHI( K )
PHILIM( K, K )
PHIS

PINB

PINL

PINR

PINT

PO

P1, P2, P3
R(1)

RAGS

RB(I)

RDR

r - component of gas - solids friction
z - component of gas - solids friction
Viscosity of gas

Input data line no. 1

Iteration counter used in ITER
Input data line no. 10

Total number of phases

Input data line po. 8§

Input data line no. 11

Number of particulate phases

Input data line no. 11

P{ - Pressure in cell 1,

2
T 1—-05)%;

¢ - the shape factor

Input data line no. 15

Input data line no. 15

Input data line no. 15

Input data line no. 15

Input data line no. 14

Values of P{ { Figure 8.4)

r; - Radial coordinate of the center of cell i,j
o2

rpl - Radial coordinate of the right

boundary of cell ij

1
dr
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RDR2
RDZ

RDZ2
RGFR( 17 )

RGFT(1J )

RGP(17)
RGPN( 17 )
RL( K )
RLFRK( K, 1J)

RLFTK( K, 1)

RLIM

RLK( K, 1J)
RLKN( K, IJ)
ROG( 17 )
RRB(1)

RRIDR( I )
RUG( 1J )
RUK( K, 1)
RVG(1T)
RVK( K, 1J)
SCALE( 4)
TDUMP

1
br)s

L

bz

1

(62)°
Flux of €;p; across the right boundary

—

of cell i,
Flux of €;p; across the top boundary
of cell 1,
(c101)]
Herm )ff
pr - Solids density
Flux of epp; across the right boundary
of cell 1,j
Flux of €p; across the top boundary
of cell i,j
Volume fraction limit to determine the complete

drainage of a particulate phase from a cell

Input data line no. 3

Input data line no. 22
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TEMPINB
TEMPINL
TEMPINR
TEMPINT
TEMPO
TG

TIME

TL

TPR
TSTOP
UG(1J)
UGFB(1)

UGFR

UGFT

UINB
UINL
UINR
UINT

Input data line no. 15
Input data line no. 15
Input data line no. 15
Input data line no. 15
Input data line no. 14
Gas temperature
Input data line no. 17
Solids temperature
Input data line no. 22

Input data line no. 17
j
i+
Radial momentum flux for the gas across the

(1)

bottom boundary of the momentum control
volume centered about the point 7 + %-, 7
Radial momentum flux for the gas across the
left boundary of the momentum control volume
described above

Radial momentum flux for the gas across the
right boundary of the momentum control volume
described above

Radial momentum flux for the gas across the
top boundary of the momentum control volume
described above

Input data line no. 15

Input data line no. 15

Input data line no. 15

Input data line no. 15
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UK( K, 1J)
ULFB( K, 1)

ULFL( K )

ULFR

ULFT

U0O
VG(1J)
VGFB(1 )

VGFL

VGFR

(“k)? + %

Radial momentum fux for the solids across

the bottom boundary of the momentum control
volume centered about the point ¢ + %,j
Radial momentum flux for the solids across

the left boundary of the momentum control
volume described above

Radial momentum flux for the solids across

the right boundary of the momentum control
volume described above

Radial momentum flux for the solids across

the top boundary of the momentum control
volume described above

Input data line no. 14

(vg ){+ ?
Axial momentum flux for the gas across the
bottom boundary of the momentum control
volume centered about the point ¢, j + —%

Axial momentum flux for the gas across the
left boundary of the momentum control volume
described above

Axial momentum flux for the gas across the
right boundary of the momentum control
volume described above

Axial momentum flux for the gas across the

top boundary of the momentum control volume

deseribed above
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VINB
VINL

VINR

VINT

VK(K, 1T
VLFB( K, IJ )

VLFL{ K)

VLFR

VLFT

VO

8.31

Input data card no. 15
Input data card no. 15
Input data card no. 15
Input data card no. 15
(”k){ﬂp !
Axial momentum flux for the solids across

the bottom boundary of the momentum control
volume centered about the point 1,7 + %—

Axial momentum flux for the solids across

the left boundary of the momentum control
volume described above

Axial momentum flux for the solids across

the right boundary of the momentum control
volume described above

Axial momentum flux for the solids across

the top boundary of the momentum control

volume described above

Input data line no. 14



IMPLICIT REAL*B(A-H,0-2)
INTEGER FL,CYCLE ’
REAL*8 KPGU,KPGV,LEFT,MMUG
COMMON BLOCKS

COMMON / PARAMI /

1 MMUG, DG, DR, DT,
1 DTODR, DTODZ, DZ, pl, D2, D3,
1 EPSTAR, GRAV,
] PINB, PINL, PINR, PINT, PO,
1 PI, P2, P3, PHIS, RAGS,
1 RDR, RDRZ, RDZ, RDZ2, RLIM
COMMON / PARAM2 /
| TARGET, TEMINB , TEMINL, TEMINR, TEMINT,
1 TEMPO, EPINB, EPINL,
1 EPINR, EPINT, EFO, TIME, TDUMP,
1 TPR, TSTOP, UGFL, UGFR, UGFT,
1 UINB, UINL, UINR, UINT, ULFR,
1 ULFT, vo, VGFL, VGFR, VGFT,
1 VLFR, VLFT, VINB, VINL, VINR, VINT,
1 vo,
1 TG, TL
COMMON / PARAM3 /
1 C(100), FLO(16),
1 0B(4,37), SCALE(4), DK( 2),GEP(100),DKF( 2, 2),

1 RL( 2), PHI( 2),PHILIM( 2, 2),EPSL( 2, 2),EPSU( 2, 2)

COMMON / PARAMI /

1 I,IB,IB1,NO,

1 IB2, IJ, 1JB , TJBR, IJL, IJM,
1 1P, IJR, IJRR, IJT, IJTL, LJTR,
1 IJTT, IMJ, IHJM, IMJP, IPJ, IPJM,
1 IPJP, ITC, ITD, I, JB, JBI,
1 JBZ, K, NPHASE, CYCLE,

1 NIT, NSOLID,

1 NAME(40),NSL(4),NSO(37),FL( 54),INDS( 54,5)

COMMON
1 ABETA( 54 ),CONV( 54 ),

1P ( 54 ), RGFR ( 54 ), RGFT ( 54 ),

1RGP ( 54 ), RGPN ( 54 ),ROG( 54 ),

IRUG ( 54 ), RVG ( 54 ),

1IEP ( 54 ), EBN ( 54 ),

1APPU( 6, 54),APPV( 6, 54),BUI( 3),BVI( 3),BU( 3),
IBY(  3),AUL( 3, 3),AVI( 3, 3),AUC 3, 3),AV( 3, 3)
COMMON

1 RLFRK( 2, 54),RLEFTK( 2, 54),

1 KPGU( 2, 54),KPGV( 2, 54),

1 RUK( 2, 54),RVK( 2, 54),

IRLK( 2, 54), RLKN( 2, 54),

UG ( S4 ), UK( 2, S4&), VK( 2, 54),

1 V6 ( 54 )

COMMON

IDTOBDR ( 3), DTORDR ( 3), R (3,

IRB ( 3), RRB ( 3), RRIDR  ( 3),
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1 UGFB
IVGFB
1ULFL

(

( 3), ULFB
( 3), VLFB
2), VLFL

(

(

(
2)

2, 3),
2, 3,
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8.34

B s e e e e e e e e e e R b T e g T
Transient Two-Dimensional Multiphase Flow Program

C

C

C

e i e e i ey
C Developed by

C M. STAMLAL

C Illinois Institute of Technology

C Chicago, Il 60616

C May 1985

C

Chdkiokkdokhiobdhkbhkdridihdrdbhidhdhbbhibdrhhhhdhhidihhiihhbhkhbkrkhikikkbrks

!

INCLUDE 'GCOME.FOR’
COMMON/KFLIO/KFLIN(4) ,KFLOUT(4)

Input Data

o e Ne]

READ(5,100) NAME

READ(5,%) IB2,JB2,NSOLID

READ (5,%) (SCALE(I),I=1,4)
READ(5,*) ITC,DR,DZ,.Jd

READ(S5,*) (KFLIN(M),M=1,4)
READ(5,*) (FLO(M),M=1,8)
READ(5,%) (KFLOUT(M),M=1,4)
READ(5,%) (FLO(M),M=9,16)
READ(5, *) (NSL(M),M=1,4)

READ(5, #)NO

IF(NO.EQ.0)GOTO 25

DO 20 N=1,NO

20 READ(5,*)NSO(N), (OB(M,N),M=1,4)
25  READ(S5,*)(DK(K),K=1,NSOLID)

READ(5,*) (RL(K),K=1,NSOLID)
READ(5,*)U0,V0, PO, EPO, TEMPO, GRAV
READ(S,*) YUINL,VINL,PINL,EPINL,TEMINL,UINR,VINR,PINR,EPINR,
1 TEMINR, UINB, VINB, PINB, EPINB, TEMINB ,UINT,VINT, PINT,
2 EPINT, TEMINT

READ(S5,*) ITD

READ (5,*) TIME,TSTOP,DT,CYCLE
READ (5,*) TPR,TDUMP

L Read Restart File if necessary

IF (ITD.GE.2) CALL TAPERD
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WRITE(6,200) NAME
WRITE(6,210) (SCALE(I),I=1,4)
WRITE(6,220) ITC,IB2,JB2,DR,DZ,JH
URITE(6,230) (KFLIN(T), T=1,4), (FLO(M),M=1,8), (KFLOUT(I),I=1,4),
1(FLO(M),M=9,16)
WRITE(6,240) (NSL(M),M=1,4)
WRITE(6,250) NO
IF(NO.EQ.Q) GO TO 50
WRITE(6,252)
DO 40 N=1,NO
40 WRITE(6,254) NSO(N),(OB(M,N),M=1,4)
50 WRITE(6,251) GRAV
WRITE(6,260) UO,V0,P0,EPO, TEMPO
WRITE(6,270) UINL,VINL,PINL,EPINL,TEMINL,UINR,VINR, PINR,
EPINR,TEMINR,UTNB,VINB,PINB, EPINB, TEMINB ,
2 UINT, VINT, PINT, EPINT, TEMINT
WRITE(6,274) ‘
WRITE(6,275)(DK(I),RL(I),I=1,NSOLID)
WRITE(6,280) ITD
WRITE(6,290) TIME,TSTOP,DT,CYCLE
WRITE(6,300) TPR,TDUMP

ok

REWIND(9)
NPHASE=NSOLID+1
IB=IB2-2
IB1=IB2-1
JB=JB2-2
JB1=JB2-1
TG=TEMPO
TL=TEMPO

———————— Initialize cell flags, constants, and dependant variables

CALL FLIC
CALL SETUP (JH)

B e b L L L R L L e g e SR S e P P A

--------------------- MARCH IN TIME —mm oo e
CALL PROG
B b e e g e 2 T e e T 1 SRR . S S PN A P SRS O RS A
STOP

