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Abstract 

 

In recent years there has been increased research activity in the experimental and 

numerical study of gas-solid flows. Flows of this type have numerous applications in the 

energy, pharmaceuticals, and chemicals process industries. Typical applications include 

pulverized coal combustion, flow and heat transfer in bubbling and circulating fluidized 

beds, hopper and chute flows, pneumatic transport of pharmaceutical powders and 

pellets, and many more. The present work addresses the study of gas-solid flows using 

computational fluid dynamics (CFD) techniques and discrete element simulation methods 

(DES) combined. Many previous studies of coupled gas-solid flows have been performed 

assuming the solid phase as a continuum with averaged properties and treating the gas-

solid flow as constituting of interpenetrating continua. Instead, in the present work, the 

gas phase flow is simulated using continuum theory and the solid phase flow is simulated 

using DES. DES treats each solid particle individually, thus accounting for its dynamics 

due to particle-particle interactions, particle-wall interactions as well as fluid drag and 

buoyancy. The present work involves developing efficient DES methods for dense 

granular flow and coupling this simulation to continuum simulations of the gas phase 

flow.   

In this thesis, existing models (viz. the hard sphere and soft sphere models) for 

DES for spherical particles have been explored and the soft sphere model has been 

implemented. Efficient search algorithms and data structures for computing inter-particle 

interaction have been explored. Two different search algorithms, No-binary Search 
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(NBS), and Quadtree/Octree search, have been implemented. The former provides an 

O(N) search procedure for like-sized particles. The latter is an O(NlogN) procedure, but 

can admit particles of different sizes.   

Coupling of DES for solids and continuum for gas/liquid flow has also been done. 

The fluid flow computation has been done using MFIX, a solver developed at the 

Department of Energy's National Energy Technology Laboratory (NETL) for multiphase 

flows; the DES simulation provides the particle dynamics. In order to complete the 

coupled calculations, the void fraction and the volume averaged cell solid volume 

velocity corresponding to the DES particle distribution are computed. Interphase drag is 

computed from experimental correlations. Pressure force on the solids is also computed. 

Finally, a segregated coupling algorithm for the fluid and solid is used, with several DES 

time steps constituting one fluid time step. Granular temperature calculations are also 

done.  

The DES-MFIX coupled code developed has been used to address two areas of 

industrial importance (i) granular material behavior with no fluid interaction (ii) gas-solid 

flows. For granular material behavior vibrated granular beds have been studied. For gas-

solid flows, fluidized beds, which are of great importance in chemical engineering have 

been studied. 

Simulations have been performed to observe pure granular behavior in vibrating 

beds. Benchmark cases have been simulated and the results obtained match the published 

literature.  The dimensionless acceleration amplitude and the bed height are the 

parameters governing bed behavior. Various interesting behaviors such as heaping, round 

and cusp surface standing waves, as well as kinks, have been observed for different 
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values of the acceleration amplitude for a given bed height. Furthermore, binary granular 

mixtures (granular mixtures with two particle sizes) in a vibrated bed have also been 

studied. In the kink formation regime, binary mixtures have been found to demonstrate 

horizontal segregation, wherein the bigger particles cluster at the kinks thus forming 

alternate sections of big and small particles. Though this phenomenon must be confirmed 

using three-dimensional simulations, this type of segregation can be used in industrial 

applications for sorting. 

Gas-solid flow simulations have been performed to study fluidized beds. 

Benchmark 2D fluidized bed simulations have been performed and the results have been 

shown to satisfactorily compare with those published in the literature. A comprehensive 

study of the effect of drag correlations on the simulation of fluidized beds has been 

performed. It has been found that nearly all the drag correlations studied make similar 

predictions of global quantities such as the time-dependent pressure drop, bubbling 

frequency and growth. But the local behavior predicted by different drag correlations is 

quite different and this may result in differences in the heat and mass transfer and hence 

the overall chemical conversion in the bed. Granular temperature differences in the bed 

predicted by various drag correlations have also been presented. In addition, binary 

mixture fluidized bed simulations have also been performed to delineate the effect of 

particle size.  Substantial segregation is observed at the bed base in regions isolated from 

the inlet jet, for low superficial gas velocities.  

In conclusion, discrete element simulation has been successfully coupled to 

continuum gas-phase. Though all the results presented in the thesis are two-dimensional, 

the present implementation is completely three dimensional and can be used to study 3D 
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fluidized beds to aid in better design and understanding. Other industrially important 

phenomena like particle coating, coal gasification etc., and applications in emerging areas 

such as nano-particle/fluid mixtures can also be studied through this type of simulation. 
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Chapter 1 

Introduction 

 

The flow of fluids of single phase has occupied the attention of scientists and 

engineers for many years. The equations for the motion and thermal properties of single-

phase fluids are well-accepted and closed form solutions for specific cases are well- 

documented. The state of the art for multiphase flows is considerably more primitive in 

that the correct formulation of the governing equations is still under debate. For this 

reason, the study of multiphase flows represents a challenging and potentially fruitful 

area of endeavor. Hence there has been an increased research activity in the experimental 

and numerical study of multiphase flows. Multiphase flows can be broadly classified into 

four groups; gas-liquid, gas-solid, liquid-solid and three-phase flows. Gas-solid flows are 

usually considered to be a gas flow with suspended solid particles. This category includes 

pneumatic transport, bubbling/circulating fluidized beds and many others. In addition, 

there is also a great deal of industrial interest in pure granular flows in industrial 

equipment such as mixers, hoppers, ball mills, and chutes. 

  The focus of this thesis is the numerical simulation of granular and gas-solid 

flows.  Generally, two different approaches may be taken to model the gas-solid flows 

(Crowe, Sommerfeld and Tsuji, 1998): 

Continuum Approach:  Here, the gas and the solid are treated as interpenetrating continua. 

Continuity and momentum equations are written for each phase, and interphase 

interaction is accounted for through appropriate sources and sinks in the phase 

momentum equations. This approach requires a constitutive equation for the solid phase 
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to relate the solids stress tensor to the velocity field; the fluid phase is typically modeled 

as Newtonian. The interphase interaction terms typically involve empirical relationships 

for drag, heat transfer and other exchanges.   

Combined Continuum - Discrete Element Approach: Here the fluid phase is treated as 

before, assuming a continuum. The solid phase is not, however, treated as a continuum. 

Instead, the motion of individual particles is tracked using Newton’s laws, accounting for 

collisions with other particles, with walls and the fluid-particle interaction forces. The 

hydrodynamic influence of the particles on the gas appears both as a volumetric blockage 

as well as an interphase drag. Other effects, such as interphase heat and mass transfer can 

also be accounted for in this approach.  

The focus of this thesis is the computation of gas-solid flows in bubbling and 

circulating fluidized beds using discrete element simulation (DES) to represent the solid 

phase.  In the rest of the chapter, we first review existing work in the simulation of 

granular flows, and then discuss gas-solid flow modeling. We then present the aims of the 

thesis, and describe its organization.  

 

1.1. Modeling of Granular Flows 

All simulations of gas-solid flows require the solution of the velocity and spatial 

distribution of the solid phase. The solid phase may be represented either as a continuum 

with constitutive relations to describe its stress-strain relationship, or as a conglomeration 

of discrete elements, as described above. A widely-used continuum approach is to 

develop a kinetic theory for the particulate phase similar to the kinetic theory of gases; 

theories of this type have been quite successful in the rapid granular regime, which is 
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dominated by inter-particle collision. A number of kinetic theories have been published, 

including those by Savage and Jeffrey (1981) for elastic spherical particles, Jenkins and 

Savage (1983) for spherical and nearly elastic particles, and Lun et al (3) for inelastic 

particles. The development of these kinetic theories mimics the kinetic theory of gases in 

that binary collision of particles are considered first, followed by statistical averaging. In 

contrast, a variety of continuum mixture theories exist based on continuum mechanics 

approaches. Here the objective is to formulate stress-strain relationships from 

fundamental requirements for coordinate and rotational invariance, postulated 

relationships between stress and strain or strain-rate etc.  Examples of this class of 

theories may be found in the review by Massoudi and Boyle(1991) 

 An alternative to continuum theories is discrete element simulation (DES). Two 

types of theories are widely used in conjunction with DES. In the rapid granular regime, 

where collisional interactions dominate, the hard sphere model is used. Here, particle 

volume fractions are low enough that binary collisions may be assumed; collisions may 

also be modeled as instantaneous. Between collisions, particles travel in straight lines; 

particle trajectories change only at collision.  In contrast, dense granular flows are best 

modeled using the soft sphere model (Cundall and Strack, 1979). Here, a particle is 

assumed in enduring contact with several particles over extended periods of time. The 

interaction force is typically modeled using a spring-mass-dashpot type of model for 

normal and tangential forces. A detailed description of this type of model is given in 

Chapter 2. 

 Other experimental, theoretical and numerical works done in studying pure 

granular material are presented in Chapter 3. 
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1.2. Modeling of Gas-Solid Flows 

Theoretical, experimental and numerical studies are being conducted by various 

research groups to understand the gas-solid flow dynamics. A good overview of work in 

this area may be found in Crowe, Sommerfeld and Tsuji (1998).  Hydrodynamic 

modeling of gas-solid flows has been undertaken in one form or another for over forty 

years now. Pritchett et al (1978) simulated a 2D fluidized bed using the two-fluid model 

and showed the formation of bubbles in fluidized bed. Bouillard (1989) used a two fluid 

model to investigate a fluidized bed with any solid blockages inside the bed. There are a 

number of other studies using this approach. Detamore et al (2001) have performed an 

analysis of scale-up of circulating fluidized beds using kinetic theory. Significant 

contributions to the modeling of gas-solid flows are made by Gidaspow and co-workers 

(Ding et al, 1990) who combined kinetic theory for the granular phase with continuum 

representations for the gas phase.  

Glasser et al (1995, 1997, 1998) have performed theoretical studies and computed 

the solutions for one-dimensional and two-dimensional traveling wave solutions for the 

equations of motion for gas and particles in a fluidized bed. They used the Newtonian 

model for the solid stress tensor. They found that the solutions for fully developed two-

dimensional waves capture the bubble phenomenon in fluidized beds. In fluidized beds 

regions of high and low particle concentration are seen to form intermittantly. The 

regions of low particle concentration are known as bubbles and those of high particle 

concentration are called clusters. They have also proposed a non-dimensional number 

whose value indicates whether bubbles form or not. This non-dimensional value depends 
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on the density of the particles, the terminal settling velocity of a particle, gravity and 

particle phase viscosity. 

Cluster formation is one of the important phenomena in gas-solid flows. The 

frequency of inter-particle collision is high in regions of the bed where the particle 

density increases due to fluctuation. Since the collisions are assumed inelastic the 

granular temperature decreases and so does the solids pressure. As a result more particles 

migrate into this region, further increasing the density and resulting in cluster formation 

(Goldhirsch and Zanetti, 1993). They have proposed a mechanism for clustering 

instability and have also developed a formula for characteristic inter-cluster distance. 

 Dasgupta et al (1994, 1998) have developed model for gas-particle flow in a 

vertical channel. For the solid stress tensor they used the Newtonian model. In such 

flows, when the particle number increases, the inertial and viscous effects are dominated 

by the inter-particle collisions. Srivastava et al (1998) have experimentally studied gas-

solid flows in a circulating fluidized bed (CFB) under both stable and unstable operating 

conditions, by using electrical capacitance tomography to obtain particle distribution at 

various cross sections.  

 More recently, combinations of DES and gas-phase continuum simulations have 

begun to appear in the literature. In one of the earliest works in this area, Tsuji et al (1992) 

used the soft sphere model and modified it slightly to simulate the gas-solid flow in a 

horizontal pipe with particles of 10 mm diameter. They captured the formation of plugs. 

