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The mulitiparticle model being daveloped at the 7.5. Department of Energy’s
Morgantown Energy Tachnelogy Centar (DOE/METZ) simulates fluidizaticn dhencmena
such as segregation, elutriatisn, and solids mixing by describing the differsnt
types of sclid particles as distinct particulaze phases. To account for the
momentum transfer between the pariiculate phases due to collisions, the model
requiras csonstitutive relations known as particls-particle drag terms. In
dilute systems, such as pneumatic conveyors, the parzicle-particle drag has bean
measured and empirizal correlatizns have been develcped. But similar
measurements are not possible in dense systems, such as fluidized beds. Hence,
an expression for the particle-particle drag term was derived based on the
kiretiz theory of dense gases. To test the accuracy of that expression, the
predicticns cf the model were compared to experimental data. Yang and Keairns
(1982) fluidized uniform mixtures of dolomite and acrylic particles for various
times and measured the rate of separation of the dolomite particles, The
dolomite particles, being heavier and larger than the acrylic particles, were
found to settle rapidly. The experimental data suggest that the rate of settling
is strongly dependent upon the particle-particle drag and, hence, the simulation
of these experiments is useful for determining the accuracy of the particle-
particle drag term. Computer simulations have shown that the model predicts the
initial rate of separation reasonably well. The predicted equilibrium
concentrations of dolomite particles in the upper layer of acrylic particles,
however, do not agree with the experimental data. This is thought to be because
of the absence of granular stress from the model. Further refinement of the
particle-particle drag term will be sought only after including granular stress

in the model.



2.0 INTRODUCTION

o b I L T ] : 3
The multizarzizl 2 madel of Iluldiration being daveslcped at METC uses multiphase

£low =guations to dascribe the £luid ard the partio

(,

S
Dl
1

es in a fluidized bed.

mp ~nnl & m~ema T - A P o= s

“he mcde. can lescribe the flow of several disfarent particulate phases, each
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partizulate phase belng comztsed of particles of identizal densities and sizes.

Because ¢I thils ability, the mocdel can be used to study fluidization phencmena

cf practizal importance, suth as segragaticn, elutriation, and solids mixing.

The multiparticie model evelved Irczm a single particulate phase model of
Gidaspow and Ettehadish (1933). Their eguations can be generalized for more
than cne particulate phase ts obtain the set of contiruity and mcmentum
equatizns presented in Table 1. In these equations, the subscript ‘k’ denotes
the kth phase and ranges from 1 to N, N being the total number of phases. In
addition to these eguaticns, several comstitutive relations are regquired to
cemplete the model: The Iluid-particle drag term, Flk (subscript 1 denoting the
fluid) in Egquation 2, descrites the momentum transfar between the fluid and the
Kk~ particulate phase., It has been the subject of many investigations (for
example: Syamlal and O/Brien, 1987). Forzunately, in this case, accurate
experiments can be conducted to determine the drag on a single spherical
partizle moving in a fluid, and these data can be generalized to obtain the drag
on a cloud of particles. Alternatively, the drag can be calculated from
empirizal correlations, such as the Zrgun (1952) eguation, which give the

pressuze drop in a fluid flowing through a packed bed of particles.

Like the fluid-parzicle drag terms, particle-particle drag (PED) terms need to

be included in a multiparticle model. The term F, K3 describes the
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morentum exchange tetween the ™ and 3 p;*t iculaze phases. Nakamura and

-

Capes (1976) and Arastoopous, Lin, and Gidaspow (19=0) found that iz was

necessary to intrscduce such a tarm oo mo

i

el the segrecartion in a pnaumatic

conveyor transporting a mixture ¢f carticles, Such a term will be aven mors

important in dense systems, such as fluidized beds.