100 FORMAT(404A2)

200 FORMAT(1X, 'MULTIFIX  PROBLEM IDENTIFIER - ',40A2)

210 FORMAT(/,1X,’SCALING  LENGTH(CM)=’,1PE8.2, ' VELOCITY’,
l '(CM/SEC)=',1PE 8.2, ' DENSITY(GM/CC)=’,1PE 8.2, ' TEMPER’
2, ’ATURE(DEG.K)=",1PE 8.2 )

220 FORMAT(/,lX,'GEOMETRY',/,’ 1. COORDINATES (RECT=0, CYLIND’
1,7=1,SPHER=2) =',I3,/,
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] ' 2. MESH SIZE, IB2=",13,14X,'JB2=7,13,/," 3.
2 ,'CELL SIZE, DR=?,1PEll.4," DZ=",1PEll.4,/,? 4, TOP?
3, 'OF BED JH=",112)

230 FORMAT(/,l1X,’ 5. INFLOW OPENINGS CELL FLAGS BO'

1,’TTOM-L=",I3,11H BOTTOM-R=,I3,9H LEFT-B=,I3,9H LEFT-T=,13/,
212X,9HA. BOTTOM, 10X, 1P4E1l.4/,12X,7HB. LEFT,12X,1P4Ell.4/

3518 6. OUTFLOW OPENINGS CELL FLAGS TOP-L=,13,

481 TOP-R=,I3,10H RIGHT-B=,I13,10H RIGHT-T=,I13/,12X,

56HA. TOP,13X,1P4E11.4/,12%,8HB. RIGHT,11l¥,1P4E1l.4)

240 FORMAT(/,1X,’ 7. BOUNDARIES, (FREE-SLIP=0  NO-SLIP=1)’/,14X
1, 'BOTTOM=",13," LEFT=",13,7 TOP=’,I3,’ RIGHT=',I3 )

250 FORMAT(/,1X,’ 8. OBSTACLES, NO="',I3 )

251 FORMAT(/,1X,? 9. GRAVITY, GRAV="',1PEL15.7)

252 FORMAT(/,1%,’ SLIPT,22¥, ' -~ COORDINATES—————~ i)

254 FORMAT(/,1X,12X,13,6X,1P4E14.4 )
260 FORMAT(/,lX,'INITIAL DATA GAS AND LIQUID '/ !

1U0=",1PE1l.4,’  VO=’,1PEll.4,'  PO=',lPEll.4,’  EPO=’,1PE
211.4,° TO=",1PE11.4)

270 FORMAT(/,1X,’INFLOW DATA'/’ 1. BOTTOM’/’ UNTL=’
1,1PE1L.4,’ VINL=’,1PE11.4,' PINL=’,1PELl.4,' EPINL=',1PE1l.4
2, "TEMINL="',1PE1]1.4/" UINR=',1PEl11.4,” VINR=',lPELL.

34,’PINR="',1PEll.4," EPINR=',1PEll.4, ' TEMINR=',1PEll.4/’
4 2.LEFT'/,12X, UINB=",1PE11.4,' VINB=’,IPEll.4,’ PINB=',1PEll
5.4,' EPINB=',1PEll.4,’ TEMINB =’,1PEll.4/’ UINT=", 1
6PE11.4,’ VINT=',1PE11.4,’ PINT=',1PE1l.4,’ EPINT=',1PEll.4,’
7 TEMINT=',1PE1l.4)

274  FORMAT(/,1X,/,* PARTICULATE PHASE DATA’,/,’ DIAMETER', 7%,
& 'MICROSCOPIC DENSITY’)

275  FORMAT(/,2(6X,G10.3))

280 FORMAT(/,1X, 'CONTROL®/ ' 1. DUMP AND RESTART, ITD=",13)

290 FORMAT(/,1X,’ 2. TIME AND CYCLE  TSTART=’,1PE1l.4,' TST’
1,’0P=",1PE1l.4," DT=',1PEll.4,’ CYCLE=',I12)

300 FORMAT(/,1X,' 3. PRINTING AND DUMPING, TPR="
1,1PE11l.4,’ TDUMP=',1PE1l.4)
END

SUBROUTINE BDRY
INCLUDE 'GCOME.FOR?

DG 200 J=2,JB1
DO 200 I=2,1Bl
IJ=I+(J-1)*IB2
C Skip if not a fluid cell
IF(FL(IJ).NE.1) GO TO 200
CALL INDEX
C Check cells on right and top
NFLR=FL(IPJ)
NFLTR=FL{IPJP)
NFLT=FL(IJP)
IF(NFLR.EQ.4.0R.NFLR.EQ.7) GO TO 10
TF(NFLT.EQ.4.0R.NFLT.EQ.7)G0 TO 20



15

17

18

25

i0

16

20

GOT030
Continuous outflow on the right

CONTINUE
N1=1J
N2=IPJ .
IF(NFLR.EQ.7.AND.UG(N1).LE.0.) GO TO 16
RGFR(N2)=RGFR(N1)
RGP (N2)=RGP(N1)
RUG(N2)=RUG(N1)
EP(N2)=EP(N1)
DO 15 K=1,NSOLID
RLFRK (K, N2 )=RLFRK(K,N1)
RLK (K, N2)=RLK (K, N1)
RUK (K, N2 }=RUK (K,N1)
CONTINUE
IF(NFLR.NE.7)P(N2)=P(N1)
IF(NFLR.EQ.7)THEN
IJ=N2
CALL CNVERT
IJ=N1
ENDIF
CONTINUE
IF(NFLTR.GE.4)THEN
YG(N2)=VG(N1)
DO 17 K=1,NSOLID
VK(K,N2)=VK(K,N1)
CONTINUE
ENDIF
DO 18 K=1,NSOLID
UK(K,N2)=((R(I+1)+R(I))*RB(I)*UK(K,N1)-R(T+1)*RB(I-1)

& *UK(K,N1-1))*RRB(I+1)/R(I)

1

CONTINUE
UG(NZ)=((R(T+1)+R(I))*RB(I)*UG(N1)-R(I+1)*RB(T-1)*UG(N1-1))
*RRB(I+1)/R(I)

IF(NFLT.NE.4.AND.NFLT.NE.7)GO TO 30

Continuous outflow on the top

CONTINUE
N1=1J
N2=-1JP
IF(NFLT.EQ.7.AND.VG(N1).LE.0.)GOTO 26
RGFT(N2)=RGFT(N1)
RGP (N2)=RGP(N1)
RVG(N2)=RVG(N1)
EP(N2)=EP(N1)
DO 25 K=1,NSOLID
RLFTK(K,N2)=RLFTK(K,N1)
RLK(K,N2)=RLK(K,N1)
RVK (K, N2)=RVK(K,N1)
CONTINUE
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26

27

28

O

51

81

30
35

4()

43

30

60
63

70

75

80

IF(NFLT.NE.7)P(N2)=P(N1)
IF(NFLT.EQ.7)THEN
1J=N2
CALL CNVERT
IJ=N1
ENDIF
CONTINUE
IF(NFLTR.GE.4) THEN
UG(N2)=0.0
DO 27 K=1,NSOLID
UR(K,N2)=0.0
CONTINUE
ENDIF
VG(N2)=RGP(N1)*VG(N1)/RGP(N2)
DO 28 K=1,NSOLID
VK (K,N2)=0.0
CONTINUE
GO TO (60,35,45,60,60,60,60),NFLR
GO TO (60,40,40,60,60,60,60),NFLTR

Free-slip wall on the right

VG(IPJ)=VG(IJ)
DO 41 K=1,NSOLID
VR(K,IPJ)y=VK(K,IJ)
CONTINUE

GOTO60

GO TO (60,50,50,60,60,60,60),NFLTR

No-slip wall on the right

VG(IPJ)=-VYG(IJ)

DO 51 K=1,NSOLID

VK (K, IPJ)=-VK(K,IJ)

CONTINUE
GO TO (90,65,75,90,90,90,90),NFLT
GO TO (90,70,70,90,90,90,90),NFLTR

Free-slip wall above

UG(IJP)=UG(IJ)
DO 71 K=1,NSOLID
UK (K, IJP)=UK(K,IJ)
CONTINUE
GOT090
GO TO (90,80,80,90,90,90,90),NFLTR

No-slip wall above

UG(TJP)=-UG(IJ)
DO 81 K=1,NSOLID
UK (K, IJPy=-UK(K,IJ)
CONTINUE
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90

103
C
C
¢

110

111

i15

120

121
130

135

140

141

145

@]

150

151
200

Ciiins
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CONTINUE
NFLL=FL(IMJ)

NFLTL=FL(IMJP)

GO TO (130,105,115,130,130,130,130), NFLL
GO TO (130,110,110,130,130,130,130), NFLTL

Free-slip wall on the left

VG(IMJ)=VG(IJ)
DO 111 K=1,NSOLID
VK (K, IMJ)=VK(K,IJ)
CONTINUE
GO TO 130
GO TO (130,120,120,130,130,130,130), NFLTL

No-slip wall on the left

VG (IMJ)=-VG(IJ)
DO 121 K=1,NSOLID
VK (K, IMJ)=-VK(K, IJ)
CONTINUE
NFLB=FL(IJM)
NFLBR=FL(IP.JM)
GO TO (200,135, 145,200,200,200,200),NFLB
GO TO (200,140, 140,200,200,200,200),NFLBR

Free-slip wall below

UG(IIM)=UG(IJ)
DO 141 K=1,NSOLID
UK (K, TJM) =UK(K, IJ)
CONTINUE

GO TO 200

GO TO (200, 150,150,200,200,200,200),NFLBR

No-slip wall below

UG(TJM)=-UG(IJ)
DO 151 K=1,NSOLID
UK (R, TJM)=-UK(K, 1T}
CONTINUE
CONTINUE
RETURN
END
SUBROUTINE BETAS
INCLUDE 'GCOME.FOR’

-----

Calculate beta for the iteration
PARAMETER (DELG = 1.0E-4)
DO 10 J=Z,.JBl1
DO 10 I=2,IBI
TJ=I+(J-1)*IB2
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IF(FL(IJ).NE.1) GO TO 10

CALL INDEXA

RAGS=ROG(L.J)/P(IJ)

RIGHT=1.

LEFT=1.

TOP=1.

BOT=1.

NFLR=FL(IPJ)

NFLL=FL(IMJ)

NFLT=FL(IJP)

NFLB=FL(IJM)

Go T0 ¢2,1,1,2,1,1,2),NFLR

RIGHT=0.

GO TO (4,3,3,4,3,4,4),NFLL

LEFT=0.

GO TO (6,5,5,6,5,5,6),NFLT

TOP=0.

G0 TO (8,7,7,8,7,8,7),NFLB

BOT=0.