They have correlated the plug flow velocity and the height of the stationary deposited 

layer. They reported that the time-step limit proposed by Cundall and Strack (1979) 

resulted in instability in their calculations and proposed to calculate the time-step from 
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the characteristic frequency of a one-dimensional vibration system involving a particle of 

simulation. Nakanishi et al (1991) describe the use of DES to perform gas-solid flow 

simulations for a discharge bin. They used DEM for solid phase and a continuum 

description for the gas phase and discuss the advantages of air jets on the walls of the 

discharge. The air jets push the particles off the walls and force them to exit.  Tsuji et al 

(1993) have also simulated a two-dimensional fluidized bed using a DES soft sphere 

model.  They could capture reasonably the formation of bubbles, slugs and particle 

mixing as observed in experiments.  Rhodes et al (2001) performed a discrete element 

simulation of a fluidized bed and captured cohesion behavior characterized by lumping of 

particles and the formation of fixed structures, among others. Xu and Yu (1997) have 

combined DES and CFD to simulate the gas-solid flow in a fluidized bed. Popken et al 

(1999) compared kinetic theory and discrete element schemes for modeling granular 

Couette flows. They have reported that the two methods give similar results both 

qualitatively and quantitatively. Tsuji et al (2003) have also simulated a two-dimensional 

fluidized bed using DES soft sphere model. They studied the effects of particle size and 

particle density in a fluidized bed and found that better mixing occurs for beds where the 

particle sizes are closer to each other and also when there is little density difference.  Li 

and Kuipers (2003) have studied the effect of various drag correlations on the flow 

structures formed in fluidized beds and report that correlations with non-linear 

dependence on the void fraction exhibit clusters with finer length scales. They have also 

reported the effects of inter-particle inelastic collisions. Tanaka et al (1996) have reported 

conditions for mixing and segregation. 
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       These combined DES and gas-phase simulations all assume that the gas-phase 

control volumes over which computations are done contain many hundreds of particles. 

Thus, they do not resolve the flow around individual particles. Instead, the interphase 

drag is taken from experimental correlations. Over the last few years, a few studies have 

been published which try to represent the flow over individual particles directly without 

recourse to experiments (Patankar et al, 2001; Pan et al, 2001; Joseph et al, 2001. 

However, these are extremely time-consuming and require frequent re-meshing, and only 

a few hundred particles may be simulated for short time scales. 

 

1.3. Scope of the Thesis 

The present work involves developing efficient DES methods for dense granular 

flow and coupling this simulation to continuum simulations of the gas phase flow.  The 

resulting solver is to be applied to detailed simulation of canonical flows relevant to 

bubbling and circulating fluidized beds.  The specific objectives of the proposed work 

are: 

1. To develop a DES capability for spherical particles of variable 

diameter. A soft sphere model is used. 

2. To develop efficient search algorithms and data structures for 

computing inter-particle interaction. 

3. To test the developed capability for pure granular flows to demonstrate 

the validity of the formulation and its implementation.  

4. To couple the discrete element simulation with a  simulation capability 

for the gas phase. The implementation will allow for several particulate 
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phases characterized by particle size.  The coupled solution 

methodology is implemented in NETL’s MFIX code, described in the 

appendix. 

5. Apply the coupled gas-solid flow capability to the investigation of the 

detailed physics of fluidized beds. Of particular interest is the 

investigation of particle density and particle size effects.  

6. Study the effect of the various drag correlations (published in 

literature) on the simulation results. 

The following work has been completed: A soft-sphere model has been implemented. 

Two different search algorithms, No-binary Search (NBS), and Quadtree/Octree search, 

have been implemented. The former provides an O(N) search procedure for like-sized 

particles. The latter is an O(NlogN) procedure, but can admit particles of different sizes.  

Simulations have been performed to observe pure granular behavior in vibrating beds. 

The results obtained match those in published literature.  Various interesting behaviors 

like heaping, round and cusp surface standing waves and kinks have been observed for 

different values of the acceleration parameter. Kink formation in granular beds with 

binary particle size distribution has been studied and horizontal segregation has been 

reported.  

Coupling of DES and gas/liquid flow has been done. The fluid flow computation 

has been done using MFIX, a solver developed for multiphase flows. In order to complete 

the coupled calculations, the void fraction corresponding to the DES particle distribution 

is computed. Interphase drag is computed from experimental correlations. Finally, a 

segregated coupling algorithm for the fluid and solid is used, with several DES time steps 
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constituting one fluid time step. 2D computations of gas-solid flows in fluidized beds 

have been performed. Binary mixture fluidized beds have also been simulated. Effects of 

the drag correlations on the simulation results have also been studied.  

A more detailed description of the discrete element simulation (DES) is described 

in Chapter 2. The hard sphere model and the soft sphere model are explained. The soft 

sphere model is dealt with in detail since it forms the basis of the work done here. 

Various important factors such as the determination of the spring stiffness constant and 

the damping coefficient are described. A procedure to compute the forward time step is 

explained. Efficient search algorithms are presented. 

In Chapter 3. the results obtained for pure granular material simulations using 

DES are presented. Two-dimensional vibrated granular beds have been simulated and the 

results obtained are presented. Phenomena observed in vibrated granular beds, such as 

heaping, round and cusp surface waves and kink formation, have been produced by 

simulations and presented. The results are satisfactory compare well with published 

experiments and existing benchmark simulations. Kink formation in granular beds with 

binary mixures with varying particle sizes and density distribution has been simulated 

and horizontal segregation is reported. 

The gas-solid flow simulation method employed in the present work is reported in 

Chapter 4. An efficient and effective gas-solid coupling is the key to good simulation. 

The gas side continuum theory is explained. The segregated coupling method used to 

couple the DES computation with the continuum gas data is explained. Multiple solid 

time steps are employed for a single fluid time step. Information associated with the 

solid, such as the volume fraction in each fluid cell, the averaged solid velocity and the 
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like, are computed and fed into the MFIX continuum solver. The drag and buoyancy 

interactions between the gas and solid are then computed. The granular temperature is 

computed to provide data to modelers developing continuum theories. Various drag 

correlations that are used to compute the drag exerted by the gas and solid phases on each 

other are discussed and compared. The method is validated by comparison with published 

experimental/simulations of benchmark cases including flow in a particle-laden driven 

cavity and gas-solid flow in a fluidized bed (Tsuji 1993, 1996, 2003; Xu and Yu, 1997; 

Kuipers 2003). The results match published results reasonably well. A Driven cavity 

simulation is also performed for validation. 

In Chapter 5, application and results of the model are discussed. Since empirical 

drag correlations are used to couple fluid and solid, it is important to quantify the effect 

of different empirical drag correlations on the solution.  Fluidized simulations for some 

widely used drag correlations have been performed. It is shown that though the broad bed 

behavior, like the pressure drop and bubble formation frequency do not alter much with 

the drag correlation used, local information such as the void fraction distribution in the 

bed is affected substantially by different drag correlations. This points to the need to 

develop a better experimental and theoretical understanding of gas-particle drag in 

fluidized beds. Granular temperature variations, volume fraction variations and other 

details are studied. Fluidized beds with binary particle mixtures are also simulated and 

segregation/mixing studied. 

Finally, Chapter 6 summarizes the contributions of the thesis and makes 

recommendations for future work. 
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Chapter 2 

Discrete Element Simulation 

 

Particle-particle collision is negligible in dilute gas-particle flows. As the particle 

concentration becomes higher, particles collide with each other and the loss of particle 

kinetic energy due to inter-particle collision cannot be neglected. Thus inter-particle 

interaction becomes important in wall-dominated dilute flows as well as in dense particle 

flows. Since from a macroscopic viewpoint, the solid phase in a fluidized bed behaves 

like a kind of fluid, most researchers in the early ’70s assumed the solid phase to be a 

continuum and modeled a granular flow as a two-fluid flow problem. In analyzing 

systems for which the Bagnold number Ba is greater than 40 and less than 450, particle-

particle interactions and particle-fluid interactions must both be taken into account and 

when Ba is greater than 450 the system is dominated by particle-particle interactions. 

DES is well suited to yield detailed data on the behavior of the granular component of 

these flows. In DES the system is assumed to consist of individual particles and the 

whole system is analyzed by analyzing each particle individually. Apart from the earlier 

theories like Monte-Carlo simulation, which is a statistically based DES method, today 

two models which explicitly consider the particulate nature of granular materials and the 

particulate interactions are widely used for DES. They are the hard sphere model and the 

soft sphere model. The detailed algorithm for gas-solid coupling is discussed later. The 

following sections explain the hard-sphere and soft-sphere models for particle-particle 

and particle-wall interactions. In the present work the soft-sphere model has been used. 
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Hence it will be dealt with in detail. Other details of the simulation, such as the search 

techniques for nearest neighbors, are also described. 

 

2.1. Hard Sphere Model 

 In dilute gas-solid flows where the particulate phase is quite disperse, the inter-

particle collisions are analogous to molecular dynamics in rarefied gases. Though the 

particle collisions are inelastic, energy is re-supplied to the system through particle 

acceleration, gravity, or through collision with a moving boundary. Most published 

literature has considered only binary collisions for rapid granular flow regimes. Particles 

move in well-defined trajectories until collision with another particle occurs. These 

interactions are modeled as instantaneous collisions and the post-collision state of the 

particles is determined from classical dynamics (Campbell, 1982). The hard sphere model 

considers the Newtonian equations of motion in the integral form and is based on the 

impulsive force which is defined by the integral of the forces acting on a particle versus 

time, as seen in Figure 2.1. The equations and detailed description of hard sphere model 

can be found in Campbell (1982) and Crowe et al (1998). 

 

2.2. Soft Sphere Model 

 Most of the commonly observed gas-solid flows are dense particle flows and 

exhibit multiple-particle long-duration contacts. The soft sphere model, proposed by 

Cundall and Strack (1979)  is the most applicable in such regimes.  Though the soft 

sphere model requires more computational power than the hard sphere model, some 

information like the inter-particle force information obtained in the model cannot be 
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obtained in the hard sphere model. Also the hard sphere model breaks down in systems 

with long inter-particle contact durations. 

  

2.2.1. Particle-Particle Interaction 

The soft sphere model starts with the differential equations and the variations in 

momentum and displacement are obtained for arbitrary times as solutions to differential 

equations. The forces acting on each particle in the system are calculated. Using 

Newton’s second law, the acceleration of each particle is calculated. Then, by integrating 

the acceleration in time, new particle states are calculated in terms of the velocity and 

position. When two elastic particles collide in reality, they deform. The soft sphere model 

assumes an overlap displacement δ as shown in Figure 2.2., instead of considering the 

actual deformation.  

The inter-particle contact forces, namely, the normal, damping and sliding forces, 

act on the two particles and are modeled in the soft sphere model using mechanical 

elements like springs, dash-pots, sliders etc, as shown in Figure 2.3. The normal contact 

between two particles is modeled as a linear spring in parallel with a dashpot element. 

The spring provides an elastic restoration force while the dashpot dissipates energy 

during contact. As a result the effective coefficient of restitution is less than one. The 

tangential contact model is slightly more complex. In the tangential model the spring is in 

series with Coulombic friction sliding element. The spring allows the particle to respond 

elastically, while the sliding friction element allows particles to slide against each other. 

The magnitude of tangential force is limited by the sliding element. 
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The effect of these mechanical elements on particle motion appear through the 

spring stiffness constant  k, the  damping coefficient  η, and the  friction coefficient  µf . 

Both translational and rotational motion is considered. The translational motion is caused 

by contact force, interaction forces with the fluid and gravitational force. Only contact 

forces are considered to cause rotational motion. From Newton’s second law, the 

translational and rotational accelerations are given by 

.. Fr g
m

= +
�

� �  

 

where r�  is the position vector of the particle center of gravity, m is the particle mass, 

F
�

is the total force acting on the particle, g� is the gravity vector, ω�  is the rotational 

velocity, CT
�

 is the total torque caused by contact forces, I is the moment of inertia 

(= 22
5

ma for a sphere of radius a). (
.
) denotes the time derivative.  

The contact force can be written as: 

C C DF f f= +
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 where Cf
�

 is the total force on the particle due to inter-particle contact and Df
�

 is the 

force on the particle due to fluid drag and pressure gradient. 

From the spring-damper model, when particle i is in contact with particle j, the 

normal component of the contact force, Cnijf
�

, acting on the particle i  is given by the sum 

of forces due to the spring and dash-pot. Figure 2.4. shows the sign convention. 

.
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I
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where nijδ  is the particle displacement caused by the normal force, nijv� is the normal 

component of the relative velocity and is given by nij rij ijv v n= ⋅� � � , where rijv� is the velocity 

vector of particle i with respect to particle j and ijn� is the normal vector between them.  

j i
ij

j i

x x
n

x x
−
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−
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nijδ is the normal overlap and is the distance traveled by the particle pair with  the normal 

component of the relative velocity in the given time step.  The total overlap at a given 

time is the accumulation of the overlaps since the particles came into contact  

nij nijv tδ = ∆
�

�  

 It may also be computed directly as the difference between the sum of the radii and the 

center to center distance ( )nij i j i jr r x xδ = + − −� �  

 The tangential component of the contact force Ctijf
�

, is given by 

 

where tijδ is the displacement in tangential direction. The suffixes n ad t imply normal 

and tangential respectively. The slip velocity sijv�  is  given by 

 

where r is the radius of the particle. Also 

Cnij nij nijf k vδ η= − −
� �

�

Ctij tij sijf k vδ η= − −
� �

�

( )sij rij nij i j ijv v v r nω ω= − + + ×� � � � � �
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Ctij f Cnijf fµ≤
� �

 

Finally the total contact forces on a particle i due to its neighbors j is the summation of 

forces due to individual neighbor pairs. 