Arastocpour, Wang, and Weil (1932) attempted to measure PPD in a dilute system
in which the void fraction was greater than 0.99. They measured the velocity
of an isclated coarse particle flowing countercurrent to pneumatically-conveyed
fine particles. The force exerted by the fine particles on the coarse particle
was deduced from a steady-state mcmentum balance and correlated with the

velocity difference betwean the fines and the coarse particles. Frcm these

experiments, they developed the ccrralation

Fig " Gt Tl
. . -0.146 . .
where the dimensionless constant C, = 0.7dk (d.k in meters), subscript k
denotes the coarse particles and subscript j denotes the fine particles.
Arastoopour and Cutchin (1985) szudied the cocurrent flow of coarse particles in

a pneumatic conveyor of f£ine parzizles and rnoorted another correlation for the
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Several thecretizal expressiins Zor the P02 term in a diluts svstem, which werzs
derived using simple mocels of ccllision beiween two raprasentative parzicles,
are avallakle in the lit=zrzatura (for examzle: Soo, 1967; Nakamura and Capes,
1976; Ctss, Srinivasan, and Raptzs, 1986), They diffar from one ancther only by
a numerical Zactor.  Syamlal (19£5) attemptad a similar darivation of the EPD
term for a dense bed. This rasul<ed in an sxpression similar to that of
Nakamura and Cages (1376), =zzcept for a muliiplicative factor. Later in this
report we will derive an exgressicn for the PPD based on the kinetic theory of

dense gases.

To gain ccnfidence in such theorezical exprassions, it is necessary to test
their accuracy. This can be dcne by comparing the solutions of the
multiparticle model to experinental data that are sensitive to the PPD,
Settling experiments in fluidized beds are, in general, sensitive to the PPD
When a binary mixture of particles is fluidized, under certain conditions the
denser and larger particles will settle. While settling, these particles
continually interzact with the upward-moving fine particles and, hence, the rate
of settling strongly depends upon the PPD. Such data can be compared to the
numerical solutions of the multiparticle model to determine the accuracy of the

theoretical expressions for the PPD.



3.0 THE PARTICLE-PARTICLE DRAG TERM

The thecretical exprassions Iir the PPD term have been derived by assuming that

the momentum transfiar occurs primarily because of binazy zcllisicns betwsen che
particles. Simple physical medels of the ccllisicn of =wo reprasentative
particles are used in such derivaticns (for sxample: Svamlal, 1985). Using such

an approach, Nakamura and Cages (1976) derived the exprassion

F 1ea - 2
ij 3gli-ele kE.',cE.jEj_@'é_Qj.).

3 3)

V5 (3)

+ p.d.
P3%5

in the limit of very small particulate concentrations. They included g as an

Z(pkdk

adjustable parameter and found by fitting experimental data that its value was
in the range of 1.0-5.0. They argued that the adjustable parameter is grsatar
than 1.0, because multiple collisions, which were not accounted for in tha
derivation, tend to increase the PPD. Syamlal (1985) derived a similar

expression for a dense system and found that g is given by

g - Lr_k:'_j)‘” . 3ckj1/3 . )

Sl - eyt

The factor 'kj’ which represents the maximum possible packing of the binary
mixture, can be obtained from an empirical formula, such as the one given by

Fedors and Landel (1979):

( “°k'°j) + (1-a) ‘1'°k’°j] (o) + ‘l"’j)"k] X, /9, + o
for xk“’k/ {@k + (1—®k)oj]

. = ‘ {3)
(1-a) [0, + (1-0)0.] (1-X) + &

\ for'xkzok/ [¢k + (l-ok)oj]
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volume Iraciiin X “le k™" single-particls gsystamr,

v Equatizn (3), acts as a corractisn term for increased
partizle conlentratiza.  Similar correcticn terms are often used in the kinstis
thecry ci danse cases. For examsle, the fattor g bears a fsrmal resemblance to
the factor x (which came %3 be kncwn as the radial distribution functisn at
ccntact) introduced by Chagman and Cowling (1970, p.298). They state that g is
datermined by two Ccoposing mechznisms. First, in a dense system, because the
icle volume is comparatle with the volume occupied by the particulate phase,
he volume in whizh the center cf a colliding particle can lis is reduced. This
effect increases the probability of colliisions. Egquaticn (4) accounts for this
effact. Seccnd, in a dense systam the particles shield one another, rsducing

the crobability ¢f collisisns. This effect is not accounted for in Equatisn
(4) . It is difficult %o irnclude this effect in the simple derivation used to
get Eguatizas (3) and (4); it is even more difficult to include such an effact

in derivaticns fcr systems consisting of more than two particulate phases.