8 CONTINUE
CONV(IJ)=DELG*RGP(IJ)

RBETA=EP (IJ)*RAGS+0. 5%(DTODZ*DTODZ* ( (EP(LJ)+EP(IJT))*TOP+
&(EP(IJ)+EP(IJB))*BOT)+DTORDR(I)*DTODR*(RB(I)*(EP(IJ)+EP(IJR))*
SRIGHT+RB(I-1)*(EP(IJ)+EP(IJL))*LEFT))

ABETA(IJ)=1./RBETA
i0 CONTINUE

RETURN

END

SUBROUTINE CNVERT

INCLUDE 'GCOME.FOR’

DIMENSION CI(4)
C::::::::!:::::.'.::‘.‘::::::::::::::::::::::::::::!:::!2::::::::::::::::
C Calculate initial values of the microscopic & macroscopic densities
C!:.'.!::::::!!!!:::::::::2:2:::::::::::::::::::::2::::!:::!:::::::::::

CI(1)=P(IJ)

CI(2)=TEMPO

CI(3)=EP(IJ)

CI(4)=TEMPO

ROG(IJ)=CI(1)/(C(1)*CI(2))

RGP(IJ)=ROG(IJ)*CI(3)

RGPN(IJ)=RGP(I.J)

DO 10 K=1,NSOLID

RLEN(K, I.J)=RLK(K,IJ)

10 CONTINUE

RETURN

END

SUBROUTINE EOSG(NR,NT,NC)

INCLUDE 'GCOME.FOR’

~ Oy LN Pl BN e

C Calculate the gas density and the speed of sound in gas
C::::::::::::::!:::::!Z:::Z::::::::::::!:::::::::::::::::::::::::::::
IF(NR.GT.0) ROG(IJ)=P(IJ)/(C(1)*TG)
IF(NC.GT.1) RAGS=ROG(IJ)/P(I1J)



eReNeNe!

10

12

14

16

RETURN

END

SUBROUTINE FLIC
INCLUDE ’*GCOME.FOR’

COMMON/KFLIQ/KFLIN(4),KFLOUT(4)

RAD=DR*IB
ZAX=DZ*JB

Jl=1

J2=5

J3=9

J4=13
YTS=-.5%DZ

DO 150 J=1,JB2
XTS=-.5%DR

YTE=YTS+DZ*(J~1)

DO 150 I=1,IB2
XTE=XTS+DR*(I-1)
IJ=T+(J-1)*IB2

Initialize all cell flags to '1'.

for non-fluid cells

FL(IJ)=1

IF (XTE.LT.0.) GO TO 10
IF (XTE.GT.RAD) GO TO 30
IF (YTE.GT.ZAX) GO TO 70
IF (YTE.LT.0.) GO TO 110
GO TO 150

B.42

This value will be changed

Sets flag for left column{ I = 1)

IF (YTE.LT.FLO(J2)) GO TO 12

IF (YTE.LT.FLO(J2+1)) GO TO 16

J2=J242
IF (J2.GT.7) J2=7

IF (YTE.GT.FLO(J2).AND.YTE.LT.FLO(J2+1)) GO TO 16

IF (NSL(2).EQ.1) GO TO l4
TJ=I+(J-1)*IB2

FL(IJ)=2

GO TO 150

IJ=I+(J-1)*IB2

FL(IJ)=3

GO TO 150

IJ=I+(J-1)*IB2
IF(J2.EQ.5)FL(TJ)=KFLIN(3)
TF(J2.EQ.7)FL{IJ)=KFLIN(4)
GO TO 150

Set flags for right column( I

IB2)



30

40

30

60

70

80

90

160

110

120

IF (YTE.LT.FLO(J4)) GO TO 40
IF (YTE.LT.FLO(J4+1)) GO TO 60
J4=Jb4+2

IF(J4.GT.15) J4=15

IF (YTE.GT.FLO(J4).AND.YTE.LT.FLO(J4+1)) GO TO 60
IF (NSL(4).EQ.1) GO TO 50
TJ=T+(J-1)*IB2

FL(IJ)=2

GO TO 150

TJ=T+(J-1)*IB2

FL(IJ)=3

GO TO 150

TJ=T+(J~1)*IB2
IF(J4.EQ.13)PL(LJ)=KFLOUT(3)
IF(J4.EQ.15)FL(LJ)=KFLOUT(4)
GO TO 150

Set flags for top ('J = JB2)

IF (XTE.LT.FLO(J3)) GO TO 80

IF (XTE.LT.FLO(.J3+1)) GO TO 100
J3=J3+2,

IF(J3.GT.11) J3=11
IF(XTE.GT.FLO(J3).AND.XTE.LT.FLO(J3+1)) GO TO 100
IF (NSL(3).EQ.1) GO TO 90
IJ=I+(J-1)*IB2

FL(IJ)=2

GO TO 150

IJ=T+(J-1)*IB2

FL(IJ)=3

GO TO 150

IJ=I+(J-1)*IB2
IF(J3.EQ.9)FL(IJ)=KFLOUT(1)
IF(J3.EQ. 11)PL{IJ)=KFLOUT(2)

GO TO 150

Set flags for bottom ( J = 1) row

IF(XTE.LT.FLO(J1)) GO TO 120
IF(XTE.LT.FLO(J1+1)) GO TO 140
Ji=J1+2

IF (J1.GT.3) Jl=3
IF(XTE.GT.FLO(J1).AND.XTE.LT.FLO(J1+1)}) GO TO 140
IF (NSL(1).EQ.1) GO TO 130
IJ=I+(J-1)*IB2

FL(IJ)=2

GO TO 150

IJ=I+(J-1)*IB2

FL(TJ)=3

GO TO 150

TJ=T+(J-1)*TB2

IF(J1.EQ. 1)FL{IJ)=KFLIN(1)
IF(J1.EQ.3)FL{IJ)=KFLIN(2)
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150 CONTINUE
IB1JB2=IB1+(JB2-1)*IB2
IB2JBl=IB2+(JB1-1)+*IB2
IB2JB2=IB2+(JB2-1)*IB2
IF((FL(IB1JB2).EQ.4).AND. (FL(IB2JB1).EQ.4)) FL(IB2JB2)=4
IF(FL(IB1JB2).EQ.7.AND.FL(IB2JB1).EQ.7) FL(IB2JB2)=7
IF (NO.LE.O0) RETURN

C Set flags for obstacle cells

DO 300 K=1,N0
X1=08(1,K)
X2=0B(2,K)
¥1=0B(3,K)
¥2=0B(4,K)
YTS=.5%DZ
DO 290 J=2,JB1
XTS=.5%DR -
YTE=YTS+DZ*(FLOAT(J-2))
DO 290 I=2,IBI
XTE=XTS+DR* (FLOAT(I-2))
IF (XTE.LT.X1) GO TO 290
IF (XTE.GT.X2) GO TO 290
IF (YTE.LT.Yl) GO TO 290
IF (YTE.GT.Y2) GO TO 290
IJ=I+(J-1)*IB2
FL(IJ)=2
IF(K.GT.1.AND.FL(IJ-1).EQ.1)FL(IJ)=5
TF(NSO(K).EQ.1) GO TO 280
GO TO 290
280 FL(EJ)=3
IF(K.GT.1.AND.FL(IJ-1).EQ.1)FL(IJ)=5
290  CONTINUE
300 CONTINUE
RETURN
END
SUBROUTINE INDEX
INCLUDE *GCOME.FOR!?
C:::::::::::::::::::!:!::!::!2:::::::::2:::::::::::::::::::::::::!:::
C Calculate indices for array quantities
C::::::::::::::::::::::::::2:::3:’.’3::::::::!::::::::::::::::::!::::::
C
IMJP=IJ-1+IB2
TJTL=IMJP
TF((FL(IMJP).EQ.2).0R. (FL{IMJP).EQ.3)) TJTL=IJ+IB2
IPJHM=TJ+1-IB2Z
IJBR=IPJM iy
IF((FL(IPJM).EQ.2).0R. (FL(IPJX).EQ.3)) IJBR=IJ+!
IJRR=TJ+2
IF(I.EQ.IBl) IJRR=IJ+1
TF((FL(IJRR).EQ.2).0R.(FL(IJRR).EQ.3)) IJRR=IJ+1
IJTT=1J+IBZ+IB2
IF(J.EQ.JBLl} IJTT=IJ+1IBZ
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IF((FL(LJTT).EQ.2).0R. (FL(IJTT).EQ.3)) IJTT=IJ+IB2
ENTRY INDEXA
TPJ=TJ+!
[JP=IJ+IB2
IMJ=IJ-1
TJM=IJ-IB2
IMJIM=T.J4-1
IPJP=IJP+1
IJR=INDS(ILJ, 1)
IJL=INDS(IJ,2)
IJT=INDS(IJ,3)
IJB=INDS(IJ,4)
LJTR=INDS(IJ,5)
RETURN

END

SUBROUTINE INTER

INCLUDE ’GCOME.FOR?’

--------------------------------------------------------------------
--------------------------------------------------------------------

APPU(KS,TJ}=0.0
APPV(KS,1J)=0.0

DO 100 K=2,NPHASE

CALCULATE PARTICLE TO PARTICLE INTERACTION#*+*#k#*
DO 98 KKR=1,K

KS = KK + K¥(K-1)/2

IF(KK.EQ. 1)THEN

APPU(KS, IJ)=-KPGU(K~1,I.J)*DT
APPV(KS,IJ)=-KPGV(K~1,IJ)*DT
ELSEIF(KK.EQ.K)THEN

APPU(KS,IJ)=0.0

APPY(KS,1J)=0.0

ELSE
DV=ABS(VK(K~1,1J)-VK(KK-1,TJ)+VK(K-1,TJM)-VK(KK-1,TJ4))*0.5
DU=ABS (UK (K~1,1J)~UR(KK-1,TJ)+UR(K-1,IMJ)-UK(KK-1,IMI))*0.5
IF(DK(K-1).GT.DK(KK~1))THEN

Ki1=K-1

K2=KK-1

ELSE

K1=KK-1

K2=K-1

ENDIF

EP1=RLK(K1,TJ)/RL(K1)

EP2=RLK (K2, IJ)/RL(K2)

EPSUM = EP1+EP2

IF(EPSUM.NE.0.0)THEN

XBAR=EP1/EPSUM

IF(XBAR.LE. PHILIM(K-1,KK~1))THEN

EPKL = EPSL(K-1,KK-1)*XBAR/PHI(K1) +PHI(K2)
ELSE

EPKL = EPSU(K-1,KK-1)*(1.0-XBAR) + PHI(K1)
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ENDIF
EPKL = EPKL*%(1.0/3.0)
EPSUM = EPSUM#*#(1.0/3.0)
EPDIF = EPKL-EPSUM
IF(EPDIF.LE.0.0)EPDIF=1.0D-30
CON = EPI#EP2#DKF(K~1,KK~1)*(EPSUM+3.0%EPKL)/EPDIF
ELSE
CON = 0.0
ENDIF
APPU(KS, IJ)=—-CON*DU
APPV(KS, LJ )=~CON*DV
ENDIF

98  CONTINUE

100 CONTINUE
DO 105 K=1,NPHASE
SUMX=0.0
SUMY=0.0
DO 101 KK=T,K
KS = KK + K*(K-1)/2
SUMX=SUMX+APPU(KS, IJ)
SUMY=SUMY +APPV(KS, I.J)