 

2.2.2. Particle-Wall Interaction 

The particle-wall pair is dealt just as a pair of particles, but with a few 

modifications. All the equations mentioned earlier hold when the neighbor particle j in 

the above equations is replaced by wall. In this case, 

0j jv ω= =� �  

Though in terms of equations a particle-wall pair is treated just as a particle-

particle pair, the complexity increases in the way one treats the wall itself. There are a 

few ideas regarding this. One such idea is to treat the wall as a reflecting body. So when a 

particle comes in contact with the wall it is reflected but the velocity is altered by taking 

into account the coefficient of restitution, as seen in Figure 2.5. If there were no wall, the 

particle traveling with initial velocity o
pv would have crossed the domain and traveled a 

distance o
pv t∆ . But when the wall is treated as a reflecting body, the particle still travels a 

distance o
pv t∆ but would remain inside the domain. The time ∆t1, taken to reach the wall 

is calculated and the particle is placed inside the domain at a distance ( )1
o
pv t t∆ −∆ . And 

when the coefficient of restitution  e is to be accounted for, the velocity of the particle 

( )Ci Cnij Ctij
j

f f f= +∑
� � �

( )∑ ×=
j

CtijijCi fnrT
�

�

�
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after contact with the wall would be 1 .o
p pv v e=  And hence the particle would be placed at 

( )1
1pv t t∆ −∆ and the total distance traveled would be ( )1

1 1
o
p pv t v t t∆ + ∆ −∆ . Wall 

movement and other factors can be incorporated by vector manipulation. 

Another way is to replace the neighbor j with the wall. In this case the wall is 

treated as a particle with infinite radius. Thus the normal between any particle and the 

wall would always be the normal to the wall itself. In practice one can only declare a big 

number to represent infinity. A better way of ensuring that the normal of the particle-wall 

pair is normal to the wall is to dynamically declare a particle of the same size as that of 

particle i whenever it comes in contact with the wall. The new particle has the same 

translational velocity as that of the wall and its position is such that it is a radius away 

from the wall, outside the particle bed domain and mirroring the particle (see Figure 2.6). 

Since its position and velocity are fixed, the wall particle effectively acts as a boundary 

condition.  The normal between the particle and the wall particle is same as the normal to 

the wall.    

Another situation of interest is periodic boundaries. Periodic boundaries are 

necessary when simulating large particle systems. Instead of simulating the whole 

system, only a repeating module in the system is identified and simulated. Periodicity is 

imposed by allowing the particles crossing over a boundary to be introduced into the 

system at the opposite boundary. In this case the particles close to the periodic boundary 

are identified at each time step and particles with the same velocity and properties are 

declared on the opposite periodic boundary and outside the particle bed domain. This 

procedure enables the particles at a periodic boundary and inside the particle bed domain 
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to see the particles at the other periodic boundary, thus behaving as they would in a large 

system. 

Let a one-dimensional periodic domain of length L be considered. If a particle is 

close to x=L, then in a periodic case it should feel the influence of neighbor  particles 

close to x=0. Hence at every time step the particles close to x=0 (i.e., say within one or 

two diameters distance from x=0) are identified and positioned at x=L such that a particle 

of position ix  at distance i and within a diameter distance from x=0 is reproduced as i Lx +  

such that it is at a distance i from x=L. That way all particles between x=0 and x=L , 

which are close to x=L will see their complete neighbor list for force calculations. If a 

particle Lx δ+  crosses x=L then it is introduced into the domain at x=0 by changing its 

position to xδ . A similar process is performed for particles near the x=0 region. 

 

2.2.3. Determination of Key Parameters 

  An important issue in the soft sphere model is the determination of  key 

parameters such as the spring stiffness constant k and the damping coefficient η. 

Numerical parameters such as the time step ∆t are determined from these values. 

The spring stiffness k is deduced from Hertzian contact theory. According to the 

Hertzian contact theory, the relation between the normal force nF  and normal 

displacement nδ is given by 

3 2
n nF δ=  

In case of two spheres of the same radius r, 
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where sE  is Young’s modulus for the solid and σs its Poisson’s ratio. In case of the 

particle-wall contact the normal stiffness constant is given by 

2 2

4
3

1 1n
s w

s w

r

k

E E
σ σ

=
− −+

 

where wE  is Young’s modulus  and  σw the Poisson’s ratio for the wall. The tangential 

force and the tangential displacement are related as 

1 22 2
2

s
t n t

s

rGF δ δ
σ
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where Gs is the shear modulus and is related to Es by 

2(1 )
s

s
s
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Thus, for  contact between two particles, kt is given by 

1 22 2
2

s
t nij

s

rGk δ
σ

=
−

 

and for contact between a particle and wall 

1 28
2

s
t nij

s

rGk δ
σ

=
−

 

When physical properties such as Young’s modulus and Poisson’s ratio are 

known. Cundall and Strack (1979) proposed that the damping coefficient η be calculated 

using 2 mkη = . Tsuji et al. (1992) showed that the damping coefficient for a nonlinear 



 20

spring is numerically related to the coefficient of restitution as 1/ 4mKη α δ=  where α is 

a constant related to the coefficient of restitution e. The coefficient of restitution e is 

defined as the ratio of particle velocities before and after the collision. For a system of 

particles e is a fixed constant 

0

ve
v

= −  

The equation of motion for a spring dashpot model is 
.. .

0m x x kxη+ + =  

Under given initial conditions of 
.

0; ix x v= =  at t=0 is given by 

sin( ) exp( )i
o

vx qt t
q

γω= −  
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.

exp( ) cos( ) sin( )i
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q
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q
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The oscillation period is 2 qπ . A particle colliding with another particle at time t=0 

detaches itself at time t= qπ . The velocity when it detaches is 

exp( )o i ov v qγω π= −  

Therefore 

exp( )o
o

i

ve q
v

γω π= − = −  
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Hence for a fixed value of coefficient of restitution  (Tsuji et al, 1993) 

2

2
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1 1ln
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e

η γ

αγ
α

α
π

=

=
+
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These parameters are important in determining the time step ∆t for numerical 

integration. Because contact forces can only be determined after determining which 

particles are in contact, explicit time stepping methods are necessary. Explicit schemes 

impose a limit on the time step due to stability considerations. Smaller time steps ensure 

greater stability but one should choose a suitable time step so that the computational time 

is optimized. Cundall and Strack (1979) suggested that a time step be chosen such that 

2 mt
k

∆ �  

However Tsuji et al (1992) report that the above criterion resulted in instability and 

proposed that the time step be chosen depending on the system frequency. They chose a 

spring mass system with the mass of a particle in the granular flow and the chosen spring 

stiffness constant. The value of the time step is kept smaller than the frequency of the 

system. Another way is to choose the time step such that the highest frequency of the 

system could be integrated accurately (Wassgren, 1996). The smaller of the translational 

and rotational periods of oscillation is chosen. For a 2D problem the maximum number of 

non-overlapping neighbors any particle can have is six. The translational period of a 

particle with six neighbors is 
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2
6trans
m
k

τ π=  

and the rotational period is given by 

22
6rot

I
kr

τ π=  

It can be shown that rot transτ τ�  and the time step is chosen to be one-tenth of rotτ . 

An explicit scheme is used in numerical simulations of above models. The new 

values of translational and rotational velocities and the new position of a particle are 

calculated from the old values. 
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It is important to note that the neighbor list for each particle  is necessary at every time 

step to compute the contact force. This is one of the most time consuming processes in 

DES using the soft sphere model. Faster search algorithms are key to reducing the overall 

computational time. 

 

2.3. Search Algorithms 

2.3.1. N2 Search:  

This is the most easy search algorithm to implement. In this process, neighbors 

are found by calculating the distance between the particle of interest and every other 

particle in the system. Such a search has an operation count of O(N2),  where N is the 

number of particles, and is extremely expensive for large-scale simulations. Some useful 
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alternate search techniques have been explored, of which the most significant are 

presented here.  

 

2.3.2. Quadtree and Octree Search  

The concepts of quadtrees (2D) and their 3D counterparts, octrees, is not new in 

the field of geometric modeling. The concept of quadtrees (octrees) is a hierarchical data 

structure that recursively subdivides a cubic volume into four (eight) smaller cubes called 

quadrants (octants) respectively until a decomposition criterion is met. This 

decomposition process is often presented as a tree of out-degree four (eight) respectively. 

The idea is to divide the plane more efficiently into regions of a maximum desired 

resolution. In short quadtrees and octrees are hierarchical variants of efficient spatial 

occupancy enumeration. 

Typically, to store data,  the domain is meshed into a number of boxes of equal 

size and the data in each such box is stored. As opposed to such standard methods of 

dividing the plane and distributing the data using the grid, which results in unnecessary 

storage of redundant data, quadtrees are a more efficient method for storing as well as 

processing operations. Figure 2.7 shows a pictorial comparison of a standard mesh and a 

quadtree.  Quadtrees have been used extensively for two and three dimensional grid 

generators, though their role there is only to define the objects to be meshed. Presently 

quadtrees are being used not only for defining the objects to be meshed, but also to 

provide an O(NlogN) search algorithm for arbitrary point distributions.  

A good description of the octree search procedures is given in Lohner(1998). In 

this type of search, particles are first arranged in quads which are then searched for 
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neighbors. An array LQUAD(1:7, MQUAD) is defined to store the particles. Here 

MQUAD denotes the maximum number of quads allowed. For each quad IQ, we store in 

LQUAD(1:7, IQ) the following information.  

LQUAD(7,IQ):  < 0 - the quad is full 

     = 0 - the quad is empty 

>0 (<4) – number of particles in the quad 

LQUAD(6,IQ): > 0 - the parent quad the present quad came from 

LQUAD(5,IQ) : > 0 – the position of the present quad in its parent quad 

LQUAD(1:4, IQ) :  for LQUAD(7,IQ)>0 – the points stored in the quad 

for LQUAD(7,IQ)<0 – the quads into which the present quad is 

subdivided 

In each quad a maximum of 4 particles are stored. The quad in which the particles 

lie is known as their parent quad. If a fifth particle falls into a quad, then the quad is 

divided into four sub-quads (known as the children quads) and the old particles are 

relocated into their respective new children quads. Then the fifth particle is introduced 

into the new quad it falls in. If the quad is full again the division of the parent quad into 4 

child quads is repeated until a vacant storage space is found. The process is performed 

such that no quad has more than 4 particles. The next step after allotting all the particles 

into their respective quads is to search for neighbors for a particle. In order to find the 

neighbors for a given particles a search region is created around the particles such that the 

particles falling in the search region contain all the neighbors of the particle of interest. In 

order to find the particles that fall in the search region, the levels of the quadtree are 

traversed, eliminating at the highest possible level all quads that lie outside the search 
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region. Once the quads that overlap with the search region are identified the particles in 

those quads are searched for the neighbors of the particle of interest (See Figure 2.8). 

Lohner (1998) shows the schematic of the process. It is not difficult to see that a quadtree 

is an O(Nlog4N) search algorithm and analogously an octree is an O(Nlog8N) search 

algorithm, where N is the number of particles. For octree, the array structure would be 

LQUAD(1:11, MQUAD) to store these particles, parent quad and other information  

LQUAD(11, IQ): < 0: the octant is full 

                             = 0: the octant is empty 

     > 0: the number of particles stored in the octant 

LQUAD(10, IQ): > 0: the octant the present octant came from 

LQUAD(9, IQ): > 0: the position (1-8) in the octant the present octant came from 

LQUAD( 1:8, IQ): for LQUAD(11, IQ)> 0: the particles stored in this octant 

                               for LQUAD(11, IQ)< 0: the octant s into which the present octant was 

                               subdivided 

 

2.3.3. No-Binary Search 

 No-Binary Search (NBS) algorithm is proposed by Munjiza and Andrews (1998). 

As the name suggests, the NBS algorithm does not involve a binary search at any stage. 

The algorithm is an O(N) search. The performance of this algorithm is not influenced by 

packaging density, while memory requirements are insignificant. The major limitation of 

the algorithm is its applicability to only systems comprising bodies of similar size. The 

computational domain is first discretized into cells such that only one particle fits in a 

cell. Then the particles are all assorted into their respective integerized x, y or z zones 
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using linked lists. To find the neighbors of a particle, its integerized x, y and z 

coordinates, represented by ix, iy and iz respectively, are found; these   indicate the cell 

into which the particle falls. Then, only particles whose integerized coordinates are 

neighbors of ix, iy and iz i.e., particles of the linked lists representing integerized 

coordinates ix-1, ix, ix+1, iy-1, iy, iy+1, iz-1, iz and iz+1 are searched for contact and the 

neighbors are determined. In 2D to find the neighbors of a particle corresponding to (ix, 

iy) only the cells (ix-1, iy), (ix-1, iy-1), (ix, iy-1) and (ix+1, iy-1) need to be searched to 

avoid repeating calculations. Figure 2.9 shows the concept of integerization based on the 

particle coordinates and the neighbor search cells. 