These difficzulties can be gverccme by using the formal methods of the kinetic
theory of dense gases to derive an expression for the PPD. Later, we will see
that the factor g given by Equaticn (4) is, indesd, the radial distribution
funczion at contact of a mixture of hard spheres. The form of the radial
distribution functoicn has been well studied, and based on the kinetic theoxy of
dense gases, several analytical expressions are available in the literatura.
Alsc in this apprcach the assumpricns are more precisely stated and it is easier

to visualize che generalizaticns =o systems ccnsisting cf more than two



-7 -
part.culate phases. Hence we will derive the PPD tarm using the mechcds o2 the
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kinetic theory of dense gases.

In the fellowing derivation we follow the steps used by Lun, et al. (1984).
Refar to Figurs 1 for a diagram ¢I the collisions. At the instant of a typical
collision, a "3" particle is located at r and a ™k" parzicle is located at r-ob,
where b is the unit vector in the dirsction of the line connecting the centers
of the particles and o = (dk+dj)/2. The probable number of collisions, such

that the center of the *j" particle is in the volume dr and the particle

velocities Sy and cj and b lie within ranges dck, dcj, and cb, is

az(ckj.b)f(z)(r-ab,ck; rc;; t) db de doy dr de (6)

where ij - ck - cj.

"k" partilcle

0') U:(d,ﬁ-dd)/z
(o}

o1
!

qQ

o't

"

J" particle

i

FIGURE 1. COLLISION OF TWO PARTICLES
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m™he collisicnal paiz-distribuzion funcsicn, «(2) is such that 5(2):‘:. :ir.jdckdc.
K 3

. ~hahtliry AF Tinsian marei-~lg ¢ i
gives the prepabllity ol Iindin g a "k" garzizle in a volume drk arsund r, with

its velccizy in the rangs of S and ¢, -rdck ané a "3" parcicle in a volume drj

around r, with its velocity in the range of c. and c.+dc..
b 3 J 3
Am is the mcmentum transizrred betwesen particles "k" and "im.

During a collision,
Considering only
particles that are about to ccllide (ie. taking ij'b > 0), we £ind that the

Fy

collisional rate of momezium transfer per unit volume is given by

-2 [, (2) v N ,
ij a J.Qm (t‘_xjAb) fkj(r cb,ck,r,cj ;L) ¢b dckdcj (7)

ijb>0

Following Savage and Jeffrsy (2981), we assume that f(z) can be expressed as a

product of the radial distribuzion function gkj and the singlet velocity

. . , { ,
distribution functions, f‘l), £or each particle:
P

. (1), (1)
x5 fj . (8)

Assuming that all the particles of each type have identical velocities, the

f

singlet velocity distribution Zunctions may be expressed, using Dirac delta

functions, as

{1) 3
fk = 6ak6 (c:k - vk)/ﬂdk {9)

and

1) _
£

where v, and vj are the velocities of the particulate phases. To use more

3
\ . - Y. . 10
6e JS (cJ VJ)/ﬂdJ ’ {10)

realistic singlet velocity distribution functions, it will be necessary to
solve "granular temperature” equations as done by Lun, et al. (1984). Note that

3s required by its definition, f(l) has been formulated such that the number
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; zhe zartizles is shzained when £0%) g ; ’
density of the farticles is shtained when £ 15 lntegrated over the znzirs
range of ve alocizies. Alsd niIlz <hat we assume =hat :k( L determined at r is