101 CONTINUE
DO 102 KK=K,NPHASE
KS = K & KI*(KK-1)/2
SUMX=SUMX+APPU(KS, IJ)
SUMY=SUMY+APPV(KS, IJ)

102 CONTINUE
KS=K*(K+1)/2
APPU(KS, I.J)=-SUMX
APPV(KS,IJ)=-SUMY

105  CONTINUE
RETURN
END
SUBROUTINE ITER
INCLUDE ’GCOME.FOR’

C:::::::::::?:::::!:!::::::::1!:2!::::2::::::::::::::!:::!:::::::2:::
C Perform the iterative solution of the difference equations
C:::::::!:!::::2:::::::::!::!::::::!::::::2:::::::::::::::::2!.‘.::::::

PARAMETER (INMAX = 5,0UTMAX = 20, OMEGA = 1.05)

NIT=0

MUSTIT=1

RRT=1./(C{1)*TG)

1 NIT=NIT+1

DO 100 J=2,JBl
DO 100 I=2,IBl
IJ=I+(J-1)*IB2
IF(FL(IJ).NE.1) GO TO 100
LOOP=0
KLOOP=0
KROS=-1
CALL INDEXA
DG=RGP(IJ)-RGPN(IJ)+DTORDR(I)*(RGFR(IJ)-RGFR(IMJ))+DTODZ*
1 (RGFT(IJ)-RGFT(IJM))



10

11

12

Ci10
€200

78

79

TARGET = 0.0
DGORIG=DG
IF(ABS(DG).LE.CONV(IJ)) GO TO 78
MUSTIT=1
D3=DG
P3=P(LJ)
IF(NIT.EQ.1)GOT055
IF(D3.GT.0.0)GOTO!1
D2=D3
P2=P3
IF(KROS.EQ.-1)KROS=1
IF(KROS.EQ.0)KR0OS=2
GOTO12
D1=D3
P1=P3
IF(KROS.EQ.~1)KROS=0
IF(KROS.EQ. 1 )KROS=2
IF(KROS.EQ. 3)GOTO54
IF(KROS.EQ.2)GOTO13
DP=-D3*OMEGA*ABETA(IJ)
IF(-DP*DSIGN(1.D0,D3).GT.0.25%P3) DP=-0.25%DSIGN(1.DO,
D3)*P3
P(IJ)=P(IJ) + DP
IF(P(IJ).LT.0.0) WRITE(1,93) IJ,P(1J),DP,ABETA(LJ),D3
FORMAT (2X, ' 6&&&&&S&", 2X,13,4(2X, LPE12.4))
GOTOS4
P(IJ)=(D1¥P2-D2%P1)/(D1-D2)
ABETA(IJ)=(P1-P2)/(D1-D2)
IF(P(IJ).LE.0.0)WRITE(1,92)1J,P1,P2,D1,D2,ABETA(L)
FORMAT (2X, ' &&&&8&4&7 ,T4,5(2X, 1PEI2.4))
KROS=3
P3=P(IJ)
CONTINUE
ROG(IJ)=P(IJ)*RRT
RGP(IJ)=EP(IJ)*ROG(IJ)
CALL MATS
WRITE(6,200)J,NIT,LOOP
WRITE(6,110) (AV(I1,1),AV(Il,2),BV(I1),I1=1,2)
VRITE(6,110)(AVI(IL,1),AVI(I1,2),BVI(Il),I1=1,2)
FORMAT (3(4X,G14.7))
FORMAT(/,4%,3(I2,3X))
CALL VELSK
WRITE(6, 110)VG(IJY,VK(1,IJY,P(L))
CALL MASFK
RLX=0.0
DO 79 K=1,NSOLID
RLK (K, IJ)=RLKN(K, IJ)-DTORDR(T )*(RLFRK (K, IJ)-RLFRK (X, IMJ))
~DTODZ* (RLFTK (K, TJ)-RLFTK (X, IJM))
RLX=RLX+RLK(K,IJ)/RL(K)
CONTINUE
EPX=RLX
IF(EPX.LT.0.0)THEN
EPX=0.0
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DO 80 K=1,NSOLID
RLK(K,IJ)=0.0
CONTINUE
ELSEIF(EPX.GT.0.8)THEN
DIV=0.8/EPX
EPX=0.8
DO 81 K=1,NSOLID
RLK (K, IJ)=RLK(K,IJ)*DIV
CONTINUE
ENDIF
EP(IJ)=1.-EPX
RGP(IJ)=ROG(TIJ)*EP(I.J)
IF(ABS(DG).LE.CONV(IJ))GOTOL00
CALL MASFG
DG=RGP(I.J)-RGPN(IJ)+DTORDR(I)*(RGFR(IJ)-RGFR(IMJ})+DTODZ*
1 (RGFT(IJ)-RGFT(IJM))
IF((ABS(DG).LE.CONV(IJ)).AND. (ABS(DG).LT.ABS(DGORIG)))
1 GO TO 100
IF((NIT.EQ.1).AND.(LOOP.EQ.0)) DGORIG=DG
D3=DG
LOOP=LOOP+1
IF((KROS.LT.2).AND. (LOOP.EQ. INMAX)) ABETA(IJ)=.5*INMAX
&*ABETA(T.J)
IF(LOOP.EQ. INMAX) GO TO 100
IF(KROS.EQ. 3)CALL NEWP
GOTO10

100 CONTINUE

IF(MUSTIT.EQ.0) RETURN

MUSTIT=0

IF(NIT.LT.OUTMAX)GOTO 1

WRITE(6,’(A,G11.4)")" MAX. NO OF ITERTNS EXCEEDED AT TIME =’,
&TIME

RETURN

END

SUBROUTINE KDRAGG(DRAG,DV,ISH)

INCLUDE ’GCOME.FOR’

----------------------

-----------------------------------------------------------------

DRAG=0.0

DRACOE=4.4E-1

IF(ISH.EQ.])THEN
EPX=(EP(IJ)+EP(IJT))*0.5
RGX=(ROG(IJ)+ROG(IJIT))I*0.5
RLKX=(RLK (K, TJ}+RLK(K,IJT))*0.5
ELSE

EPX=(EP(IJ)+EP(IJR))*0.5
RGX=(ROG(IJ)+ROG(IJR))*0.5
RLKX=(RLK (K, T.J)+RLK (K, TJR) ) *0. 5
ENDIF

EPX=EP(IJ)

RGX=ROG(LJ)

RLKX=RLK(K,IJ)
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REYNUM=EPX*RGX*DK (1) *PHIS*DV/ (MMUG)
IF{REYNUM.GE.O.0.AND.REYNUM.LT.1.0E~3)}REYNUM=1.0E-3
IF(REYNUM.GT.1000.0)GOTO 115
DRACOE=(24.0/REYNUM) *(1.0+0, 15*REYNUM*%0.687)
115 CONTINUE
DRDVEP=DRACOE*DV/EPX**2.7
TF(DRDVEP.GT.1.0E30)GO TC 135
DRAG=0.75*DRDVEP*RGX
1 /(DK (K)y*PHIS)
DRAG=RLKX*DRAG*EPX/RL(K)
GO TO 125
135 DRAG=1.0£30
125 CONTINUE
RETURN
END
SUBROUTINE XKDRAGL(DRAG,DV,ISH)
INCLUDE 'GCOME.FOR?
C::::::f‘::::!::::::::2:::::::::::::::::::2:::::::::::::‘:::!!:::::::::
Gas-solids drag for high solids concentration

--------------------------------------------------------------------
---------------------------------------------------------------------

IF(ISH.EQ.1)THEN
EPX=(EP(IJ)+EP(IJT))*0.5
RGX=(ROG(IJ)+ROG(IJT))*0.5
RLKX=(RLK (K, IJ)+RLE(K, T.JT))*0.5
ELSE

EPX=(EP(IJ)+EP(IJR))*0.5
RGX=(ROG(IJ)+ROG(IJR))*0.5
RLKX=(RLK (K, IJ)+RLE(K, IJR))}*0.5
ENDIF

EPX=EP(IJ)

RGX=ROG(IJ)

RLKX=RLK (K, I.J)

DENOM2=EPX*DK (K)*PHIS

DENOM1 =DENOM2*DENOM2
DRAG=150.0%(1.0-EPX)*MMUG/DENON1
1 +1.75%RGKX*DV/DENOM2
DRAG=DRAG*RLKX*EPX/RL(K)
CONTINUE

RETURN

END

SUBROUTINE KDRAGS

INCLUDE ’GCOME.FOR’

aOOaoaaOOOQan

DO 130 K=1,NSOLID

DVGS=ABS( (VG(IJ)-VK(K,I.J)+VG(IJM)-VK(K, IIM))*0.5)
C DVGS=ABS(VG(IJ)-VK(K,I1J))

DUGS=ABS( (UG(LJ)-UK(K, IJ)+UG(IH.J)-UK(K, IMJ))*0.5)
C DUGS=ABS(UG(IJ)-UK(K,1J))

IF(EP(LJ).LT.0.8)GOTO 115

ISH=1

CALL KDRAGG(DRAGY,DVGS,ISH)



115

125

130

ISH=2

CALL KDRAGG(DRAGX,DUGS,ISH)
GOTO 125

CONTINUE

ISH=1

CALL KDRAGL(DRAGY,DVGS,ISH)
ISH=2

CALL KDRAGL(DRAGX,DUGS,ISH)
CONTINUE

KPGU(K, IJ)=DRAGX

KPGV (K, IJ)=DRAGY

CONTINUE

RETURN

END

SUBROUTINE MASFG

INCLUDE 'GCOME.FOR’
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C ....................................................................
....................................................................

C

" Calculates mass Eluxes for the gas

C --------------------------------------------------------------------
.....................................................................

IF(UG(IMJ).GE.D.)THEN
RGFR(IMJ)=UG(IMJ)*RGP(IJL)*RB(I-1)
ELSE
RGFR(IMJ)=UG(IMJI)*RGP(I.J)*RB(I-1)
ENDIF
TF(VG(IJM).GE.O.)THEN
RGFT (IJM)=VG(IJM)*RGP(IJB)
ELSE
RGFT(IJM)=VG(TJM)*RGP(LJ)
ENDIF
ENTRY MASFGA
IF(UG(IJ).GE.O.)THEN
RGFR(I.J)=UG(IJ)Y*RGP(TJ)*RB(I)
ELSE
RGFR(IJ)=UG(IJ)*RGP(IJRY*RB(I)
ENDIF
IF(VG(IJ).GE.Q.)THEN
RGFT(IJ)=VG(IJ)*RGP(1J)
ELSE
RGFT(IJ)=VG(IJ)*RGP(IJT)
ENDIF
RETURN
END
SUBROUTINE MASFK

INCLUDE ’'GCOGME.FOR’

C‘ ....................................................................
.....................................................................

