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Abstract 
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The Derivation of a Drag Coefficient Formula from Velocity-Voidage Correlations 
 

Abstract 

A formula for the fluid-solids drag coefficient for a multiparticle system is derived from a 

Richardson-Zaki type velocity-voidage correlation.  The formula compares favorably with the 

Ergun equation in the void fraction range of 0.5-0.6 and correctly reduces to a formula for the 

single-particle drag coefficient, when the void fraction becomes 1.0.  The minimum fluidization 

velocity calculated from the formula compares well with experimental data for Reynolds 

numbers greater than 10. 

 

Introduction 

An important constitutive relation in any multiphase flow model is the formula for the 

fluid-particle drag force, which is often expressed in following form (eq. 2.9 in [1]): 

)v    v(   = F sf −β       (1) 

 

The factor β can be expressed in terms of a drag coefficient as  
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The drag coefficient C  is only a function of the particle Reynolds number and the void fraction 

and must be determined from experimental data. 
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One method is to derive a formula for  from empirical correlations for the pressure 

drop in packed beds.  For example, Gidaspow [1] uses the Ergun equation [2], which is based on 

pressure-drop data for packed beds with void fractions in the range of 0.4-0.6: 
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For values of the void fraction greater than 0.6, the error in the value of C  calculated 

from the above equation increases with increasing void fraction.  To correct this problem, 

Gidaspow [1] uses a Wen and Yu [3] correlation for void fractions greater than 0.8: 
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But such an approach makes C  discontinuous at the switching void fraction of 0.8, with the 

magnitude of the discontinuity increasing with the Reynolds number. 

D

An alternative method is to derive a formula for C  from the Richardson-Zaki equation 

[4], which expresses the ratio of the terminal settling velocity of a multiparticle system to that of 

an isolated particle as a function of the void fraction: 
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The exponent is , rather than  as usually written, because here we express the 

terminal velocity of the multiparticle system as the interstitial, rather than the superficial, 

velocity.  The Richardson-Zaki exponent is given by 
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Sinclair and Jackson [5], for example, uses the following formula based on the 

Richardson-Zaki equation 
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The difficulty with the above formula is that it depends upon the factor .  The presence of 

such a factor is not justified because the drag force experienced by a particle placed in a flow 

field with a given Reynolds number and void fraction would not depend upon the particle 

density or the gravitational acceleration.   The V  in the denominator of the formula, however, 

is proportional to  at Reynolds numbers less than 0.4 [6].  Therefore, the factor 

g  sρ

ts

g  )    ( gs ρ−ρ g  sρ  

gets cancelled at low Reynolds numbers (and for negligible gas density), making the formula 

acceptable for low Reynolds numbers.  At higher Reynolds numbers, however, a complete 

cancellation does not occur. For Reynolds numbers greater than 500, the formula retains an 



 
 

5

undesirable dependence on a factor of g  sρ . 

Another example of the use of the Richardson-Zaki equation is the following formula 

derived by Gibilaro et al. [7]: 
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To derive the above expression, they assumed that C  has a voidage dependency ofD ε−3.8 .  There 

is no need for such an assumption, as will be shown in this paper.  Also the above formula 

incorrectly depends upon  and, hence, upon the particle density and the gravitational 

constant. 

Vts

The objective of this paper is to derive a formula for the multiparticle drag coefficient 

 from a Richardson-Zaki type velocity-voidage correlation and a formula for the single-

particle drag coefficient.  The formula will be based on two parameters only, the Reynolds 

number and the void fraction. 

CD

 

Multiparticle drag coefficient 

The single-particle drag coefficient is defined as 

2
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From a dimensional analysis it can be shown that  is only a function of the Reynolds CDs
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number .  Correlations for C  have been developed from experimental data and theoretical 

analysis and are well-established, for example see [8].  Here we use the following simple 

formula given by Dalla Valle [9]: 
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Under terminal settling conditions, the drag force on a particle is equal to its buoyant weight, and 

the momentum balance is given by  

g  )    (  
6
d  

 = 
2
V  

4
d  

  C fs

3
p

2
tsf

2
p

Ds ρ−ρ
πρπ

    (11) 

 

 

which can be written in a dimensionless form as 

Ar = Re  C4
3 2

tsDs      (12) 

The multiparticle drag coefficient  is defined in a similar manner, as shown by eq. (2).   is 

a function of the void fraction in addition to the Reynolds number.  Under terminal settling 

conditions, the momentum balance is given by 

CD CD

Ar = Re  C4
3 2

tD      (13) 

 

which, for example, is a dimensionless form of eq. 2.17 in [1] with the friction and the solids 
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pressure terms ignored. 