 Figures 2.10, 2.11, 2.12 and 2.13 show the results of a study done to compare the 

various algorithms discussed above. Figures 2.10, 2.11 and 2.12 compare the N2, 

quadtree, and NBS algorithms for a 2D case for particles numbering from 10 to 105. 

Figure 2.13 shows the comparison of N2, octree and NBS algorithms for a 3D case for 

particles numbering from 10 to 105. It can be seen that octree, quadtree and NBS 

algorithms are orders of magnitude faster than the conventional N2 search algorithm. The 

NBS algorithm appears to be faster than octree or quadtree because of the factor of log N. 

But since NBS is applicable only to systems of almost equal-sized particles, developers 

of general purpose DES implementations may wish to use quadtree or octree search 

algorithms. It can be seen that for systems of 103 particles or less, the N2 search is faster 

than quadtree or octree searches. This is because of the absence of the data sorting step 

before neighbor searching.  
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2.4 Closure 

In this chapter, we have described the basic physical model governing soft-sphere 

discrete element models.  These are seen to consist of a spring/mass/dashpot model for 

the contact forces between particles. An explicit algorithm for the integration of 

Newton’s law is used, with the forward step being limited by the spring time constant. 

Neighbor searching consumes a large percentage of the computational time. Three 

different search algorithms are compared, and the NBS and quadtree/octree techniques 

are found to perform best for large particle assemblies. In the next chapter, we apply DES 

to the simulation granular flows in vibrated beds.   
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Figure 2.1. Particle-particle collision in a hard sphere model  
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Figure 2.2. Particle-particle collision in a soft sphere model 
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Figure 2.3. Spring-damper system to model contact forces 
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Figure 2.4. Sign convention for normal force Fn and tangential force Ft 
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Figure 2.5. Particle-wall interaction: particle reflected on contact 
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Figure 2.6. Particle-wall interaction; treating the wall as a particle of finite radius 
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Figure 2.7. (a) Standard mesh versus (b) Quadtree 
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Figure 2.8. Schematic representation of the Quadtree algorithm (from Lohner, 1998) 
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Figure 2.9. Representation of NBS algorithm for 2D case (a) Integerized coordinates and 

NBS mesh with each cell of size that of the particle (b) Cells for neighbor search 
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Figure 2.10. Comparison of various 2D search algorithms 
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Figure. 2.11. Comparison of various 2D search algorithms on a logarithmic scale 
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Figure 2.12. Comparison of various 2D search algorithms on a logarithmic scale for 

particle size over 1000 
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Figure 2.13. Comparison of various 3D search algorithms on a logarithmic scale for 

particle size over 1000 
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Chapter 3 

Vibrated Granular Beds 

 

Although granular materials are commonly found both in natural and industrial 

settings there is no general understanding of their behavior. Particulate systems are 

unique in the sense they exhibit gas-, liquid-, as well as solid-like properties. There are, 

however, important differences between each of these phases that make the behavior of 

granular materials even more unusual.  

 Single particle dynamics as well as beds of particles have been analyzed 

experimentally, and recently numerical studies are being done to reproduce existing work 

and to validate models. Experiments have been done on particle beds subjected to 

external vibrations and interesting patterns have been observed depending on certain 

parameters. Chladni (1787) is one of the earliest observers that sand scattered over a 

vibrating membrane collects into mounds corresponding to vibration anti-nodes. Faraday 

(1831) observed that particles in pile moving in circular convective patterns. Bachmann 

(1940) found that when the average depth of the bed is less than six particle diameters 

(known as a shallow bed) it exhibits  random behavior similar to fluidized beds. A great 

deal of published work on granular beds has appeared in the last 20 years. Savage (1988, 

1989) report noticing convective cells in a particle bed vibrated vertically from bottom 

with the maximum vibration amplitude in the center and the minimum near the side-walls. 

They observed two convective cells similar to vortices, with particles moving up at the 

center and down at the walls. They draw an analogy to acoustic streaming of air and 

explain the convective cell formation. Tanaka et al (1988) developed a mathematical 
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model to describe the particle motion in a hopper. Using their model they could 

successfully simulate hopper flows including formation of bridges, frictional wall effects 

and other flow phenomena. Evesque and Rajchenbach (1989) described the formation of 

inclined surface at the free surface of a particle bed subjected to vertical vibrations of low 

frequency and large amplitude. They noticed the convective transport of particles to the 

top on the upper side of the incline. Douady et al (1998) reported that when a particle bed 

in vibrated about a certain critical acceleration, the bed became unstable and defects were 

generated. Each defect separates solid-like regions oscillating out of phase. Gallas et al 

(1992) performed simulations based on molecular dynamics and have produced 

convection cells in vibrated particle beds. Pak and Behringer (1993) conducted 

experiments and observed that when the value of the acceleration amplitude is greater 

than 1g, convection cells appear. They reported internal convective transport of materials 

balanced by continuous surface avalanches leading to inclined surfaces. They noted the 

occurrence of surface waves on the free bed surface and reported that this happens after 

certain vibration acceleration and amplitude. Knight et al (1993) performed experiments 

to explain size separation in vibrated granular beds. They contradicted the accepted 

theory of size separation due to local rearrangements and proposed that size separation 

occurred due to particle convection cells. Particles move down at the walls and up at the 

center of the bed and the particles larger than the thin downward convecting stream at the 

walls are carried to the top and size segregation occurs. Melo et al (1994, 1995) and 

Metcalf (1996) examined wave patterns on the particle bed surface in detail. They 

reported that when viewed from the top the initially flat surface transitions into standing 

wave patterns at a critical bed acceleration. The surface appears to consist of stripes, 
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squares, pentagons and hexagonal and more complicated polygonal standing waves phase 

separated by kinks. The surface was observed to oscillate at half the bed frequency. 

Knight et al (1996)  performed a detailed study of convective cells in a granular bed using 

magnetic resonance imaging. Brennen et al. (1996) studied experimentally the dynamics 

of the transition between the shallow bed and deep bed (h/d > 6) states. They noted that 

granular material subjected to vertical vibration exhibits at least one sudden expansion at 

critical acceleration amplitude. Hunt et al (1999) have experimentally studied the effect 

of horizontal vibrations on hopper flows. They have reported the funnel flows, inverted 

funnel flows and rat-hole formation  phenomena and the associated acceleration values.   

 Meuth (1999) and Blair (2001) have studied the three-dimensional force 

distributions in a granular medium subjected to uniaxial compression. They studied the 

resulting normal force distribution on the bed walls and reported that the distribution is 

uniform for forces below the mean force and decays exponentially for forces above the 

mean force. An interesting phenomenon in granular material behavior is that they differ 

from fluids in the way they react to shear stresses. They develop shear bands which are 

narrow zones in the material which predominantly react to the applied shear and the 

adjacent regions behave as solids. Meuth et al (2000) have studied this phenomenon 

using magnetic resonance imaging and x-ray tomography and report that the granular 

microstructure is a key factor.   

The behavior in deep beds varies based on the dimensionless vibration 

acceleration amplitude (Γ), defined as: 

2a
g
ωΓ =  
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Here a is the amplitude of oscillation, g the acceleration due to gravity, and 2 fω π= ;  f 

is the oscillation frequency . Bed behavior also depends on the dimensionless bed depth 

defined as (ho/d) where ho is the initial particle bed depth and d is the equivalent particle 

diameter. 

 When the value of the acceleration amplitude is greater than one, convection cells 

appear. Particles move down in a boundary layer along the vertical walls of the container, 

circulate within the bulk of the granular bed to the free surface, and then avalanche 

toward the walls to repeat the cycle. Faraday (1831) was the earliest to report the 

behavior, which has been later reproduced and studied in detail by number of researchers 

including Evesque and Rajchenbach (1989), Ehrichs (1995), Wassgren et al (1996) 

among others. Convection results in a phenomenon known as heaping, which is 

characterized by a mound formed in the container (see Figure 3.1 (a)). For sufficiently 

large particles, the mound appears with the peak in the center of the container and the 

lowest particles at the walls.  

 A less-studied phenomenon is surface wave formation. Two regimes of standing 

waves appear in vibrated deep beds, for different values of the acceleration amplitude and 

they differ in both formation frequency and shape. The formation frequency is observed 

to be either half (f/2 waves) or one-fourth (f/4 waves) of the wall vibration frequency. 

The f/2 waves have smooth rounded peaks (Figure 3.1 (b)) and f/4 waves have sharper 

cusp-shaped waves (Figure 3.1.(c)). Fauve et al (1989), Pak and Behringer (1993), Melo 

et al. (1994, 1995), Miles and Henderson (1990) and Wassgren et al. (1996) have all 

reported these behaviors. 
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 For much higher acceleration amplitudes kinks are formed (Figure 3.1 (d)). A 

kink is defined as a region of particle bed between two oscillations that oscillate out-of-

phase with each other. The resulting bed motion appears as if arches form and collapse in 

time. Douady et al (1990), Melo (1994,1995) and Wassgren (1996) among others have 

published experimental and numerical studies of kink behavior.  

 

3.1. Granular Beds with Single Particle Size 

3.1.1. Theory  

Wassgren (1996) describes in detail the underlying theory of surface wave 

formation using simple analysis of one ball or two balls bouncing on an oscillating floor, 

similar to published analysis of ball bouncing problems studying bifurcation (Holmes, 

1982; Mehta and Luck, 1990; Luck and Mehta, 1993; as cited by Wassgren, 1996). The 

same analysis is reproduced here for ease of understanding the concepts and physics of 

surface wave formation.  

 The theory of a vibrated particle bed can be explained using a simple model 

consisting of a partially inelastic ball bouncing on a flat plate oscillating sinusoidally. 

Agglomerations of particles move coherently thus justifying the representation using a 

single ball and since the particle-wall collisions are assumed inelastic, the inelastic ball 

assumption is valid. The bouncing ball problem explains issues like bifurcation and 

provides a good insight into granular bed behavior. 

 The bottom wall moves sinusoidally as 

 ( ) sin( )b t a tω=  
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where b is the vertical position of the bottom wall, a is the vibration amplitude, ω the  

vibration frequency  in radians, and t the time.  

The trajectory of the ball when not in contact with the base is 

 2 1
1 1 1 1

1( ) ( ) ( )
2 n n n np t g t t v t t p− − − −= − − + − +  

where p is the vertical position of the particle, g the acceleration due to gravity, tn-1 the 

time of the last contact with the base, 1
1nv −  the particle velocity immediately following the 

last contact with the base at time tn-1 and pn-1 the particle position at tn-1. 

 The coefficient of restitution e is defined as the ratio of relative velocity between 

particle and base after the collision to the relative velocity prior to collision.  
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( ) ( )
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1 0
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0 0
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and  0 1e≤ ≤  

 

Using non-dimensional parameters defined as follows in the trajectory equation:     

              
.

2 2 2 2.
; ; ; ; ;b p a b vB P B V t

g g g g g
ω ω ω ω ω φ ω= = Γ = = = = , we get 

2 1
1 1 1 1

1 ( ) ( ) sin sin 0
2 n n n n nVφ φ φ φ φ φ− − − −− − + − +Γ −Γ =               3.1(a) 

              1 1
1 1( ) (1 ) cosn n n nV eV e eφ φ φ− −= − + − + + Γ                                  3.1 (b) 

 

The periodic conditions are 



 47

 
1

1 1
1

2n n

n n

m

V V

φ φ π−

−

= +

=
where m>0; 

The solution (φ*,V*) is given by 
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−
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+

=
 

where (φ*,V*) are the fixed points. The stability of the solutions is determined by 

analyzing the eigenvalues of the linearized Jacobian of equations (3.1.a) and (3.1.b).  The 

critical values of Γ are, 
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These Γ are the bifurcation values. At the first value, in a saddle-node bifurcation, 

two fixed point trajectories appear only one of which is stable. At the second value a 

change of stability occurs and the solution becomes unstable. For mΓ ≤ Γ the particle 

flight time is less than the oscillation period and the particle bounces several times before 

coming to rest on the base. This motion is repeated every oscillation cycle. For 

'
,m m stableΓ ≤ Γ ≤ Γ , a periodic fixed point trajectory exists and the particle motion repeats 
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after every collision. For '
mΓ ≥ Γ  the particle exhibits a period two motion. Thus the 

transition of bed behavior from heaping to surface waves can be explained.  