C

Calculates mass fluxes for the solids

--------------------------------------------------------------------
---------------------------------------------------------------------

DO 10 K=1,NSOLID
IF(UK(KK,IMJ).GE.Q. YTHEN

RLFRK (K, TMJ)=UK (K, IMJ)*RLK (K, TJL)*RB(I-1)

ELSE

RLFRK (K, TMJ)=UK (K, IMJ)Y*RLK(K, LJ)*RB(I-1)
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ENDIF
TF(VK(K,IJM).GE.O. )THEN

RLFTK (K, TJM)=VK (K, IJM)*RLK (K, IJ8)
ELSE

RLETK (K, TJM}=VK (K, TJM)*RLK (K, I.J)
ENDIF

CONTINUE

ENTRY MASFKA

DO 20 K=1,NSOLID
IF(UK(K,1J).GE.Q,)THEN

RLFRK(K, LJ)=UK(K,IJ)*RLK(K,IJ)*RB(I)
ELSE

RLFRK(K, TJ)=UK(K, TJ)*RLK(K, IJR)*RB(I)
ENDIF

TF(VK(K,1J).GE.O. )THEN

RLFTK (K, IJ)=VK(K, IJ)*RLK(K, IJ)

ELSE

RLFTK (K, I.J)=VK (K, IJ)*RLK (K, IJT)
ENDIF

CONTINUE

RETURN

END

SUBROUTINE MATS

INCLUDE 'GCOME.FOR’

------------------

..........................

GJ =0.0
IF(EP(IJL).LT.EPSTAR)GL=1.5D-3*EXP(500.%(EPSTAR-EP(IJL)))
IF(EP(IJB).LT.EPSTAR)GB=1.5D-3*EXP(500.*(EPSTAR-EP(IJB)))
IF(EP(IJ).LT.EPSTAR)GJ=1.5D-3*EXP(500.*(EPSTAR-EP(IJ)))
GU=0. 5% (GL+GJ)

GV=0.5%(GB+GJ)

DTPODR=DTODR*(P(1J)-P(IJL))

DTPODZ=DTODZ*(P(IJ)-P(IJB))

DTEODR=DTODR* (EP(I.J)~EP(IJL))*GU

DTEODZ=DTODZ* (EP(I.J)-EP(LJB))*GV

BU1(1)=RUG(IMJ)-DTPODR# (EP(TIJL)+EP(IJ))*0.5
BV1({1)=RVG(IJM)-DTPODZ*(EP(IJB)+EP(IJ))*0.5
AUT(1,1)=(APPU(1,IJL)+APPU(1,IJ)+RGP(TJL)+RGP(IJ))*0.5
AV1(1,1)=(APPV(1,IJB)+APPV(1,IJ)+RGP(LIJB)+RGP(IJ))*0.5

DO 130 K=2,NPHASE

BUT (K)=RUK(K-1, ZMJ)+(DTEODRwDTPOER)*(RLK(<—1,IJL)+RLK(K-I,IJ))
& %0.5/RL(K-1)
BV1(K)=RVK(K-1,IJM)+(DTEODZ-DTPODZ)*(RLK(K~1, IJB)+RLK(K-1,1.J))
& *0.5/RL(K-1)

DO 110 KK=1,K

KS = KK + K#(K~1)/2
AUL(K,KK)=(APPU(KS,IJL)+APPU(KS.IJ))*0.5
AUL(K,KK)=APPU(KS, IJL)

8,

51



110

130

210

230

AUL(KK,K)=AU1(K,KK)
AV1(K,KK)=(APPV(KS,IJB)+APPV(KS,IJ))*0.5
AVI(K,KK)=APPV(KS,IJB)

AVI(KR,K)=AVI(K,KK)

CONTINUE

AUT(K,K)=AUL (K, K)+(RLK(K-1,IJL)+RLK(K~1,1J))*0.5
AVI(K,K)=AV1(K,K)+(RLK(K-1,IJB)+RLK(K-1,1J))*0.5
CONTINUE

ENTRY MATSA

GL =0.0

GB =0.0

GJ =0.0
IF(EP(IJR).LT.EPSTAR)GL=1.5D-3%EXP(500.*(EPSTAR-EP(LJR)))
TF(EP(IJT).LT.EPSTAR)GB=1.5D-3*EXP(500. *(EPSTAR-EP(IJT)))
IF(EP(LJ).LT.EPSTAR)GJ=1.5D-3*EXP(500.(EPSTAR-EP(1J)))
GU=0.5%(GL+GJ)

GV=0.5%(GB+GJ)

DTPODR=DTODR* (P (LJR)-P(IJ))

DTPODZ=DTODZ* (P(LJT)-P(IJ))

DTEODR=DTODR* (EP(IJR)~EP(IJ))*GU
DTEODZ=DTODZ*(EP(IJT)~EP(IJ))*GV
BU(1)=RUG(IJ)-DTPODR*(EP(IJ)+EP(IJR))*0.5
BV(1)=RVG(1J)~DTPODZ*(EP(IJ)+EP(IJT))*0.5
AU(L,1)=(APPU(1,TJ)+APPU(1,TJR)+RGP(IJ)+RGP(IJR))*0.5
AV(1,1)=(APPV(1,IJ)+APPV(1, TJT)+RGP(IJ)+RGP(IJT))*0.5
DO 230 K=2,NPHASE
BU(K)=RUK(K~1,1.J)+(DTEODR-DTPODR)#(RLK(K~1,I1J)+RLK(K-1, IJR))
& *(. 5/RL(K~1)

BV (K)=RVK(K~1, I.J)+(DTEODZ-DTPODZ }* (RLK(K~1,1J)+RLE(K-1,IJT))
& %0.5/RL(K~1)

DO 210 KK=1,K

KS = KK + K*(K-1)/2

AU(K,KK)=(APPU(KS, IJ)+APPU(KS,TJR))*0.5
AU(K,KK)=APPU(KS,IJ)

AU(KK,K)=AU(K,KK)
AV(K,KK)=(APPV(KS,IJ)+APPV(KS,IJT))*0.5
AV(K,KK)=APPY(KS, L)

AV (KK, K)=AV(K,KX)

CONTINUE

AU(K,K)=AU(K,K)+(RLK(K-1,1J)+RLK(K~1,IJR))*0.5
AV(K,K)=AV(K,K)+(RLK(K-1,IJ)+RLK(X~1,TJT))*0.5

CONTINUE

RETURN

END

SUBROUTINE NEWP
INCLUDE 'GCOME.FOR’

---------------

Calculates the new estimate of advanced time pressure from
three (P,D) points.

--------------------

IF(D1.NE.D3)PA=(D1#P3-D3*P1+TARGET*(P1-P3))/(D1-D3)
IF((D1-TARGET)*(D3-TARGET).LE.0.) GO TO 1

8.

..

52
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IF(D1.EQ.D3)PA=0.5%(P2+P3)
IF(PA.LT.P2.0R.PA.GT.P3)PA=0.5%(P2+P3)
PB=(D2%P3-D3*P2+TARGET*(P2-P3))/(D2-D3)
GOTO10

IF(D2Z.NE.D3) PB=(D2*P3-D3*P2+TARGET*(P2-P3))/(D2-D3)
IF(D2.EQ.D3)PB=0.5%(P1+P3)
IF(PB.LT.P3.0R.PB.GT.P1)PB=0.5%(P1+P3)
P(IJ)=0.5%(PA+PB)

RETURN

END

SUBROUTINE PROG

INCLUDE 'GCOME.FOR’

PARAMETER (FAC = 0.5)
DIMENSION EPL(50)

1JC=0
IRST=0

TDUMP 1 =TIME

TPRI=TIME

CYCL1=CYCLE

INITIALIZE 'GEP’

DO 20 I=1,100

XIJ=I

EPX=XTJ/100.

GEP(I)=0.0
GEP(I)=(10.%%(-10.46%EPX+6.577))*10. SEE MATS
CONTINUE

INITIALIZE 'PHI’ THE MAX SINGLE PARTICLE PACKING
DO 50 K=1,NSOLID

PHI(K) = 0.6

CONTINUE

DO 51 K=1,NSOLID

DO 51 KK=1,NSOLID

TF(DK(K).GT.DK(KK))THEN

K1=K

K2=KK

ELSE

K1=KK

K2=K

ENDIF

DRATX=SQRT (DK.(K2)/DK(K1))
PHILIM(K,KK)=PHI(K1)/(PHI(K1)+(1.0-PHI(K1))*PHEI(K2))
EPSL(K,KK)=(PHI(K1)-PHI(K2)+(1.0-DRATX)*(1.0-PHI(K1))*PHI(K2}))
& *(PHI(K1)+(1.0~PHI(K]))*PHI(K2))
EPSU(K,KK)=(1.0-DRATK)*(PHI(K1)+(1.0~PHI(K1))*PHI(K2))
CONTINUE

INITIALIZE 'INDS’

DO 30 I=2,IBI



29

30

40

21

22
24
25
26

28

DO 30 J=2,JBl
IJ=I+(J-1)*IB2
IPJ=IJ+1
IJR=IPJ
1JP=I1J+IB2
IJT=IJP
IMJ=IJ-1
TJL=IMJ
TJM=IJ-IB2
IMIM=LJM-1
LIB=T.JN
IPJP=TJP+1
LJTR=IPJP
IF((FL(IPJ).EQ.2).0R. (FL(IPJ).EQ.3)) IJR=IJ
IF((FL(IMJ).EQ.2).0R. (FL(IMJ).EQ.3)) IJL=LJ
IF((FL(IJP).EQ.2).0R. (FL(IJP).EQ.3)) LJT=IJ
IF((FL(IJM).EQ.2).0R. (FL(IJM).EQ.3)) IJB=IJ
NFLTR=FL(IPJP)
IF(I.EQ.IB1.AND.J.EQ.JB1.AND.NFLTR.EQ.4)LJTR=1J
GO TO (29,21,21,29,29,29,29),NFLTR
NFLT=FL(IJP)
NFLR=FL(IPJ)
GO TO (22,24,24,22,22,22,22),NFLT
GO TO (25,26,26,25,25,25,25),NFLR
GO TO (28,25,25,28,28,28,28),NFLR
IJTR=1J
GO TO 29
IJTR=IJP
GO TO 29
TJTR=IPJ
CONTINUE
INDS(IJ,1)=TJR
INDS(IJ,2)=IJL
INDS(IJ,3)=TJT
INDS(L.J,4)=IJB
INDS(IJ,5)=IJTR
CONTINUE
DO 40 K=1,NSOLID
DO 40 KK=1I,K
DKF (K, KK)=FAC*DT#RL (K )*RL(KK)* (DK (K) +DK(KK) )2
& /(RL(K)*DK(K)**3+RL{KK)#*DK(KK)**3)
DKF (KK ,K)=DKF (K, KK)
CONTINUE
CONTINUE
DO 10 J=2,JBl
DO 10 I=2,IBl
TJ=T+(J-1)*IB2
IF(FL(IJ).NE.1) GO TO 10
CALL INDEXA
RGEN(TJ)=RGP(IJ)
EPN(IJ)=EP(IJ)
DO 9 K=1,NSOLID
RLKN(K,TJ)=RLK(K,IJ)
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325