\
‘ cq Eha wnmed - (1) .. . )
approx:macely ecual To the rsguirad fk al r-ob. A discussion of the form of

will be defarred until the zzmpleticn of

gkj £ the derivation: we do not need to

know its fcrm to perfcrm the necassary integsations.

for a collision between two smcot?®, inelastic, spherical particles of diameters

d and dj and of masses m and m, the conservation of linear meomentum can be
g

written as

- ' -

= mkc:k J {11)
and

r.c.” =m.c, ~J

373 7y (2
where ¢ and cj are the velocities before collision, ck’ and cj’ are the

velocities after collision, and J is the impulsive force between the particles.
For inelastic collisions, we assume that the relative velocity Cy : in the

direction of b is changed during a collision such that

b.ckj’ = —e(b.ckj), (13)

where e is the coefficient of restitution. Equations (11), (12), and (13)

determine the component of J in the direction of b,

b.J = -(1+e)b.ckj / (I/m)c + 1/mj). (14)

‘Assuming that the particles siide during a collision, the component of Jin a

direction t normal to b (or tangential to the sliding surfaces) can be related

to b.J by Coulomb’s law of fricticn as

Jo = 1 (b.J), (15)

where u is the coefficient of frizzion. Now the impulsive force J can be

written as



=10~
J= (b.J)b + Jot = (b.0)(b+ pt). (16)
Te diraction of t can be obtained by noting that it must be perpendizular to b
aad also lie in the plane formed by b and %5 (Ahmadi and Shahinpoor, 1983).

Thus it can be written as

bx (c . xDb) .- {c._..b)b
t = ] - 7% . (17)

b . X b)| . = N
b x (g4 x b Fckj (€5 b)b]
Using this expression for J in Equaticn (11), we can get the change in momentum:
=(l+e)m.m. (b.c, . .- ..
(Lte)mmy (b.c 5) (b . Gy = (Gy-bIb
M. . - o
\my +m,) 164 = (C4-bIB]

am = mk(ck’-ck) = -J = (18)

Susstituting this in equation (7), we get

2 2

I_ltj §§_03(§+e) mkmjtkejgkj J‘(ckj.b) (b+pt)5(ck-vk) S(Cj—vj)db dcxdcj (18)
X dkdj (mk+mj) ijb>0

Integrating over d<::k and dcj, ckj is replaced by vkj by virtue of the dalta

functicns. The integration over db can be performed (Chapman and Cowling, 1970;

p. 318) to get

2 2 2,3,3
ij = -360°(l+e) (x/2+ux /B)mkmjzkc jqkjlvkjlvkj /x4, dj (m.k+mj)] (20)

Sirze by definition ij--ijvkj’ we get

2 2 2,3, 3
ij = -366° (1+e) (x/2+ux /B)mkmjzkcjgkjhkjl [/ [x d’kdj (m.k+mj)] (21)

ané, expressing the mass of the particles in terms of their densities and

. 3 3 .
diameters (m = xd, pk/6 and m = ndj pj/6), we obtain

2 2 3 3
ij = 3(l+e) (x/2+ux /B)tkpkz jpj(dk+dj) gkj[vkjl /[ [2&x (pkd,c + de- 1. (22)

Setting u equal to zero and comparing this to Equation (3), it can be seen that

the constant g of Nakamura and Capes (1976) and the factor g of Syamlal (1985),
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defired by Equation (4), are equivalan:t to half =he radial dis-riburisn Suncssa=n

bl Lok ey

a~ contact (i.e., gkj/2) .