In case of kinks the same analysis is repeated with two bouncing balls considered 

extremely inelastic. Then the equations 3.1.a and 3.1.b would be 

 

2 1
1 1 1 1

1

1 ( ) ( ) sin sin 0
2

cos

n n n n n

n n

V

V

φ φ φ φ φ φ

φ

− − − −− − + − +Γ −Γ =

= Γ
  

The saddle node bifurcation occurs at  

m mπΓ = (for m>0)  

and the stability bifurcation occurs at ' 2 2 4m m πΓ = +  

 For Γ<Γ1, the two particles move identically and synchronously. When 

'
1 1Γ ≤ Γ ≤ Γ , only one of the two trajectories that are 180o out of phase, is stable. For 

'
1 2Γ ≤ Γ ≤ Γ , the ball has a single trajectory but two flight times and thus the ball motions 

can be out of phase resulting in kinks. 

 

3.1.2. Heaping 

 Side wall convection and heaping have been the most extensively studied vibrated 

bed behaviors. A number of experiments, simulations and theoretical works have been 

reported in literature. Heaping or formation of a mound (see Figure 3.1(a)) occurs 

primarily because of side-wall convection for acceleration amplitude values of 

1.2 2.0≤ Γ ≤  for a non-dimensionalized bed depth of 20. The convection cell pattern is 

such that the particles move down at the walls and move upwards in the center of the bed. 



 49

It should be noted that the downward motion mentioned is not the instantaneous motion, 

but are long-term motions of the particles. For acceleration amplitude values in the 

mentioned range, the granular bed deforms near the walls and the disturbances slowly 

propagate toward the center of the container. The mounds have a rounded free surface 

with the lowest points at the walls and the highest points near the center. The mounding 

behavior is not influenced by perturbation. Of the factors influencing heaping, friction of 

the lateral walls and the friction between the particles are the most important. As the 

friction increases side wall convection increases. We performed two-dimensional 

simulations to observe heaping. The simulation parameters are shown in Table 3.1. 

Heaping has been observed and is shown in Figure 3.6. 

 

3.1.3. Surface Waves 

 When a particle bed is vibrated vertically with an acceleration amplitude greater 

than the range for heaping, standing surface waves are observed. Surface wave formation 

in a vibrated particle bed has been analyzed both experimentally and by simulation. Some 

of the salient features as reported (Miles and Henderson, 1990; Pak and Behringer, 1993; 

Melo, 1994-95; Wassgren, 1996 among others) 

•  The particles in the bed are in a fluidized state during the surface wave formation. 

•  Surface waves appear for two separate regions of  Γ. For a given bed depth of ho/d 

= 10, the first set occurs when 2.2 4.2≤ Γ ≤ and the second set occurs when 

5.8 7.8≤ Γ ≈� . The ranges narrow down as the bed depth increases. 

•  The two sets of waves are referred to as f/2 waves, which appear at the lower 

range of the acceleration amplitude and f/4 waves, which appear at the higher 
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range of the acceleration amplitude. The reason for a gap in the ranges is that 

during these regimes the flight motion undergoes period doubling bifurcation 

resulting in kink formation. 

•  f/2 waves have a flight time less than the oscillation period of the forcing 

vibrations and the f/4 waves have a flight time greater than the oscillation period 

of the forcing vibrations.  

•  f/2 waves take two wall cycles for one surface wave cycle. Figure 3.2 is an 

illustration to explain the f/2 wave cycle. f/4 waves take four wall cycles for one 

surface wave cycle . The f/4 wave cycle is explained in Figure 3.3. 

•  In the f/2 wave regime two kinds of waves exist: round waves and cusp waves. In 

the f/4 regime only the cusp waves exist.  

•  Round waves are characterized by a surface with smooth rounded crests and 

troughs as shown in Figure 3.1 (b). Cusp waves are characterized by a surface 

with extremely sharp peaks as shown in Figure 3.1 (c).   

•  In the case of round waves only the top few layers of particles are fluidized and 

involved in wave formation while the bottom layers of particles move in a 

consolidated manner. In the case of cusp waves the whole bed is fluidized and 

influence the motion of particles within the entire bed.  

•  In the cusp wave formation process, when a wave peak forms, the particles below 

it move up leaving dents with large radii of curvature along the bottom surface of 

the bed.  Also the particles are ejected from the peaks of the cusp waves resulting 

in a significant amount of particle mixing. 
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•  The wave amplitude (defined as twice the maximum distance between a peak and 

the neighboring trough) of all surface waves is proportional to the oscillation 

amplitude. The wavelength also increases with increasing wall acceleration 

amplitude. 

•  The effect of inter-particle friction on the bed behavior is similar to the effect of 

viscosity on fluid behavior. 

 

Two-dimensional discrete element simulations have been performed to observe 

surface waves. The simulation parameters are shown in Tables 3.1 and 3.2. Simulations 

have been performed only in the f/2 wave range of Γ.  Round waves and cusp waves have 

been observed. A snapshot of the simulated round waves is shown in Figure 3. 7. The 

round waves were simulated with 8000 particles, Γ=2.0; the remainder of parameters are 

shown in Table 3.1. Cusp waves obtained from simulations are shown in Figure 3.8. Cusp 

waves have been simulated for a variety of cases:  (i) for 8000 particles with Γ=2.0 and 

the remainder of parameters as shown in Table 3.1, and (ii)  for 3000 particles and 

varying Γ (=2.5 to 4.0) keeping f fixed at 20 Hz. Qualitatively the trends observed are 

same as those reported in existing literature. The wave amplitude increases with 

increasing Γ for a fixed f.  The surface wave wavelength has a weak dependence on the 

oscillation acceleration amplitude.  

Both  round and cusp waves form as a result of the coupling between the base 

oscillations and the particle motion. The two relevant time scales in the formation of the 

waves are the forcing oscillation (the wall oscillation) period and the free fall time of the 
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particles. The resonance condition selects the wavelength and the wave amplitude since 

the particles must alternate between a wave and the neighboring wave.  

Figure 3.8 shows the particle bed shape at two intervals in the bed oscillation 

cycle. For each wall oscillation cycle eight snapshots have been stored at equal intervals 

of time. Figure 3.9 shows 16 such continuous snapshots. In the figure, the particle bed 

goes gradually from an almost flat bed to a bed with cusp waves. Then it falls back to a 

flat bed and the process repeats. Let us call the first rise of the flat bed to form cusp 

waves and back to a flat bed as phase X of the bed motion and the following repetition of 

the process as Phase Y of the bed motion. Though both phases X and Y result in cusp 

formation, they are different from each other. In the regions of the bed where crests are 

observed in phase X of the bed motion host troughs in phase Y of the bed motion and the 

troughs change to crests. Thus standing waves are formed. This can be seen by following 

the line AA in Figure 3.9. One can observe the trough changing to crest. In Figure 3.9 the 

first eight bed shapes correspond to phase X and the next eight correspond to phase Y. 

Phases X and Y together constitute a wave of the bed particles. Since eight snapshots 

equal one wall oscillation cycle, sixteen snapshots mean two wall oscillation cycles. Thus 

the time taken for one oscillation of the cusp wave shown in Figure 3.9 is twice the time 

taken for one oscillation of the bottom wall. Hence the frequency is f/2. In Figure 3.8 the 

two bed positions are chosen one each from the two phases X and Y. Standing wave 

formation can be understood by following AA and BB.  Figure 3.10 shows four bed 

shapes in the whole bed wave cycle and their corresponding particle velocities. One can 

see that it agrees with the Figure 3.3.   
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3.1.4. Kinks 

Of the many interesting behaviors exhibited by vibrated particle beds, an 

interesting phenomenon is that of kink formation. For deep beds vibrated with 

acceleration amplitudes greater than 4.2Γ = , kinks are observed. A kink is defined as a 

region of the particle bed between two sections that oscillate out-of-phase with each other. 

The resulting bed motion appears as if it forms arches and collapse in time. Figure 1(d) 

shows an illustration of a section of a bed with three kinks. The particle bed can be 

visualized as consisting of sections of solid bodies and each section moves up and down 

out of phase with its immediate neighbors. Thus when a section lifts off the bed floor, its 

immediate neighbors hit the bed floor forming an arch. The points of deflection are called 

kinks. 

Various experiments and observations studying kink formation in vibrated particle 

beds have been reported in the available literature. Some important features describing  

kink behavior may be found in  Douady (1989,  Melo(1994,1995) and  Wassgren, (1996):  

•  Kinks only appear after the flight time of the bed undergoes period bifurcation. 

This bifurcation occurs after a critical Γ, which decreases with increasing bed 

depth.  

•  The number of kinks that can exist for a given bed depth and vibration parameters 

is not unique. Perturbation can cause a change in the kink number, which can 

either increase or decrease.  

•  For a given bed depth and acceleration amplitude there exists a minimum distance 

between kinks. 
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•  The above two points indicate that though different number of kinks can exist for 

the same bed there is a maximum limit on this number. 

•  Kinks never occur at the walls. 

•  On either sides of a kink there exist counter-rotating convection cells. The 

particles move down at the kinks and move up on either sides of it. 

•  When kinks occur near the walls the particles move upward indicating that the 

kink convection is stronger than side-wall convection. When kinks occur far from 

the walls side wall convection dominates kink convection and the particles at the 

wall move downwards. 

 

Two-dimensional DES simulations have been performed in the reported range of 

the parameters which influence kink behavior. The simulation parameters used are shown 

in Table 3.3. Kinks have been produced, as shown in Figure 3.11, and the kink behavior 

reported in the literature has been observed. Figure 3.11 shows a bed with two kinks. 

Three distinct sections in the bed can be seen, with the middle section moving up and 

down out of phase with the corner sections. Figure 3.12 shows the gradual oscillation of 

the simulated bed. Starting from a flat state a rise in the middle section can be noticed. It 

reaches a maximum, lifting off from the bed floor while the other two sections are in 

contact with the floor, forming an arch. It then moves down and the bed comes back to 

the flat state. The middle section moves further down pressing into the floor while the 

corner sections lift off forming an inverted of the arch. The corner sections move down 

after reaching a maximum height and the bed returns to the flat state. This whole process 

is one bed oscillation cycle. Sixteen snapshots of the bed for required for one cycle. As 
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eight snapshots constitute one wall oscillation cycle, we may conclude that one kink 

oscillation in this case takes 2 wall oscillation cycles and hence is an f/2 wave. 

The mechanism of kink formation can be explained thus (Douady at al 1989). 

When a section of the bed hits the bottom wall, the particles in that section consolidate 

and in effect "solidify". The particles still in flight avalanche down over this solid-like 

region and away from it. This results in consolidation and hence an effective solid-like 

sections in the neighboring region. The out of phase motion of sections of the bed and 

dilation of the bed during flight results in kink associated convection cells. This 

phenomenon explained by Douady et al (1989) is represented as a schematic in Figures 

3.4 and 3.5. This phenomenon has been observed in simulations. The particle bed shape 

at 4 intervals covering the bed oscillation cycle and the corresponding particle velocities 

are shown in Figure 3.13. One can see the particle motion and the resulting kinks in 

Figure 3.5.  

 

3.2 Granular Beds with Two Particle Sizes 

Industrial applications seldom have granular mixtures with particles of a single 

size. Often there are mixtures with a distribution of particle sizes and the behavior in such 

systems differs from single size particle systems. In particular, since bed vibration is used 

as a mechanism for both segregation as well as mixing, it is critical to understand the 

segregation behavior of binary beds. It is observed that when particles of different sizes 

are heaped in a bottom-wall vibrated box and when the acceleration amplitudes are in the 

heaping regimes, there is percolation effect and the bigger particles rise to the top. Knight 

et al (1993) have performed experiments to explain size separation in vibrated granular 
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beds. They contradicted the accepted theory of size separation due to local 

rearrangements and proposed that size separation occurred due to particle convection 

cells. Particles move down at the walls and up at the center of the bed and the particles 

larger than the thin downward convecting stream at the walls stay at the top and size 

segregation occurs.  This behavior occurs in laterally confined beds for low values of the 

acceleration parameter. 