327

328

331

332

333

336

10

CONTINUE

CALL BOSG(1,1,2)
CONTINUE
CALL BDRY
IF(TIME+0. 1*DT.LT.TPRI)GOTO 1350
WRITE(6,547)TIME
TPRI=TPRI+TPR
VRITE(6,548)
DO 325 J=1,JB2
IJ1=1+(JB2-J)*IB2
IJ2=IB2+(JB2~J)*IB2
WRITE(6,550) (P(IJL),IJL=IJ1,1J2)
CONTINUE
DO 328 K=1,NSOLID
WRITE(6,549)K
DO 328 J=1,JB2
IJ1=1+(JB2-J)*IB2
IJ2=IB2+(JB2_J)*IB2
IJD=IJ2-IJ1+1
TJL1=0
DO 327 IJL=I.J1,IJ2
TJL1=IJL1+1
EPL(IJL1)=RLK(K,IJL)/RL(K)
CONTINUE
WRITE(6,550) (EPL(LJL),IJL=1,1JD)
CONTINUE
WRITE(6,551)
IJC=IJC+1
DO 331 J=1,JB2
IJ1=1+(JB2~J)*IB2
IJ2=IB2+(JB2~])*IB2
WRITE(6,550) (EP(LJL),IJL=1J1,1J2)
CONTINUE
WRITE(6,552)
DO 332 J=1,JB2
IJ1=14+(JB2-J)*IB2
TJ2=IB2+(JB2-J)*IB2
WRITE(6,550)(VG(IJL),IJL=IJ1,1J2)
CONTINUE
WRITE(6,553)
DO 333 J=1,JB2
IJ1=1+(JB2-J)*IB2
IJ2=1B2+(JB2-J)*IB2
WRITE(6,550)(UG(IJLY, IJL=IJ1,142)
CONTINUE
DO 336 K=1,NSOLID
WRITE(6,556)K
DO 336 J=1,.JB2
IJ1=1+(JB2-1)*1B2
TJ2=IB2+(JB2~J)*IB2

WRITE(6,550) (VK(K, IJL),IJL=IJ1,1J2)

CONTINUE
DO 337 KR=1,NSOLID

8.55
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WRITE(6,557)K
DO 337 J=1,JB2
IJl=1+(JB2-J)*IB2
IJ2=IB2+(JB2-J)*IB2
WRITE(6,550) (UK(K,IJL),IJL=IJ1,1J2)
337 CONTINUE
1350 CONTINUE
IB2JB2=IB2*JB2
IF(TIME+O. 1*DT.GT.TSTOP)GOTO 390
IF(TIME+0. 1*DT.GT.TDUMP1)GOTO 390
GOTO 400
390  CONTINUE
CALL TAPEWR
IF(IRST .EQ. 2) REVIND(9)
IRST=IRST+1
IF(IRST.GE.3)IRST=0
TDUMP1=TDUMP 1 + TDUMP
400 CONTINUE
IF(TIME+.1*DT.GE.TSTOP) GO TO 462
CALL TILDE
CALL BETAS
CALL ITER
TIME=TIME+DT
CYCLE=CYCLE+1
GOTO 1
462  CONTINUE
RETURN
547  FORMAT(1¥,///,1X,'@@@ TIME = ’',G10.3)
548  FORMAT(1X,//,1X,'P',/)
549  FORMAT(1X,//,1¥,’EP’,I1,/)
550  FORMAT(1X,10(1¥,Gll.4,1X))
551  FORMAT(1X,//,1X,’EPSG’,/)
552  FORMAT(1X,//,1X,’VG’,/)
553 FORMAT(1X,//,1X,’UG',/)
556  FORMAT(1X,//,1X,'V’,T1,/)
557  FORMAT(1X,//,1X,7U’,I1,/)
END
SUBROUTINE SETC
INCLUDE ’GCOME.FOR’

C!:::::::::::Z:::Z::::::1:1!::::::::::::::!!:2:!:::::2:2::::::::::2::
C Set the C array used to store necessary constants
C::!!:::!:!::I:::::::::::::1::::!:!:::::S::::::::::::::2:::2::::::::!
C GAS CONSTANT FOR AIR

C(1)=2.87E6

MMUG=1.8E-4

PHIS=1.00E00

RLIM=0.00001
C INITIALIZE 'EPSTAR’

EPSTAR =0.4

C(1)=C(1)*SCALE(4)/SCALE(2)#%2

RETURN

END

SUBROUTINE SETUP (JH)
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INCLURE 'GCOME.FQOR’

(" ....................................................................
.....................................................................

c

Initialize the radii and all the field variables

C ....................................................................
....................................................................

C

30

10

15

20
25

DIMENSION RLX(20)

CALL SETC
RDR=1./DR
RDZ=1./DZ
DTODZ=DT*RDZ
DTODR=DT*RDR
RDR2=RDR*RDR
RDZ2=RDZ*RDZ
IF(ITC.EQ.0) GO TO 15
EX=FLOAT(ITC)
R(1)=—(0.5/EX)*DR**EX
RB(1)=0.
RRB(1)=0.
DO 10 I=2,IB2
R(I)=( ((FLOAT(I))-1.5)*DR)**EX
RB(I)=(( (FLOAT(I))-1.0)*DR)**EX
RRB(I)=1./RB(I)
RRIDR(I)=RDR/R(I)
DTORDR(I)=DT*RRIDR(I)
DTOBDR(I)=DTODR*RRB(I)
CONTINUE
GO TO 25
DO 20 I=1,IB2
R(I)=1.
RB(I)=1.
RRB(I)=1.
RRIDR(I)=RDR
DTORDR (I )=DT*RDR
DTOBDR(I)=DTORDR(I)
CONTINUE
CONTINUE
WRITE(6,660)
I1=JB2*IB2+1
DO 30 J=1,JB2
KPR=JB2~J+1
IKPR=IB2+(KPR-1)*IB2
I1=I1-IB2
I2=I1+IB2-1
WRITE(6,650) (FL(IKPR),IKPR=T1,12)
CONTINUE
WRITE(6,660)
DPT=DZ*PO* ( =GRAV)/ (C(1)*TG)
WGY=VO*PO/ (C(1)*TG)
JH=JH+1
POM=PO-DPT
Do 77 J=JB2,2,-1
EPX=EPO
TF(J.GT.JH)EPX=1.0
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POM=POM+DPT*EPX
T S S T T T P TS S S SIS ST R RN
DO 40 K=1,NSOLID
RLX(K)=RL(K)*(1.-EPX)/NSOLID
40  CONTINUE
0 g T T T ST S C A NN
DO 42 K=1,NSOLID
POM=POM+DZ*RLY (K ) *( ~GRAV)
42 CONTINUE
DO 77 I=2,IB2
IJ=I+(J-1)*IB2
IF(FL(LJ).NE.1.AND.FL(IJ).NE.4.AND.FL(IJ).NE.7)GO TO 77
IF(ITD.GT.1) GO TO 45
P(IJ)=POM
TG=TEMPO
TL=TEMPO
EP(IJ)=EPX
DO 43 K=1,NSOLID
RLK(K,IJ)=RLX(K)
43 CONTINUE
45  CALL CNVERT
77 CONTINUE
DO 50 J=2,JB2
DO 50 I=2,IB2
TJ=I+(J~-1)*IB2
IF(FL(IJ).NE.1.AND.FL(LJ).NE.4.AND.FL(IJ).NE.7)GO TO 50
IF(ITD.GT.1) GO TO 54
IPJ=IJ+1
IJP=TJ+IB2
IF(I.EQ.IB2) IPJ=T.J
IF(.J.EQ.JB2) IJP=IJ
UG(IJ)=0.0
VG(IJ)=0.0
IF(FL(IPJ).NE.2.AND.FL(IPJ).NE.3)UG(LJ)=U0/EP(IJ)
DO 51 K=1,NSOLID
VK(K,IJ)=0.0
UK(K,1J)=0.0
51  CONTINUE
IF(FL(IJP).NE.2.AND.FL(IJP).NE.3)GO TO 99
GOTO 54
99  IJT=IJpP
VG(IJ)=WGY/(0.5%(RGP(IJ)+RGP(IJT)))
54 CONTINUE
IF(FL(IJ).EQ.7) CALL STXTRA
50 CONTINUE
DO 60 I=2,IBl
J=1
TJ=I+(J-1)*IB2
IF(FL(IJ).NE.5.AND.FL(IJ).NE.6)GO TO 60
IF(ITD.GT.1)GO TO 57
DIST=(I-1)#DR-0.1*DR
IF(DIST.GT.FLO(3).AND.DIST.LT.FLO(4)) GO TO 55
P(IJ)=RINL



52

5

56

61

5

57

60

65

TG=TEMINL
TL=TEMINL
EP(IJ)=EPINL
EPN(IJ)=EP(IJ)
UG(1J)=UINL
VG (IJ)=VINL
DO 52 K=1,NSOLID
RLK(K,TJ)=RL(K)*(1.0-EPINL)
VK (K, IJ)=VINL
UK(K,IJ)=0.0
CONTINUE
GOTO057
P(IJ)=PINR
TG=TEMINR
TL=TEMINR
EP(IJ)=EPINR
EPN(IJ)=EP(IJ)
UG(IJ)=UINR
VG(IJ)=VINR
DO 56 K=1,NSOLID
RLK(K,IJ)=0.0
VK(K,IJ)=0.0
UK (K, 1J)=0.0
CONTINUE
CALL CNVERT
TJR=IJ+1
TJT=1J+IB2
CALL MASFGA
CALL MASFKA
CALL STXTRA
CONTINUE
DO 70 J=2,JBl
I=1
TJ=I+(J-1)*IB2
IF(FL(IJ).NE.5.AND,FL(IJ).NE.6)GO TO 70
DIST=(J-1)*D2-0.1%DZ
IF(DIST.GT.FLO(7).AND.DIST.LT.FLO(8))GOT065
P(IJ)=PINB
TG=TEMINB
TL=TEMINB
EP(IJ)=EPINB
EPN(IJ)=EP(IJ)
UG(TJ)=UINB
VG(IJ)=VINB
DO 61 K=1,NSOLID
RLK(K,IJ)=RL(K)*(1.0-EPINB)
VK(K,IJ)=VINB
UK(K,IJ)=UINB
CONTINUE
GOTO 67
P(IJ)=PINT
TG=TEMINT
TL=TEMINB
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66

67

70
6350
660

EP(IJ)=EPINT
DO 66 K=1,NSOLID
VK(K,1J)=0.0
UK(K,IJ)=0.0
CONTINUE

VG(IJ)=VINT

EPN(IJ)=EP(IJ)

UG(T1J)=UINT

CALL CNVERT

TJR=TJ+1

TJT=TJ+IB2

CALL MASFGA
CALL MASFKA

CALL STXTRA
CONTINUE
FORMAT (1X,63I2)
FORMAT (///)
RETURN
END
SUBROUTINE STXTRA
INCLUDE ’GCOME.FOR’

TJ=I+(J-1)*IB2
IMJ=TJ-1
TJM=1J-IB2
IF(T.EQ.1)INJ=IJ
IF(J.EQ. 1)TIM=IJ
EPN(IJ)=EP(I1J)
CALL EOSG(1,1,1)
CALL KDRAGS

CALL INTER

RETURN

END

SUBROUTINE TAPERD
INCLUDE ’GCOME.FOR'

C --------------------------------------------------------------------
....................................................................