Althcugh this derivation has required several simplifying assumptions, it has
allowed the association of g with the radial diszribution furczicn at contacs.
This function is more rigorously derived in the literaturs on the kinetic thecry
of dense gases and can be adopted frcm there for use in Ecuatizn (22). For a
mixture of hard spheres, Lebowitz(1964) solved a generalized Percus-Yevick
equation to obtain the formula

N

9kj = 1/¢ + [3(X /d)d :‘..]/zz(dk'l-dj), (23)

1=28 1794 % j
where ¢ 1is the void fraction given by

e =¢ -1-(2N. e.) (24)

1 1=271""

Note that in Equations (23) and (24) we excluds i=1, since, by ccnvention, i=1
denotes the fluid. 1In Figure 2, the radial distribution function gkj for a
binary mixture of particles of diameters 0.127cm and 0.057cm as given by Equa-
tion (23) is compared to the function g of Syamlal (1985), given by Equation
(4) . As expected, both of the functions increase monotonically with increasing
solids volume fraction. The function g is in general greater than gkj and, for a
densely packed system consisting mainly of one of the comporients, it is an order
of magnitude larger than gkj‘ To determine which of these magnZtudes is more
realistic, it is necessary to compare numerical results to relevant experimental

data as we do in the next section. Meanwhile, however, some of the mathematical

features of gkj can be found to be more physically realistic.

First, the function g has the same form for the conditions of ar excess of fine
particles as for an excess of coarse particles. The function gkj’ on the other

hand, increases with increasing fines concentration. This implies that the
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resistance cffered by an excess of fines on a small ameun: of o

coarse particles

is larger than that Dy an 2xzess of ccarse parzizlas on a small amount of fines
This is rzascnable, since fines can flow mere easily throush the void space

petwean densely-packaed ccarse particles whila the converse is not frue.

seccnd, the function gkj has a mathematical form that satisfies a necessary

adéitivicy condition. Using a multiparticls model, a binary mixture of

ways. For erample, consider two cases, one in which the particles are described
a5 Phase-A and Phase-B and another in which they are described as Phase-3,
Phase-Bl, and Phase-BZ2. Regardless of how we choose to represent the B
parzicles, their effact on the A partizles should remain unchanged. This

implies <that, in our example, the sum of the ij’s of Phase-Bl and Phase-B2 must
be ecual to the ij of Phase-B. It can be easily verified that this is the case

when ‘rkj is given by Equations (22) and (23) and that it is not the case when

ij is civen by Equations (3) and (4).

Finally, it can be seen from Equation (23) that gkj correctly accounts for the

effect of particles other than the kth and the jth particles in a multiparticle

h

nixtire on the collisions between the k™" and the jth particles, whereas the

. : . th
expression for g does not include the properties of particles other than the k

and the jth. Bacause of the above-mentioned reasons, we can conclude that the
factor g obtained from a simple derivation lacks the physically realistic
mathematical features of gkj derived using the more rigorous methods of the

kinetic theory of dense gases.



4.0 SIMULATION OF YANG AND KEATRNS’S EXPERIMENT

grr.ne tae acturaly of the PPD ter derivad in the previous sactisn,

)

- eyt -~ - :
ccmputer simulatlicors based on the serzling exgeriments of Yang and Keairns

(2922) were cconducted.  Yang and Keaizns (1962) studied the rate cf separatior

£ I~ S om - RRTR H S ~ PR . :
c¢f Zolomita particles in a fluldized bed contzining a mizturs of acrylic

heavier than the acrylic partizles; hence, they settled very rapidly when the
£luidization velocity was smaller then thn*;: minimum £luidization velocity. s
7 collide with the upward moving
acryllic particles. Thus, the rate of se:tling is strongly dependent upon the
PED between the acrylic and dolomite partizles. Also, the monotonicity of the

erperimental rate of setiling curves {or small fluidization velocitias suggests

that the mizing caused by bukbkles or sclids cirzulation in the bed are grsbakbly
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han the mixing cauvsed by particle-particle collisions.
fcr these reasons, the simulation of Yang and Xeairns’s (1982) experiments is

vseftl for derzrmmining the accuracy of the PPD term.