In the present study, the behavior of binary mixture systems vibrated in the 

surface waves and kink regimes is studied. A mixture of two particle sizes is studied in 

the diameter ratio range of 2-4. All other relevant parameters are given in Table 3.4. Our 

simulations exhibit kinks when acceleration amplitude is in the kink forming range (>4.5) 

for the given bed height (h/d=20).  A variety of interesting behaviors is observed 

depending on the diameter ratio d1/d2. For a size ratio of 2, when the bed is vibrated in the 

kink regime, kinks do form but over a period of time the particles segregate to form 

alternate sections of bigger and smaller particles, called horizontal segregation. The 

pattern is preserved in space and time. This is illustrated in Fig. 3.14.  This behavior may 

be contrasted with that observed in the heaping regime where larger particles rise to the 

top, causing vertical segregation. 

 The horizontal segregation phenomenon is initial condition independent. Three 

different initial conditions were considered: (i) the bigger (red) particles are initially 

sandwiched between two layers of smaller (blue) particles. (ii)   the  bigger (red) particles 

are initially on top of the smaller (blue) particles, and (iii) the bigger(red) particles are 

placed initially  below the smaller particles. The end result shows clear horizontal 

segregation as in Fig. 3.15. The volume fraction of big and small particles in the 
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computational domain is plotted in Fig 3.16, corresponding to the initial setup shown in 

Fig 3.15. We see that there exist regions where the volume fraction of big particles is 

almost negligible compared to that of smaller particles. Such sections alternate with 

regions where the volume fractions of particles of both sizes are comparable. This clearly 

illustrates the concept of horizontal segregation. Horizontal segregation can be explained 

based on the convection cell formation in kinks. Bigger particles accumulate where the 

kinks are formed. The sections that hit the floor periodically forming the kinks are 

regions of high mixing. The regions in between have low mixing and such regions can be 

called as dead zones. The bigger particles steer away from dead zones and group into the 

kink regions of high mixing. Once they enter a convection cell they get trapped in the 

kink convection cell and do not enter the dead zones. Thus we get alternate sections of 

big and small particles and horizontal segregation results.  

This effect is not seen in beds with a single particle size.  Fig. 3.17 shows a kink 

formed in a vibrated granular bed of a single particle size. The simulation parameters are 

given in Table 3.3. Particles have been colored red and blue to observe segregation. The 

red particle layer is initially sandwiched between layers of blue particles. Thorough 

mixing can be observed and no segregation is seen to occur. 

Binary mixtures of diameter ratios up to 4   have also been studied. Tanaka et al 

(1996) have reported conditions for mixing and segregation and formulated the 

segregation criterion as 

2

2 2

1 1
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d

ρ
ρ

  
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  

 

where the subscripts 2 and 1 stand for bigger and smaller particles respectively. 

Simulations have been performed keeping the above criterion in consideration. Particle 
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size ratios were increased from 1 to 4 in steps of 0.25. Horizontal segregation is dominant 

when the particle size ratio is less than 3. Though some horizontal segregation seems to 

take place for a size ratio of 3, the bigger particles sediment to the bottom and do not 

segregate much for higher size ratios. Fig 3. 18 shows that for size ratios of three and 

above, horizontal segregation is not observed. The mass of the particle increases as the 

cube of the diameter, so that for larger size ratios, particle weight effects dominate. 

The effect of density on segregation has also been studied, keeping the particle 

size constant. The segregation criterion proposed by Tanaka et al (1996) has been kept in 

mind in choosing parameters. Density ratios ranging from 1 to 3 have been studied 

keeping the particle sizes constant. The bed height and other simulation parameters are 

given in Table 3.3. It has been observed that irrespective of the initial placement of the 

denser particles, segregation does not occur based on density differences (Figure 3.19.). 

Weight effects are observed when the density ratios reach around 3 and the denser 

particles appear to sediment at intervals, but get pulled into the convection cell and mix 

thoroughly. Size variation plays a more important role than density differences in 

horizontal segregation in binary mixtures vibrated in the kink regime.   

Some interesting observations made in the study of binary mixtures vibrated in 

kink regimes are: 

•  Horizontal segregation occurs as opposed to vertical segregation for size ratios 

less than three. 

•  The segregation behavior is initial condition independent. 

•  Bigger particles cluster at the kink regions and away from the dead zones and get 

trapped in the convection cells. 
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•  For the kinks formed, cusp waves are also observed on the surface. 

•  Horizontal segregation seems to be predominant when the particle ratios are 

below 3, above which sedimentation dominates. 

•  Particle size variation contributes more to segregation than particle density 

variation. 

 

3.3. Computational Time 

DES is a computationally expensive methodology. The computational time 

required depends on the regime being simulated. For the kink regime with about 8000 

particles, about 5 days of elapsed time were required to simulate 10 seconds. The 

computer used was a PC with a 1.7 GHz Pentium 4 processor  with 2 Gb RAM. The 

computational time required for the surface wave regimes was approximately 3-4 days on 

the same machine. Heaping regimes take longer to develop and even longer 

computational times are required.  

 

3.4. Closure 

In this chapter, we have used the discrete element method to simulate particle 

transport in vibrated beds for a range of bed acceleration parameters. The results obtained 

agree well with previously published observations and simulations and capture a range of 

important bed behaviors. The results in this chapter demonstrate that the DES 

implementation is working well, and integration with a gas-phase simulation can be 

undertaken with confidence.  
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Segregation behavior in the kink regime has been studied for binary particle 

mixtures in the diameter ratio range of 1-4. For size ratios less than three, horizontal 

segregation has been observed and explained. This can be used for particle separation and 

sorting, size characterization, and other important phenomena in industry. Density 

differences were found not to influence segregation. 
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Table 3.1. Simulations parameters used to simulate heaping 

 

Γ 1 to 2 

F 20 Hz 

W/d 100 

ho/d 20 

N 2000 

εpp 0.80 

kn,pp 5289* 103 N/m 

vn,pp 8.337 * 10-2 (N.s)/m 

ks,pp 5289* 103 N/m 

µpp 1.0 

Lateral boundaries Walls 

εpp 0.70 

kn,pw 1.058 * 103 N/m 

vn,pw 1.667 * 10-2 (N.s)/m 

ks,pw 1.058 * 103 N/m 

µpw 1.0 

d 1.0 mm 

ρ 2500 kg/m3 

∆t 3.504 * 10-6 s 
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Table 3.2. Simulations parameters used to simulate surface waves 

 

Γ 2.5 to 4 

F 20 Hz 

W/d 200 

ho/d 15 

N 3000 

εpp 0.50 

kn,pp 3.602 * 103 N/m 

vn,pp 2.092 * 10-2 (N.s)/m 

ks,pp 0.0 N/m 

µpp 0.0 

Lateral boundaries Periodic 

εpp 0.70 

kn,pw 7.203 * 103 N/m 

vn,pw 4.184 * 10-2 (N.s)/m 

ks,pw 0.0 N/m 

µpw 0.0 

d 1.0 mm 

ρ 2500 kg/m3 

∆t 4.337 * 10-6 s 
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Table 3.3. Simulations parameters used to simulate kinks 

 

Γ 6.0 

F 25 Hz 

W/d 200 

ho/d 40 

N 8000 

εpp 0.70 

kn,pp 4.701 * 103 N/m 

vn,pp 1.251 * 10-2 (N.s)/m 

ks,pp 0.0 N/m 

µpp 0.0 

Lateral boundaries Periodic 

εpp 0.70 

kn,pw 9.402 * 103 N/m 

vn,pw 2.502 * 10-2 (N.s)/m 

ks,pw 0.0 N/m 

µpw 0.0 

d 1.0 mm 

ρ 2500 kg/m3 

∆t 4.337 * 10-6 s 
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Table 3.4. Simulations parameters used to simulate kinks in binary mixtures 

Γ 5.5 

F 25 Hz 

d2/d1 (big dia/small dia) 2 (ratios of 3, 4 also studied) 

W/d1 200 

ho/d1 36 

N 4500 (N1/N2 = 4000/500) 

εpp 0.70 

kn,pp 4.701 * 103 N/m 

vn,pp 1.251 * 10-2 (N.s)/m 

ks,pp 0.0 N/m 

µpp 0.0 

Lateral boundaries Periodic 

εpp 0.70 

kn,pw 9.402 * 103 N/m 

vn,pw 2.502 * 10-2 (N.s)/m 

ks,pw 0.0 N/m 

µpw 0.0 

d 1.0 mm 

ρ 2500 kg/m3 

∆t 4.337 * 10-6 s 
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Figure 3.1. Illustrations of particle bed behavior (a) Heaping (b) Round surface waves (c) 
Cusp surface waves (d) Kinks (from Wassgren, 1996) 
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Figure 3.2. An illustration showing the motion of particles (round surface waves are 
shown) for f/2 waves over two oscillations. (from Wassgren, 1996) 
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Figure 3.3. An illustration showing the motion of particles (cusp surface waves are 
shown) for f/4 waves over two oscillations. (from Wassgren, 1996) 
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Figure 3.4 An illustration showing the particle bed motion with 3 kinks (indicated by 
arrows) over two oscillation cycles. (from Wassgren, 1996) 
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Figure 3.5. Illustrations showing the mechanism proposed by Douady et al. (1989) to 
explain the minimum kink separation distance and the convection cells associated with 
kinks. 
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Figure 3.6.  Illustration showing the simulation results for heaping formation. Simulation 
is done for 2000 particles, Γ=1.5, f= 20; the remainder of simulation parameters are given 
in Table 3.1. 
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Figure 3.7. Illustration showing the simulation results for the formation of the round 
surface waves. Simulation is done for 8000 particles, Γ=2.0, f= 25; the remainder of 
simulation parameters are given in Table 3.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 72

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.8. Illustration showing the simulation results for cusp wave formation. 
Snapshots of two positions during the oscillations are shown to highlight the alternating 
crests and troughs of the standing wave. See AA, BB. Simulation parameters are given in 
Table 3.2. 
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 Figure 3.9. Illustration demonstrating the 
f/2 cusp waves simulated. The simulation 
parameters are given in Table 3.2. 
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Figure 3.10. Illustration showing the cusp waves and the particle velocities at four 
different instances in a half-cycle of the bed oscillation. 
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Figure 3.11. Illustrations showing the simulation results for kink formation. Two 
snapshots in the motion are shown. Simulation parameters are given in Table 3.3. 
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Figure 3.12. Kink cycle: In one wall cycle 8 kink shots are shown. The whole kink cycle 
takes 16 shots corresponding to an f/2 wave. Simulation parameters are as shown in 
Table 3.3. 
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Figure 3.13. Illustration showing the kink shape and particle velocities at four different 
instances in a cycle. The velocity vectors and kink shapes are in accordance with the 
mechanism proposed by Douady et al., shown in Figure 3.5. 
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Figure 3.14. Illustrations showing the simulation results for kink formation in a binary 

mixture of size ratio 2. The two snapshots show initial setup and the segregated bed. 

Simulation parameters are given in Table 3.4. 
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                      (a)                                         (b)                                                      (c) 

 

Figure 3.15. Illustrations showing the simulation results for kink formation in a binary 

mixture of size ratio 2. The two snapshots in (a), (b) and (c) show initial setup and the 

segregated bed. Simulation parameters are given in Table 3.4. 
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(a) Big particle layer sandwiched 

between small particle layers 

 

 

 

 

 

 

(b) Big particle layer below the small 

particle layer 

 

 

 

 

(c) Big particle layer on top of the small 

particle layer 

 

 

 

Figure 3.16. Illustrations showing the 

volume fraction in the binary mixture 

(size ratio of 2) bed in kink regime. 
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Figure 3.17. Illustrations showing the simulation results for kink formation in a vibrated 

granular bed of single sized particles. Thorough mixing of the particles can be seen. 
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Figure 3.18. Illustrations showing the simulation results for kink formation in a binary 

mixture of size ratios (a) 3 and (b) 4. The two snapshots show initial setup and the 

segregated bed. Simulation parameters are given in Table 3.4. 
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Figure 3.19. Illustrations showing the simulation results for kink formation in a vibrated 

binary mixture granular bed with same particle sizes but two different densities of ratio 

1.75.  Other simulation parameters are shown in Table 3.3. Thorough mixing of the 

particles can be seen. 
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Chapter 4  

Gas-Solid Flows 

 

Gas-solid flows have a number of applications in industry including fluidized bed 

transport, pneumatic transport of pharmaceutical powders and pellets, as well as in 

pulverized coal transport. The study of the dynamics of such a flow aids in better design 

of gas-particle systems. The analysis of gas-solid flows is complex because of the strong 

coupling between the solid and gas phases. The gas flows through the interstitial spaces 

or voids created by the particles, moving the particles and re-arranging the gas flow paths. 

The gas phase exerts a drag force on the solids; the solids exert an equal and opposite 

force drag on the gas. Furthermore, the pressure gradients created in the gas flow give 

rise to pressure forces on the particulate phase. Density differences between the two 

phases cause buoyancy driven flows. Thus the two phases exchange momentum and 

energy.  