From eqs. (12) and (13) we get 
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Although eqs. (12) and (13) were written for a particular value of the magnitude of the 

drag force -- the buoyant weight of a particle -- the magnitude of the drag force does not 

explicitly appear in eq. (14).  Therefore, we claim that eq. (14) can be used for calculating any 

magnitude of the drag force, or equivalently , by dropping the subscript CD t  for the terminal 

settling condition.  This amounts to changing the question from "What is the  of a 

multiparticle system of void fraction 

Ret

ε , consisting of particles of known ?" to "What is the 

 of certain (fictitious) particles that will be under terminal settling conditions for the given 

Rets

Rets ε  

and ?"  The validity of the method, therefore, hinges only on the uniqueness of the inversion 

of the velocity voidage equation 
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which is demonstrated for the Richardson-Zaki [4] and the Garside and Al-Dibouni [10] 

equations in this study.  Thus, replacing  by  and  by  and substituting Ret Re Rets Res

V  /  Re = Re rs       (16) 
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in eq. (14), we get 

V
)V(Re/C = )(Re,C 2

r

rDs
D ε      (17) 

 

which is a formula for calculating  from the velocity-voidage correlation  and the single-

particle drag coefficient  and, as desired,  and 

CD Vr

CDs Re ε  are the only parameters needed. 

 

To determine C  from the Richardson-Zaki equation [4] with this method, a numerical 

procedure, as shown in Table I, is required.  First,  is calculated iteratively, as shown by steps 

2 through 5 in the table.  A successive substitution method converges to a unique solution for  

within a tolerance of 10  usually under 10 iterations.  After obtaining a converged value for , 

 can be calculated from eq. (17) and a suitable formula for , e.g., eq. (10). 

D

Vr

Vr

5− Vr

CD CDs

Table 1 Calculation of CD from Richardson-Zaki 
Equation 

1. Guess a value for Vr, say 1. 
2. Calculate Res from eq. (16). 
3. Calculate n from eq. (6). 
4. Calculate Vr from eq. (5). 
5. Check for convergence.  If not converged, 

update Vr and go to step 2. 
6. Calculate CD from eq. (17) and eq. (10). 
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An analytical formula for  and, hence, for  can be derived, from the following 

velocity-voidage correlation proposed by Garside and Al-Dibouni [10]: 

Vr CD

Re0.06 = 
V    B
A    V

s
r

r

−
−

     (18) 

where 

ε4.14 =A      (19) 

and 
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Substituting  in eq. (18) and solving for  we get VRe/ = Re rs Vr

[ ]A  +  A)  0.12Re(2B  +  Re0.0036  +  0.06Re   A 0.5 = V 22
r −−   (21) 

Eqs (10), (17), and (21) give the desired formula for . CD

Figure 1 shows a plot of  as a function of  for three different values of CD Re ε .  C  

calculated from the Garside and Al-Dibouni equation, the Richardson and Zaki equation, and the 

Ergun equation are shown.  The Garside and Al-Dibouni equation is always in reasonable 

agreement with the Richardson and Zaki equation.  At a void fraction of 0.6, all three of the 

correlations are in good agreement.  However, as mentioned, the Ergun equation deviates 

significantly from the other two equations at a void fraction of 0.9. 
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Minimum fluidization velocity 

From the Garside and Al-Dibouni formula for , an explicit formula for the minimum 

fluidization velocity is derived as follows.  Substituting eq. (10) in eq. (12) and solving for the 