The experimental procedure of Yang and Keairns (1982) consisted of fluidizing a
tnifc=m mixture 0f dolomite and acrylic particles for a short time, then
defluidizing the bed and measuring the particle concentrations at various azial
locations to obtain'dolomite-concentration profiles. By repeating the

experiments for variocus durations, they cbtained the dolomite-concentration

Frcfiles as 3 functzicn cf time.

The eguations prasanted in Table 1 were used to develop a muliiparticle ccmputsar

ccde. The dstails of the numerical tachnique used in the code can be found
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elsewhere (Syamlal, 1383; Svarlal, 1987). The computer simulatisn conditizns

are summarized in Table 2. Iz the experiments, it was found that the £

Table 2. Cezputer Simulation Ccnditions

Particles: dk (cm) pk (g/c=3) Weight Fraczicn
Dolcmita 0.1272 2.6% 0.6
Acrylic 0.0571 1.1z 0.4

Fluid Air

Superficial Fluid Velocities 40, 50 /s

Bed Dimensions Diameter = 7 cm

Height =11 cz
Cell Sizes Radial: 0.5 cn, Axial: 1.0 cn
Time Stap 0.000S5 s

‘bed reached a steady state in 5-10 seconds. Hence the computer simulations were

carried out £for a duration of 10 seconds.

All the computer simulaticns were performed by setting the coefficient of
friction, p, equal to zero. It can be seen from Equation (22) that this
approximation will change the magnitude of PPD at most by a factor of 2, since
the value of p is close to 1.0. The conclusions of this preliminary study will
not be affected by such a changa in the PPD. Scme initial computer simulations
were carried out using Syamlal’s (1983) PPD termm. These simulations indicated
that the rate of separation is very small and that the two particulate phases
remained well mixed; at the end of 3 seconds of simulation with 40 cm/s
superficial air velocity, the predicted weight fraction of dolomite at the top
of the bed was found to be arourd 0.5 (see Figure 3). This is contrary to the

experimental observation of very rapid settling. Because of this, and
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considering the mwre realis:iz mathemacizal prcperties of the funczion S
discussed in the previous siacticn, subssquent simulaticns wers carried ou; using
gkj as derived by Lebcwitz (1964). Fcr comparison, simulations were also

carzied out by set:ting gkj=l.

In Figure 3, experimentally observed (Yang and Keairns, 1982) and numerically-
sim:Zated dolomite concentrations at the tsp of the bed are plotted as a
funczion of time for a perizd of 10 seconds when the superficial air velocity is
40 cm/s. The rate of initial separation is strongly influenced by the magnitude
of the PPD. For the present set of experimental data, the ex-ent of resolution
possible for the iritial rate of separation is given by the line connecting the
data pcints at t=0 and t=3 seconds. IZ the numerically-simulated separation
curves are below this line, the precicted initial rate of separation is possibly
ccmparable to the experimental data. The simulation results using the gkj of
Lebowitz (1964) indicate a very rapid initial separation phase (-1.5 sec.) that
satisfies this condition. Thus, the predicted initial rate of separation, using
gkj’ is comparable to the experimental data. However, the equilibrium weight
fraction of dolomite in this case does not agree with the experimental data
which indicate a monotonic reduction in the dolémite weight fraction that
ultimately leaves a top layer free of dolomite particles. An examination of the
predicted velocity fields of the two particulate phases indicates that the
excessive mixing of the particles is caused by the solids circulation in the
bed. This may be because of the absence of particulate-phase viscous stresses
in the present model. Thus, we conjeéture that the inclusion of viscous
stresses may lead to the correct prediction of the equilibrium dolomite weight

fractions.
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In this case, an eva: more rapid ini-ial rata of settling is
the equisibrium dolomits conzentration ar the tep of =he bed is Compt vible Do
the experimental data. This, of course, only illustrates the effacs of a weaker
PP and is not a damonsiratica that gkj should be equal to 1. That conditicn
would imply (as in the case cZ ideal gasss in the kinetic thecry) that the
presence of one particle at szme locatizn in the bed does not affect the
procbability of finding amothexz particle close to it. This is Certainly not true

in a danse bed,.