Coupling DES with computational fluid dynamics (CFD) offers a powerful way 

to understand gas-solid flow dynamics by accounting accurately for the interactions 

between the two phases. Each particle trajectory in the solid phase is computed using the 

discrete element method while the gas phase as a continuum.  The inter-particle collision 

forces are computed using DES as explained and demonstrated in Chapters 2 and 3. The 

present chapter deals with the calculation of drag and pressure forces on each particle and 

the implementation of DES and gas-phase coupling. In the present formulation, we make 

no attempt to accurately resolve the flow around each particle because of the cost 

involved; the current formulation assumes that there are many solid particles in each fluid 
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cell. Instead, empirical drag correlations available in the literature are used. These 

correlations compute the drag based on the void fraction and gas-solid relative velocities 

and other governing parameters. Though a number of techniques for coupling the two 

phases have been published in the literature (Tsuji 1993, 2003; Xu and Yu 1997; Kuipers 

2003), not all ensure that interaction forces are equal and opposite between the phases. 

When mass and energy are exchanged, these must be reciprocal as well, as shown in Fig. 

4.1. 

 

4.1. Governing Equations: Treatment of the Two Phases 

The gas phase calculations are done using a continuum approach. In the present 

work the software MFIX (Multiphase Flow with Interphase eXchanges) which is a 

general-purpose computer program developed at NETL by Syamlal et al (Syamlal et al 

1994a; Syamlal, 1994b; Syamlal, 1998) is used for the gas side continuum calculations. 

MFIX uses the kinetic theory approach (Lun et al. 1984; Syamlal et al 1988; Ding et al 

1990) to solve for the solid phase. We first describe the governing equations in MFIX and 

then describe the changes due to the inclusion of DES. The governing continuity and 

momentum equations for the two phases are given below. Procedures for their numerical 

solution are given in Appendix A. 

 

4.1.1 Continuity Equation 

Gas Continuity Equation: 

∑
=

=⋅∇+
∂
∂ gN

n
gnggggg Rv

t 1

)()( �ρερε        (4.1) 

Solids Continuity Equation (mth solids-phase): 
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The first term on the left in equation (4.1) and (4.2) accounts for the rate of mass 

accumulation per unit volume, and the second term is the net rate of convective mass flux. 

The term on the right accounts for interphase mass transfer because of chemical reactions 

or physical processes such as evaporation. 

 

4.1.2 Momentum Equation 

Gas Momentum Equation: 
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Here gS is the gas-phase stress tensor, gmI
�

 is an interaction force representing the 

momentum transfer between the gas phase and mth solids phase, and gf
�

is the flow 

resistance offered by internal porous surface. 

Solids Momentum Equation (mth solids-phase): 
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               (4.4) 

Here  smS is the stress tensor for mth solids phase. The term mlI
�

 is the interaction force 

between the mth and lth solids phases. The first term on the left represents the net rate of 

momentum increase and the second the usual convective term. The first term on the right 

represents forces due to the stress tensor, while the second term represents body forces 

(gravity in this case). The last two terms in equation (4.4) represent the momentum 
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exchange between the fluid and solids phases and between the different solids phase, 

from left to right. 

 The interaction forces considered are the buoyancy and drag forces and 

momentum transfer due to mass transfer, since those are the most significant forces for 

fluidized bed applications. Thus, the fluid-solids interaction force is written as  

0 0 0( ) [ ]gm g g gm sm g m m sm m gI P F v v R v vε ξ ξ=− ∇ − − − +
�

� � � �

 

where the first term on the right side describes the buoyancy force, the second term 

describes the drag force, and the third term describes the momentum transfer due to mass 

transfer. R0m is the mass transfer from the gas phase to solids phase-m where 
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The solids-solids momentum transfer mlI
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, is represented as  

][)( smmlslmlmlsmslsmlml vvRvvFI ����

�

ξξ ++−−=  

where Rml is the mass transfer from the solids phase-m to solids phase-l, 
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and  mlml ξξ −=1  

The gas-solid drag correlation for Fsml is derived from correlations relating the 

terminal velocity in fluidized or settling beds with void fraction and Reynolds number. 

Details may be found in (Syamlal et al 1994a). 

  The solids stress tensor is required to close the above equation set. The kinetic 

theory relations used in MFIX for computing the solids stress, including expressions for 
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the solids pressure and the granular temperature, may be found in (Syamlal et al 1994a).  

The solids stress tensor calculations are not required in the present work as the kinetic 

theory for solid phase calculations is replaced by DES. In the present work Eqns. (4.2) 

and (4.4) are also eliminated in favor of a discrete element formulation.  Thus, the solids 

volume fraction and solids velocity are directly computed by using DES to find particle 

velocities and positions, and locating the particles in the computational cells for the gas. 

The procedures for doing this are described below. 

   

4.2. Coupling DES with Continuum Simulations 

4.2.1. Interphase Drag Force Calculation 

Though a variety of interaction forces couple the gas and solid (Basset force, 

Magnus lift force, drag force etc.) the focus of the present work is on the simulation of 

gas-particle flows for fluidized bed applications. Two primary interaction forces which 

are dominant for this application, interphase drag, and pressure force/buoyancy, are 

considered.  The calculation domain is discretized into cells suitable for the fluid 

calculation. Typically, a fluid cell must contain many particles so as to be consistent with 

the volume averaging concept used in the gas phase. Since the gas-phase mesh is much 

larger than the individual particle, it is not possible to resolve the drag numerically.  The 

interphase drag is computed from experimental correlations for fluidized beds.  

The drag force is expressed in the form: 

( )D gs s gF F V V= −  

as a product of a gas-solid drag coefficient and the interphase velocity difference, where 

sV  is the solid velocity and gV  is the gas velocity. Various researchers have given 
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empirical formulae to calculate the drag coefficient gsF .  We consider a few important 

contributions in turn. 

The Ergun equation (1952)  is a widely know gas-solid drag formula which is 

typically applied to packed beds as the correlation is generated using packed bed pressure 

drop data. But for low volume fraction calculations the Ergun equation is inadequate. An 

alternative drag correlation is then required. 

Terminal velocity analysis in a fluidized bed or a settling bed is an alternative for 

the inadequacy of Ergun equation. The terminal velocity is expressed as a function of 

void fraction and Reynolds number (Richardson and Zaki 1954, cited by Syamlal et al 

1994a). Syamlal and O'Brien (1994a) derived a following formula for converting 

terminal velocity correlations to drag correlations and have implemented it in MFIX. The 

drag correlation MFIX uses is: 

2
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where  Vrm is the terminal velocity correlation for the mth solid phase. It cannot be 

derived an explicit formula and can only numerically be calculated from the Richardson 

and Zaki correlation. Garside and Al-Dibouni[(1977) developed a  correlation which can 

be used to calculate Vrm. 
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DS  is the single-sphere drag function. Of the numerous expressions 

available for CDS, MFIX chose the following simple formula proposed by Dalla 

Valle (1948),  
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where ε  is the void fraction and Re the Reynolds number. 
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Kuipers et al (2003) have summarized a number of drag correlations which are now 

described. The drag force on a single particle in an infinite flow is given by 

21
8s d p f s sF C d v vπ ρ= � �  

The drag force on a single particle in a particulate flow is given by 

( ) ( )21
8s d p f s g s gF C d u u u u fπ ρ ε= − −� � � �  

where  0.68724(1 0.15Re ) / ReDC = +   when Re 1000≤  and 

0.43DC =  when Re 1000� ; here Re s g pu u dρε
µ

−
=
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Different forms of the function ( )f ε  have been used by different researchers. These are 

given below. 

Wen and Yu (1996):  

( ) 4.7f ε ε −=  

Felice (1994): 
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Happel (1958): 
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In all the above mentioned formulae, ε  is the void fraction, Re is the Reynolds number, 

u�  is the velocity vector, fρ  is the gas density  and pd is the particle diameter. 
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Many DES time steps are done during a fluid time step. After the completion of 

the DES time stepping, the solid particles are located on the fluid background mesh. The 

void fraction and the averaged solid velocities in each fluid cell are computed. This 

information is used to calculate the gas-solid drag force in each cell using any of the 

above mentioned drag correlations. The net drag on the solid phase in each cell is equal 

to the net drag on the gas phase in the cell. The net solids drag is distributed to each 

particle in the cell based on the ratio of the particle volume to total solid volume in the 

cell. If ijmV  is the volume of a particle i of solid phase m in the cell j, and DjF  is the total 

drag force on the solid mass of volume sV  in the cell, the drag DijmF on the particle is 

given by 

pijm pijm
Dij Dj

s pijm

V V
F F

V V
  

=     
  

∑
∑

  

For a single solid phase and same sized particles, 

1
Dij DjF F

N
 =  
 

 

where N is the number of particles in the cell. 

 

4.2.2. Void Fraction Calculation  

To calculate the drag force on the solid mass in each cell, the value of the void 

fraction in the cell must be known. The domain is meshed into computational cells for the 

fluid continuum calculations. In the flow at every time step particles enter and leave a cell. 

Each particle from the DES simulation must be located within the fluid control volume; 

the sum of all particle volumes in the cell yields the solid volume fraction. It is useful to 
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find the cell values of solids volume fraction and velocity classified by particle  size. This 

requires the computation of several solids volume fractions per cell. 

If pimjV  is the volume of a particle of index i of a size representing phase m in a 

fluid cell j, then the total solid volume smjV of the phase m in the cell j is 

smj pimj
i

V V=∑   

The corresponding volume fraction is then given by 

smj
smj

j

V
V

ε =  where the cell volume jV x y z= ∆ ∆ ∆  

where x∆ is the length of the cell in x-direction, y∆  is the length of the cell in y-direction 

and z∆  is the depth of the cell in Z-direction. For 2-dimensional simulations, z∆  is taken 

as one particle diameter in Cartesian coordinates and as one radian in cylindrical 

coordinates. 

The total solids volume fraction in the cell is given by the sum of the solids 

volume fractions of each phase in the cell 

sj smj
m

ε ε=∑   

Since the sum of the various solids volume fractions and the fluid volume fraction 

must be equal to unity, the thj  cell void fraction jε can then be obtained from the solids 

volume fraction as:  

1j sjε ε= −  

Once the volume fraction is made available to MFIX, blockage effects are 

automatically taken care of. 
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4.2.3. Solids Velocity Calculation 

Another variable required in the drag force calculation is the solid velocity of 

each particle size group in each fluid cell. DES gives the velocity of each individual 

particle at the end of every solid time step. The particle velocities must be averaged in 

each cell to obtain a representative cell solid velocity. In the present work, the volume- 

averaged solid velocity is computed and stored at the cell centers.  

If pimjU  is the velocity of particle i of solid phase m in cell j, then the volume 

averaged solid velocity smjU  of phase m in the cell is given by  

pimj pimj
i

smj
smj

V U
U

V
=
∑

 

This value is used in the calculation of the drag force. It should be noted that the 

value thus obtained is a cell-center value where as the numerical scheme follows the 

convention of velocities stored at the face center. To obtain the face center value the 

corresponding neighbor cell center values are weighted averaged across the face. 

 

4.2.4 Pressure Force Calculation 

 The other important force that is exerted by the gas on the solid particles is the 

pressure force/buoyancy. At every fluid time step the gas side continuum equations are 

solved and the gas side quantities like gas velocity and pressure are obtained. Pressure is 

stored at the cell center. Thus the pressure exerted by the gas in each cell is obtained and 

stored at its center. Correspondingly, a pressure force is exerted by the gas on all the solid 

particles in that cell. The pressure force on the cell in a given direction is the difference of 

the pressure on the faces of the cell normal to the direction, times the average cross 
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sectional area of the cell normal to the direction. Consider a cell and the pressure force on 

the cell in one dimension (in y-direction) as shown in Figure 4.3. Let the cell dimensions 

be x∆ , y∆ , z∆ in the x, y and z directions respectively. The pressure in the cell is pP . 

The pressures in the north and south cells are nP  and sP  respectively. Then the pressure 

on the north face would be 1 2
n pP P

P
+

=  and the pressure on the south face would be 

2 2
s pP P

P
+

= . The y-direction pressure force on the cell would be ( )2 1cP P P x z= − ∆ ∆  ( z∆  

for a Cartesian analysis is the diameter of the particle itself). It should be noted that the 

pressure averaging across the cells done so far is done assuming structured uniform mesh 

for simplicity of explanation. For non-uniform meshes weighted averaging should be 

done based on the cell dimensions. This pressure force should be distributed to all the 

particles in the cell. For a particle j of solid phase m in the cell, the pressure force jmP  is 

given by 

j
jm m c

m

V
P P

V
ε=   

where m
m

V
x y z

ε =
∆ ∆ ∆

 is the solid volume fraction of the phase, jV  is the volume of the 

particle and mV  is the total volume of the solid phase in the cell. 