Read the restart file

READ(9)TIME,IB2,JB2,NSOLID

IB2.JB2=IB2+JB2

READ(9) (P(1J),EP(IJ),UG(IJ),VG(IJ),IJ=1,IB2JB2)
READ(9) ( (RLK (K, T.J) ,UK(K, IJ), VK(K,1.J),
& K=1,NSOLID),IJ=1,IB2JB2)

RETURN

END

SUBROUTINE TAPEWR

INCLUDE 'GCOME.FOR’



9

&

-----
-----

ooooo
-----

1
2

1
2

10
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VRITE(9)TIME,IB2,JB2,NSOLID

IB2JB2=IB2*JB2

WRITE(9) (P(IJ),EP(IJ),UG(IJ),VG(IJ),IJ=1,IB2.JB2)

WRITE(9) ((RLK(K,IJY,UK(K,IJ),VE(K,1]),
K=1,NSOLID},IJ=1,IB2JB2)

RETURN

END

SUBROUTINE TILDE

INCLUDE 'GCOME.FOR’

---------------------------------------------------------------
---------------------------------------------------------------

---------------------------------------------------------------
---------------------------------------------------------------

Do 10 J=2,JBl
DO 10 I=2,IBl
TJ=I+(J-1)*IB2
IF(FL(IJ).NE.1) GO TO 10
CALL INDEX
CALL UGMOMF
IGKU=(EP(IJ)+EP(IJR))*50
IGKV=(EP(IJ)+EP(I.JT)}*50
RUG(IJ)=.5%(RGP(IJ)+RGP(IJR))*UG(IJ)-DTOBDR (I)*(UGFR-UGFL)-
DTODZ* (UGFT-UGFB(I))
UGFL=UGFR
UGFB(I)=UGFT
CALL VGMOMF
RVG(IJ)=0.5%(RGP(IJ)+RGP(IJT) )*(VG(IJ)+GRAV*DT)_DTORDR(L)*
(VGFR- VGFL)-DTODZ*(VGFT-VGFB(I))
VGFL=VGFR
VGFB(I)=VGFT
DO 9 K=1,NSOLID
CALL ULMOMF
RULK1=. 5%(RLK (K, IJ)+RLK(K,IJR))*UK(K,IJ)~DTOBDR(I)*(ULFR
~ULFL(K))-DTODZ* (ULFT-ULFB(K, I))-GEP( IGKU)*DTODR*(RLK(K, IJR)
“RLK(K,IJ))/RL(K)
RUK(K, IJ)=RULK1
ULFL(K)=ULFR
ULFB(K,I)=ULFT
CALL VLMOMF
RVLK1=0.5% (RLK (K, IJ)+RLK(K, IJT))* (VK (K, IJ)+DT*GRAV)
~DTORDR(I ) *(VLFR-VLFL(K))~DTODZ* (VLFT-VLFB(K,T))
~GEP(IGKV)*DTODZ* (RLK(K,IJT)-RLK(K, LJ))/RL(K)
RVK (K, IJ)=RVLK1
VLFL(K)=VLFR
VLFB(K,I)=VLFT
CONTINUE
CALL KDRAGS
CALL INTER
CONTINUE
PO 20 J=2,JBl
DO 20 I=2,IBI
IJ=I+(J-1)*IB2
IF(FL(IJ).NE.1) GO TO 20
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CALL INDEXA
CALL MATSA
CALL VELSKZ
CaLL MASFGA
CALL MASFKA
CONTINUE
RETURN
END
SUBROUTINE UGMOMF
INCLUDE 'GCOME.FOR'

DIMENSION CS(4)
CS(1)=0.5%(UG(IJY+UG(IPJ))
IF(CS(1).GE.0.)UGFR=0.5%(RGP(LIJ)+RGP(TJR) )*UG(IJ)Y*CS(1)*R(I+1)
IF(CS(1).LT.0.)UGFR=0.5%(RGP(LJR)+RGP(IJRR) )*UG(IPJ)*CS(1)*R(I+1)
€$(2)=0.5%(VG(IJ)+VG(IPJ))

IF(CS(2).GE.0.) UGFT=0.5%(RGP(IJ)+RGP(IJR))*UG(IJ)*CS(2)
IF(CS(2).LT.0.) UGFT=0.5%(RGP(IJT)+RGP(IJTR))*UG(LJP)*CS(2)
IF(FL(IMJ).NE.1) GO TO 1

IF(FL(IJ4).NE.1) GO T0 2

GO TO 3

€S(3)=0.5%(UG(IJ)+UG(IMI))

IF(CS(3).GE.0.) UGFL=0.5%(RGP(IJ)+RGP(IJL))*UG(IMI)*CS(3)*R(I)
IF(CS(3).LT.0.) UGFL=0.5%(RGP(IJ)+RGP(IJR))*UG(IJ)*CS(3)*R(I)
IF(FL(IJM).NE.1) GO TO 2

GO TO 3

CS(4)=0.5%(VG(TIM) +VG(IPJIM))

IF(CS(4).GE.Q.) UGFB(I)=0.5%(RGP(IJB)+RGP(IJBR))*UG(IJIM)*CS(4)
IF(CS(4).LT.0.) UGFB(I)=0.5%(RGP(IJ)+RGP(IJR))*UG(TJ)*CS(4)
CONTINUE

RETURN

END

SUBROUTINE ULMOMF

INCLUDE 'GCOME.FOR’

--------------------------------------------------------------------

DIMENSION CS(4)

CS(1)=0.5% (UR(K,LI)+UK(K,IPJ))

IF(CS(1).GE.0.) ULFR=0,5%(RLK(K,IJ)+RLK(K,TJR))*UK(K,TJ)*CS(1)
FR(I+1)

IF(CS(1).LT.0. )ULFR=0.5%(RLK(K, TJR)+RLK (K, TJRR) )*UK (K, IPJ)*CS(1)
*R(I+1)

CS(2)=0.5%(VK(K,TJ)+VK(K,IPJ))

IF(CS(2).GE.0. )ULFT=0. 5% (RLR(K, TJ)+RLK(K, TJR) ) *UK(K, IJ)*CS(2)

IF(CS(2).LT.0.)ULFT=0. 5% (RLK(K, IJT)+RLK (K, IJTR) ) *UK (K, LJP)*CS(2)

IF(FL(IMJ).NE.1) GO TO 1

IF(FL(IJM).NE.1) GO TO 2

GOTO3

1 CS(3)=0.5%(UK(K,TJ)+UK(K,INI))
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IF(CS(3).GE.0.) ULFL(K)=0.5%(RLE(K,IJ)+RLK(K,IJL))*UK(K,IMJ)
&  *CS(3)*R(I)

IF(CS(3).LT.0.) ULFL(K)=0.5%(RLE(K,TJ)+RLK(K,IJR) )*UK(K,IJ)

&  *CS(3)*R(I)

IF(FL(IJM).NE.1)GOTO02

GOTO3
2 CS(4)=0.5%(VK(K, IJM)+VK (K, IPJH))

IF(CS(4).GE.0.) ULFB(K,I)=0.5%(RLK(K,IJB)+RLK(K,TJBR))*UK(K,IJH)
& *CS(4)

IF(CS(4).LT.0.) ULFB(K,I)=0.5%(RLK(K,TJ)+RLK(K, IJR))*UK(K,LJ)
& *CS(4)

3 CONTINUE

RETURN

END

SUBROUTINE VELSK

INCLUDE ’GCOME.FOR’

C:::::::::::::::::::::::::.‘.:::‘::2:::!::!:::::::::::::2::::2!:::!:::::
C Calculate the velocities at the cell boundaries
C::::::::::::::::::::::::::::::::::!:::::::::::::::::!::::!::::::2:!:
C USE GAUSS-JORDAN METRCD FOR MATRIX INVERSTON

FLL=FL(IMJ)
IF(FLL.EQ.2)GOTO 200
TF(FLL.EQ.3)GOTO 200
IF(FLL.EQ.5)GOTO 200
DO 136 K=2,NPHASE
IF(AUL(K,K).GE.RLIM)GOTO 136
DO 135 KK=1,NPHASE
AUL (KK, KK)=AU1 (KK, KK)+AUI (K, KK)
AUL(K,KK)=0.0
AUL(KX,K)=0.0

135  CONTINUE

BUL(K)=0.0

136  CONTINUE

c
DO 160 K=1,NPHASE
IF(AUL(K,K).EQ.0.0)GOTO 160
KP1=K+1

c IF(KP1.GT.NPHASE)GOTO 141

DIV=1./AU1(K,K)
DO 140 KJ=KP1,NPHASE
C AUT(K,KJI)=AU1(K,KJ)/AUL(K,K)
AUL(R,KJ)=AU1(K,KJ)*DIV
140  CONTINUE
Cl41  BUL(K)=BU1(K)/AUI(K,K)
BUL(K)=BUI(K)*DIV
c AUI(K,K)=1.0
AUI(K,K)=0.0
DO 150 KI=1,NPHASE

C IF(KI.EQ.K)GOTO 150
¢ IF(AUI(KI,K).EQ.G.0)GOTO 150
C IF(KP1.GT.NPHASE)GOTO 146

AMUL=AU1(KI,K)
DO 145 KJ=KP1,NPHASE



145
Cl46

150
160

165
200

235

236

240
G241

245
C246

AUL(KI,KJ)=AUL(KT,KJ)-AUL(KT,K)*AUL(K,KJ)

AUL(KI,KJ)=AU1 (KT, KJ)-AMUL*AUL (K, KJ)

CONTINUE
BUT(KI)=BUL(KI}~-AUL(KI,K)*BUI(K)
BUT(KT}=BUI(KI)-AMUL*BU1(K)

AUL(KI,K)=0.0

CONTINUE

CONTINUE

UG(IMI)=BUL (1)

DO 165 K=2,NPHASE

UK(K-1,IMJ)=BUL(K)

CONTINUE

CONTINUE

FLB=FL(IJM)