Reynolds number we get 
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which is the Reynolds number based on the terminal settling velocity of a single-particle.  Since 

the right-hand side of eq. (22) is only a function of Ar , we will call it Ar* .  Substituting eq. (22) 

in eq. (18) and solving for  we get Vr

⎥
⎦

⎤
⎢
⎣

⎡

Ar  0.06 + 1
Ar  B  0.06 +A  = V *

*

r     (23) 

 

Now using the identity  and eq. (22), we get the following formula for the 

Reynolds number at minimum fluidization condition: 

V Re= Re rtst
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The Reynolds number calculated from eq. (24) is compared with experimental data in 

Fig. 2.  The data are for spherical particles or sand, covering a wide range of conditions usually 

encountered in fluidized beds: void fraction, 0.36 - 0.48; temperature, 298 - 1123 K;  pressure, 

100 - 3500 kPa; particle diameter, 125 - 6350 µm; particle density,  1100 - 7840 kg/m3.  Four 

data points are for a water fluidized bed; all others are for air or nitrogen fluidized beds. The 

agreement between the theory and the experiment is very good for Reynolds numbers larger than 

10.  For smaller Reynolds numbers, however, the theory systematically over predicts the 

Reynolds number. 

 

 

Summary 

Based on a correlation proposed by Garside and Al-Dibouni [10], an analytical formula 

for the multiparticle drag coefficient is 
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ε4.14 =A      (27) 
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The above formula compares favorably with the Ergun equation [2] in the void fraction range of 

0.5-0.6 and correctly reduces to a formula for the single-particle drag coefficient, when the void 

fraction becomes 1.0.  The derivative 
Re 
C  D

∂
∂  is a continuous function of .  C  and its 

derivative with respect to  are continuous, except at 

Re D

ε 0.85 = ε  where C  is continuous (rounded 

off to three significant figures), but its derivative is discontinuous.  The minimum fluidization 

velocities calculated from the formula compares well with experimental data, especially for 

Reynolds numbers greater than 10. 
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LIST OF SYMBOLS 

A  A function of void fraction defined by eq. (19) 

Ar  Archimedes number,  µρ−ρρ 2
ffsf

3
p  / g  )  (    d

Ar*  A function of Ar  defined by the right hand side of eq. (22) 

B  A function of void fraction defined by eq. (20) 

CD  Multiparticle drag coefficient 

CDs  Single-particle drag coefficient 

dp  Particle diameter, m 

F  The drag force per unit volume in a two-phase system, N/m3
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Fs  The drag force on an isolated particle, N 

g  gravitational acceleration, m/s2

Re  Reynolds number for a multiparticle system, µ−ρ fsffp   /  v  v    d  

Res  Reynolds number for a single-particle, µ−ρ fsffp   /  v  v    d   

Ret  Reynolds number for a multiparticle system under terminal settling conditions, 

 µρ ftfp   /  V    d

Rets  Reynolds number for a single-particle under terminal settling conditions, µρ ftsfp   /  V    d  

vf  Fluid velocity (interstitial), m/s 

vs  Solids velocity, m/s 

Vr  The ratio of the terminal settling velocity of a multiparticle system to that of an isolated 

single particle 

Vt  v  v sf −  for a multiparticle system under terminal settling conditions, m/s 

Vts  v  v sf −  for an isolated, single particle under terminal settling conditions, m/s 

 

Greek symbols 

β  A coefficient defined by eq. (1), kg/(m3⋅s) 

ε  Void fraction 

µf  Fluid viscosity, Pa⋅s 

ρf  Fluid density, kg/m3

ρs  Solids density, kg/m3
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Figure 1a 

Figure 1. Comparison of multiparticle drag coefficients 
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Void fraction = 0.6

1

10

100

1000

10000

0.1 1 10 100 1000 10000

Re

C
D

Garside-Al-Dibouni

Richardson-Zaki

Ergun

 

 

Figure 1b 

Figure 1. Comparison of multiparticle drag coefficients 
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Void fraction = 0.9

0.1

1

10

100

1000

0.1 1 10 100 1000 10000

Re

C
D

Garside-Al-Dibouni

Richardson-Zaki

Ergun

 
Figure 1c 

Figure 1. Comparison of multiparticle drag coefficients 
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Figure 2 Experimental and predicted Reynolds numbers at minimum fluidization conditions. 
 