Another reascn for our ctiections to the condition gkj = 1 can b2 found in
Figure 4, in which the simulation results for a fluidization velocity of 50 cm/s
are given. The data ¢f Yang and Keairns (1982) indicate that the settling
behavior has not changed significantly from the previous case (£luidization
velocity = 40 cm/s). However, the simulation results for gkj'l indicate that
the squilibrium dolomite cpncentration at the top of the bed is not comparable
ts the experimental data. Thus, even with gkj-l, the increased fluidization
velocity increases the sclids circulation and, hence, the mizing. The simulatica
results, using the I3 of Lebowitz (1964), indicate that the equilibrium
dolomite concentration at the top of the bed has increased to 0.4, which is
again because of thé increased sclids circulation. Note, however, that the
initial rate of separation is still comparable to the experimental data in the
sense discussed previously. Hence it can be concluded that the PPD term models
the initial rate of separation reasonably well, but the predicted equilibrium
weight fraction of dolomite does not compare with experimental data because of

the overprediction of the intensity of sclids circulation. Hence, further
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stress tarms In the multizarzizls medel.
5.0 CONCLUSIONS

A derivaticn using the metheds of the kinetic theory of dense gases has shown
that a factior appearing in the particle-particle drag term is the radial
distribution function for hard spherss at ccntac:, gkJ The major assumpticn
made in the derivation is thaz all the particles at a spatial location move at
the continuum velgcity. - When an expression for gkj given by Syamlal (1985) is
used Zor simulaticns, the predicted initial rate of separation in a fluidized
bed is fsund to be not azceptable compared to a set of experimental data of
Yang and Keairns (1982), Whe= an expression for gkj given by Lebowitz (1964) is
used, an initial rate of sextling ccmparable to the experimental data is
obtained. Also, since lebewitz’s (1364) expression has mathematical features
that are mcre piaysically realistic it is recommended as the appropriate radial
distributicn function. The equilibrium’ weight fractions predicted when this
radial distribution function is used, however, do not agree well with the
experimental daza. The reason for this is thought to be the excessive solids
circulation within the bed. Simulaticns carried out by setting the radial
distribution function equal to 1 reinforce this conclusion. It is conjectured
that the absence of the viscous stress terms in the present model leads to the
prediction of excessive sclids circulation. Hence, further refinement of the
particle- particle drag term can be sought only after including realistic

granular stress terms in the multiparticle model.
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6.0 NOMENCLATURE

b Impact parametsr, cr the direction cf the line joining the zentsrs of
two colliding partizlas.

o Velocity of k parti:lss in.the microscopic sense.
S 5 = c. ~C,

] K j

- th .

dk Diameter of k™ parzizle.
e Coefficient of restitution.

(1) , . . . . .
£ Singlet velocity distribution function.

f‘z) Pair velocity d-i;tribution functicn.

ij Coefficient cf .'inte:p'r.ase mementum transfer for phases k and j.
g Function defined by Ecuation (4).

g Body forces such as gravity,

x5 Radial distribution function at contact for k and j particles.
J Impulse of the force cf collision.

M Mass of a k particle = ndk3pk/6.

N Total number of phases.

P Pressure.

Ps Solids Pressure.

r Position vector.

t Time.

t A normal direction to the inipact parameter b.

Y Velocity of“the kth phase in the continuum sense.

vkj = vk-vj

GREEK SYMBOLS

] Void fraction.
o th
£y Volume fraction of the k ~ phase.
!kj The maximum particulate volume fraction in a random mixture of

particulate phases k and j.
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°k The mazinum garticylate volume Zraction ¢f the partizulate phase k.
n Zoefficient 3f f£riction.
. s, Eh
Py Jensity of tle k™" phase.
o Distance between the centers of two colliding particles, egq. (dk+dj)/2
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