TF(FLB.EQ.2)GOTO 300
TF(FLB.EQ.3)GOTO 300
TF(FLB.EQ.5)GOTO 300

DO 236 K=2,NPHASE
IF(AVI(K,K).GE.RLIM)GOTO 236

DO 235 KK=1,NPHASE

AVI (KK, KK)=AV1 (KK, KK)+AV] (K, KK)
AVI(K,KK)=0.0

AVI(KK,K)=0.0

CONTINUE

BV1(K)=0.0

CONTINUE

DO 260 K=1,NPHASE
IF(AVI(K,K).EQ.0.0)GOTO 260
KPl=K+1
IF(KP1.GT.NPHASE)GOTO 241
DIV=1./AVI(K,K)
DO 240 KJ=KP1l,NPHASE
AVI(K,KJ)=4V1(K,KJ}/AVI(K,K)
AVI(K,KJ)=AV1(K,KJ)*DIV
CONTINUE
BV1(K)=BV1(K)/AVI(K,K)
BV1(K)=BV1(K)*DIV
AVI(K,K)=1.0
AVI(K,K)=0.0
DO 250 KI=1,NPHASE
TF(KI.EQ.K)GOTO 250
IF(AV1(KI,K).EQ.0.0)GOTO 250
IF(KP1.GT.NPHASE)GOTO 246
AMUL=AV1 (KI,K)
DO 245 KJ=KPI,NPHASE
AVI(KI,KJI)=AVI(KI,KJ)-AV](KI,K)*AV](K,KJ)
AV1(KI,KJ)=AV](KI,KJ)-4MUL*AV1(K,KJ)
CONTINUE
BV1(KI)=BYV1(KI)-AV1(KI,K)*BV1(K)
BV1(KI)=BV1(KI)-AMUL*BYV1(K)

. 64
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; AV1(KI,K)=0.0

250  CONTINUE

260  CONTINUE
VG({IJM)=BVi(1l)
DO 265 K=2,NPHASE
VK(K-1,TIJM)=BV1(K)

265  CONTINUE

ENTRY VELSK2

300  CONTINUE
FLR=FL(IPJ)
IF(FLR.EQ.2)GOTO 400
IF(FLR.EQ.3)GOT0 400
IF(FLR.EQ.5)GOTO 400
DO 336 K=2,NPHASE
IF(AU(K,K).GE.RLIM)GOTO 336
DO 335 KK=1,NPHASE
AU(KK, KK)=AU (KK, KK) +AU(K, KK)
AU(K,KK)=0.0

AU(KK,K)=0.0

335  CONTINUE
BU(K)=0.0

336  CONTINUE

C
DO 360 K=1,NPHASE
IF(AU(K,K).EQ.0.0)GOTO 360
KP1=K+1

C TF(KPl.GT.NPHASE)GOTO 341

DIV=1./AU(K,K)
DO 340 KJ=KP1,NPHASE
C AU(K,KJ)=AU(K,KJ)/AUCK,K)
AU(K,KJ)=AU(K,KJ)*DIV
340  CONTINUE
C341  BU(K)=BU(K)/AU(K,K)
BU(K)=BU(K)*DIV
C AU(K,K)=1.0
AU(K,K)=0.0
DO 350 KI=i,NPHASE

C IF(KI.EQ.K)GOTO 350
C IF(AU(KI,K).EQ.0.0)GOTO 350
c IF(KP1.GT.NPHASE)GOTO 346

AMUL=AU(KI,K)
DO 345 KJ=KP1,NPHASE
c AU(KT,KJ)=AU(KT,KJ)-AU(KI,K)*AU(K,KJ)
AU(KT ,KJ }=AU(KT,KJ) -AMUL*AU(K,KJ)
345 CONTINUE
€346  BU(KI)=BU(KI)-AU(KI,K)*BU(K)
BU(KI)=BU(KI)-AMUL*BU(K)
, AU(KI,K)=0.0
350  CONTINUE
360  CONTINUE
UG(IJ)=BU(1)
DO 365 K=2,NPHASE



365
400

435

436

440
C441

445
Cht4b

450
460

465

UK (K-1,IJ)=BU(K)
CONTINUE

CONTINUE
FLT=FL{IJP)
IF(FLT.EQ.2)RETURN
IF(FLT.EQ.3)RETURN
IF(FLT.EQ.5)RETURN

DO 436 K=2,NPHASE
IF(AV(K,K).GE.RLIM)GOTO 436
DO 435 KK=1,NPHASE

AV (KK, KK)=AV (KK, KK) +4V (K, KK)
AV(K,RK)=0.0

AV(KK,K)=0.0

CONTINUE

BV(X)=0.0

CONTINUE

DO 460 K=1,NPHASE
IF(AV(K,K).EQ.0.0)GOTO 460
KPl=K+1
IF(KP1.GT.NPHASE)YGOTO 441
DIV=1./4V(K,K)
DO 440 KJ=KP!,NPHASE
AV(K,KJ)=AV(K,KJ)/AV(K,K)
AV(K,KJ)=AV(K,RJ)*DIV
CONTINUE

BV (X )=BV(K)/AV(K,K)
BY (K)=BY(K)*DIV
AV(K,K)=1.0
AV(K,K)=0.0
DO 450 KI=},NPHASE
IF(KI.EQ.K)GOTO 450
IF(AV(KI,K).EQ.0.0)GOTO 450
IF(KP1.GT.NPHASEYGOTO 446
AMUL=AV(KI,K)
DO 445 KJ=KPl,NPHASE
AV(KI,KJy=AV(KI,KJ)-AV(KI,K)*AV(K,KJ)
AV(KL,KJ)=AV(KI,KJ)-AMUL*AV(K,KJ)
CONTINUE
BV(KI)=BV(KI)-AV(KI,K)*BV(K)
BV (KI)=BV(KI)-AMUL*BV(K)
AV(KI,K)=0.0
CONTINUE
CONTINUE
VG(IJ)=BV(1)
DO 465 K=2,NPHASE
VK(K-1,1JY=BY(K)
CONTINUE
RETURN
END
SUBROUTINE VGMOMF
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INCLUDE ’GCOME.FOR’

DIMENSION CS(4)
CS(1)=0.5%(VG(IJ)+VG(IJP))
IF(CS(1).GE.0.) VGFT=0.5%(RGP(IJ)+RGP(IJT))*VG(IJ)*CS(1)
IF(CS(1).LT.0.) VGFT=0.5%(RGP(IJT)+RGP(TJTT))*VG(IIP)*CS(1)
CS(2)=0.5%(UG(IJ)+UG(IIP))
IF(CS(2).GE.0.)VGFR=0.5%(RGP(IJ)+RGP(IJT))*VG(IJ)*CS(2)*RB(I)
IF(CS(2).LT.0.)VGFR=0.5%(RGP(IJR)+RGP(IJTR) )*VG(IPJ)*CS(2)*RB(I)
IF(FL(IMJ).NE.1) GO TO 1
IF(FL(IJM).NE.1) GO TO 2
GOTO3

1 CS(3)=0.5%(UG(IMJI)+UG(IMJIP))
IF(CS(3).GE.0.)VGFL=0.5%(RGP(IJL)+RGP(IJTL) }*VG(IMJ)*CS(3)*RB(I~1)
IF(CS(3).LT.0.)VGFL=0.5%(RGP(IJ)+RGP(IJT) }*VG(TJ)*CS(3)*RB(I-1)
IF(FL(IJM).NE. 1)GOT0O2
GOTO3

2 CS(4)=0.5%(VG(IIMY+VG(IJ))
IF(CS(4).GE.0.) VGFB(I)=0.5%(RGP(IJ)+RGP(IJB))*VG(IIM)*CS(4)
IF(CS(4).LT.0.) VGFB(I)=0.5%(RGP(L.J)+RGP(IJT))*VG(IJ)*CS(4)
RETURN
CONTINUE
END
SUBROUTINE VLMOMF
INCLUDE ’GCOME.FOR'

DIMENSION CS(4)
CS(1)=0.5%(VK(K,IJ)+VK(K,1JP))
IF(CS(1).GE.0.)VLFT=0.5%(RLK(K, IJ)+RLK(K, IJT) ) *VK (K, LJ)*CS( 1)
IF(CS(1).LT.0.)VLFT=0. 5% (RLK(K, IJT)+RLK(K, TJTT) )*VK(K, I.JP)*CS(1)
CS(2)=0.5% (UK (K, I.J)+UK(K, IJP))
IF(CS(2).GE.0. )VLFR=0.5%(RLK (K, 1J)«RLK(K, TJT) }*VK(K, IJ)*CS(2)
&  *RB(I)
IF(CS(2).LT.0.)VLFR=0.5%(RLK(K, TJR)+RLK (K, IJTR))*VK (K, IPJ)*CS(2)
&  *RB(I)
IF(FL(IMJ).NE.1) GO TO 1
IF(FL(IJM).NE.1) GO TO 2
GOTO3
1 CS(3)=0.5%(UR(K,IMJ)+UK(K, IMIP))
IF(CS(3).GE.0. )VLFL(K)=0.5%(RLK(K, TJL)+RLK(K, TJTL) ) *VK(K, IMJ)
&  *CS(3)*RB(I-1) .
IF(CS(3).LT.0.)VLFL(K)=0.5%(RLK(K,IJ)+RLK (K, LJT) y*VK(K, I.J)
&  *CS(3)*RB(I-1) -
IF(FL(IJM).NE. 1)G0TO2
GOTO3
2 CS(4)=0.5%(VE(K,LIM)+VK(K,1J))
IF(CS(4).GE.0.) VLFB(K,I)= 0.5%(RLK(K,TJ)+RLR(K,IJB))*VK(K, TJM)
&  *CS(4)
IF(CS(4).LT.0.) VLFB(K,I)= 0.5%(RLK(K,IJ)+RLK(K,TJT))*VK(K,IJ )
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& *CS(4)

3 CONTINUE
RETURN
END
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Zﬁjection of Fines Into a Bed of Coarse Particles

The geometry of the system and the initial conditions are shown in
Figure 9.1. At time £=0 a central at a velocity of Vg = 5 m/s turned on
through an opening 1.27 cm wide. The jet contains fine
particles (dp = 80 pm, and pp = 2.42 g/cma) at a volume fraction of
0,01. The fines snter at a velcoity of 16.67 cm/s. Figure 9.2 shows
the distribution fines in the bed of coarse particles. It is
interesting to note the motion of packets of fines at a large
concentration through the bed. It is being speculated that such
gimulations wil: be useful in situations such as injection of coal
particles inte a bed of inerts in a cozl combustor.

Segregation Due to Size Difference

Figure 9.3 shows the initial conditions in a bed containing a
uniform mixture of particles of two different sizes. At time t = 0 &
central jet at a veloclity of Vg = 1,27 m/s 1s turned on through an
opening 1.27 cm wide. The voiume fractions of both particulate phases
at four locations in the bed are shown in Figure 9.4%. These figures
indicate that the mixture remains well mixed in the central jet region
{locations 1 and 2). Far away from the jet (location ¥) the particles

tend to segregate.
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Mixing of Particles in a Fluidized Bed

The initial conditions for this run are shown in Figure §.5. In an
experiment starting with a uniform mixture of the particles indicated in
the figure, a segregated layer of larger particles away from the central
jet could be observed at a steady state. However, in the simulation the
other extreme condition of two segregated layers was used as an initlal
condition. The volume fraction contours predicted using the simulation
are shown in Fizure 9.6. It can be seen from this figure that the
bottom layer remained intact as a packed bed. Also, the bottom layer

distributed the jet more evenly resulting in negligible mixing.
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