 It can be seen that for a static fluid, if the north and south cells considered were at 

heights 1h  and 2h , 2 1h h y− = ∆ , then jmP  would be 
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( )

( )

2 1

2 1

j jm
jm m c

m m

j jm m
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m m

jm j

V VVP P P P x z
V x y z V

V VV VP g h h x z g x y z
x y z V x y z V

P gV

ε

ρ ρ

ρ

= = − ∆ ∆
∆ ∆ ∆

= − ∆ ∆ = ∆ ∆ ∆
∆ ∆ ∆ ∆ ∆ ∆

=

             

 

Here, ρ is the gas density. Combined with the -ρsg term in the particle equation of motion,  

the buoyant force on the particle is obtained. 

 

4.2.5 Coupling Algorithm for Gas-Solid Flows: Time Step 

The intent of the present work is to use a sequential and iterative procedure for 

coupling the two calculations. Due to the limitations in the soft sphere model the solid 

time steps typically are very small because of the high stiffness constants. We wish to use 

far larger time-steps for the gas than for the solid, since the gas has no explicit time-

stepping limitations. At every gas-phase time-step, several DES sub-steps are taken. The 

volume fraction and averaged solid velocity are computed at the end of the sub-steps. The 

gas flow is assumed stationary at the old values during this sub-stepping.  Then the gas 

flow is iterated to convergence within the time step. The procedure is repeated until the 

desired time interval is covered. 

Figure 4.2 shows a flow chart of the coupling procedure described thus far. 
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4.3. Validation of DES-Gas Phase Coupling  

4.3.1. Fluidized Bed Validation 

The method developed has been validated for a few simple cases using analytical 

solutions. These simple tests ensured that momentum was being conserved and that 

particle buoyancy and terminal velocity were being correctly computed; the results are 

not presented here. We also computed gas-particle flows in a fluidized bed for 

comparison with the published results of Tsuji et al (1993, 2003) and Xu and Yu (1997). 

The results compared satisfactorily; details are presented below. 

A fluidized bed is a gas-particle system used for large-scale chemical reactions. 

Typically it is a cylinder containing particles, which act as chemical catalysts. Gas is 

injected from the bottom of the chamber. The particles float freely and move in the flow 

thus mixing well and aiding the necessary chemical reactions. A good understanding of 

the behavior of the system is important for better design of the fluidized bed.  

For validating the DES-MFIX coupled code, two-dimensional simulations have 

been performed with the intention of reproducing the work of Tsuji et al (1993) and Xu 

and Yu (1997). Tsuji et al (1993) had experimentally validated their simulations. In order 

to accurately perform a two-dimensional experiment they confined the gas flow between 

two parallel plates with a gap to fit one layer of particles. The walls in contact with the 

particles have been made with negligible friction. Bubble formation frequency,  pressure 

drop across the bed and bed dynamics were recorded. Simulations were performed to 

reproduce the experiment and satisfactory comparisons between the two were reported.  
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4.3.1.1.  Fluidized Bed Simulation Parameters 

Two-dimensional simulations have been performed. All the simulation parameters 

are taken from Tsuji (1993). A chamber of 15 cm width and 90 cm height has been 

simulated. The particle bed height at rest is 22 cm. A single central jet of air is injected 

from the bottom wall. 2400 spherical particles of 4 mm diameter each have been used. 

The minimum fluidization velocity of this system is about 1.85 m/s. Simulations have 

been performed for various superficial gas velocities ranging from 2 m/s to 2.6 m/s. Other 

simulation parameters are listed in Table 4.1. The flow field was divided into 15X50 

rectangular cells of 10X20 mm (width and height) each. In a packed condition roughly 

about 9 particles would fit in each cell. MFIX drag correlation is used for the purpose. 

It is important to correctly resolve the depth dimension when doing two-

dimensional gas-solid computations. In the present work, the drag correlations used for 

gas-particle interaction assume spherical particles rather than cylinders. The depth of the 

computational domain is taken to be equal to the diameter of the particle. Both gas and 

particles are confined to move only in the plane of the calculation. 

        

4.3.1.2. Fluidized Bed Simulation Results 

At low inlet jet velocities the bed expands but no circulation is observed. As the 

inlet jet velocity increases the particles in the center rise and slug formation can be 

noticed. At higher inlet jet velocities, formation of a bubble takes place pushing down the 

particles at the walls and rising in the center. Thus we get two circulation zones on either 

side of the bubble path in the center. At much higher inlet jet velocities, the center 

particles rise fast and almost burst out of the top surface, falling on either side and 
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moving down along the walls. This is known as the spouting phenomenon. Substantial 

mixing occurs in the higher inlet jet velocity cases. The above mentioned dependence on 

the inlet jet velocity has been observed in the simulations for superficial gas velocity 

ranging from 2 to 2.6 m/s. The bubbling phenomenon can be seen at superficial gas 

velocity of 2.6 m/s and is shown in Figures 4.4. (a), (b) and (c). The particle motion as 

well as the corresponding velocity vectors are shown. The particles have been colored in 

layers of red and blue to show mixing and particle paths. Pressures values and pressure 

drops across the bed at various heights from the bed floor have been computed and are 

shown in Figures 4.7. and 4.8. Tsuji et al (1993) reported a pressure drop range of 

roughly 2000 Pa across the bed (Figure 4.9). It can be seen in Figures 4.7 and 4.8 that the 

present simulations also report a pressure drop range of 2000 Pa across the bed. The large 

pressure fluctuations in a fluidized bed are caused by bubbles and slugs that form and 

collapse at regular intervals. From the various pictures and times shown in Figures 4.5 (a) 

and (b) it can be seen that bubble forms at roughly a frequency of 2 per second, i.e., a 

bubble forms and collapses every half a second. Ten snapshots of the fluidized bed 

between the third and fourth second show the rise an fall of two bubbles. The ten snap 

shots are equi-spaced at 0.1 seconds. This shows that the bubbling frequency is roughly 2 

per second. From Figures 4.7. and 4.8 also, it can be seen that the pressure fluctuation 

frequency is again about 2 per second thus supporting the idea that bubbles are a major 

cause for the large pressure fluctuations in a  fluidized bed. It has been reported from 

experiments that the bubble does not rise upward along the central axis of the column. It 

sways laterally, leaving an “S” shaped wake. This has also been captured in the present 

simulations as can be seen in Figures 4.4., 4.5 and 4.6.  In Figures 4.6 (a) and (b) the local 
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velocity vectors are shown along with the particles. An insight into the particle motion 

and the velocity change can be obtained from Figures 4.6. (a) and (b) which show the 

collapse of a bubble and its re-formation. Most of the mixing occurs away from the base 

where there is more fluidization and hence more circulation. Near the base and the walls 

the particles become consolidated and do not mix with the flow. Overall, the predicted 

flow patterns, time scales and velocities match those of Tsuji et al (1993) relatively well. 

 

4.3.1.3. Computational Time 

Simulations of fluidized beds with about 2400 particles, took about 1-2 days 

elapsed time t simulate 10 seconds. The computer used was a PC with a 1.7 GHz Pentium 

4 processor with 2 Gb RAM. The time required in the case of a fluidized bed is smaller 

than the time required for pure DES simulations shown in Chapter 3. This is primarily 

because  (i) fewer particles are simulated in a fluidized bed case (ii) the particle size is 

4mm as opposed to 1mm in vibrated beds (the particle mass scales as d3) (iii) the spring 

constants used are roughly 1/5th those used in vibrated bed cases. The above reasons 

contribute to the solid time step for the fluidized bed case, which is bigger by about two 

orders of magnitude than the one for vibrated beds. 

  

4.3.2. Fluid-Solid Driven Cavity Validation 

 A fluid-solid top wall driven cavity has been simulated for 40 seconds of flow 

The simulation parameters are shown in Table 4.2. The domain is a square box of 

3cmX3cm dimension. The top wall is pulled in the positive x-direction with a velocity of 

3cm/s. The Reynolds number for the simulation is chosen to be 100. 300 particles of 1 
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mm diameter are initially stacked on the bottom wall of the cavity. The particle and fluid 

densities are kept equal and the simulation is done for the zero gravity condition. The 

instantaneous particle positions and velocities of the 300 particles used in the flow are 

shown in Figure 4.10. Clearly a closed loop flow can be seen. It can also be noticed that 

the velocities are minimal near the left bottom corner and right bottom corner of the 

cavity in regions where the fluid is stagnant. Also the flow cell is pushed more to the 

right of the cavity as the top wall is pulled in the positive x-direction. Due to the same 

reason, the core of the loop where the fluid and particle velocity would be negligible is 

also shifted more to the top right of the cavity. This can be seen in Figure 4.11 (a), where 

the trajectory of 12 particles is shown by interconnecting their instantaneous velocities. In 

Figure 4.11. (b) the trajectory of 12 particles is shown by plotting the instantaneous 

particle positions during the simulation time of t = 0s to t = 40s.     

 

4.4. Closure 

Important aspects of the solution methodology for gas-solid flow simulations have 

been presented in this chapter. Governing equations for the gas phase have been 

presented. The solid phase is solved using the DES presented in Chapters 2 and 3. The 

solution procedure for gas continuum equations involves a finite volume discretization 

with second-order schemes for convection and diffusion terms and is described in 

Appendix A. The gas-solid coupling methodology has been described in detail. The drag 

force formulation, based on the available empirical correlations, has been explained. The 

procedures for determining the solid void fraction and solid velocity to compute the drag 

force have been discussed. The procedure for coupling multiple time steps of the particle 
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simulation with large time steps for the gas-phase simulation has been explained. The 

methodology has been validated against published simulations of fluidized beds reported 

in literature. Benchmarked 2-dimenaional bubbling fluidized bed simulations are done. 

The macro quantities like the bed pressure drop and the bubbling frequency reported 

experimentally and numerically have been computed and compared. The agreement has 

been found to be satisfactory. A top wall driven cavity has also been simulated and a 

qualitative analysis of the results shows satisfactory performance. The code can now be 

used to simulate newer and more complex cases for better understanding of gas-solid 

flows. The next chapter shows the application of the code in analyzing drag-correlation 

used and in simulating fluidized beds with binary mixtures.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 103

Table 4.1. Simulations parameters used to validate the fluidized bed simulations against 

Tsuji (1993) 

 

Bed Dimensions (W X H) 150 mm X 900 mm 

Fluid mesh size 15 X 50 

Cell dimensions 10 mm X 20 mm 

Particle bed height at rest 220 mm 

Minumum fluidization velocity 1.8 m/s 

Inlet jet velocity 2.6 m/s 

Number of Particle: N 2400 

Particle diameter:  d 4mm 

Particle density: sρ  2700 kg/m3 

Gas density: gρ  1.205*10-3 kg/m3 

Gas viscosity: gµ  1.80*10-5 N/m2 

Particle coeff. Of restitution: ε 0.9 

Particle stiffness coeff: k 800 N/m 

Particle damping coeff: v 0.18 (N.s)/m 

Particle friction coeff: µf 0.3 

Ratio of fluid time step to particle 

time step:  f

s

t
t

∆
∆  

3

4

5*10 25
2*10

−

− =  
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Table 4.2. Simulations parameters for fluid-solid driven cavity simulations 

 

Box Dimensions (W X H) 3 cm X 3 cm 

Fluid mesh size 25 X 25 

Top wall velocity 3 cm/s 

Number of Particles: N 300 

Reynold’s number: Re 100 

Particle diameter:  d 1 mm 

Particle density: sρ  750 kg/m3 

Gas density: gρ  750 kg/m3 

Gas viscosity: gµ  0.675 N/m2 

Particle coeff. Of restitution: ε 0.9 

Particle stiffness coeff: k 800 N/m 

Particle damping coeff: v 0.18 (N.s)/m 

Particle friction coeff: µf 0.3 

Ratio of fluid time step to particle 

time step:  f

s

t
t

∆
∆  

3

5

5*10 100
5*10

−

− =  
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Figure 4.1. Gas-solid coupling scheme 
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Figure 4.2. Flowchart for MFIX-DES coupling 
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Figure 4.3. Illustration for pressure force calculation 
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Figure 4.4. (a). Bubbling fluidized bed 

simulation results showing the particle 

position and the corresponding velocity 

vectors. (Continued in next page). The 

superficial gas velocity is 2.6 m/s. 
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Figure 4.4. (b). Bubbling fluidized bed simulation results showing the particle position 

and the corresponding velocity vectors. (Continued in next page). The superficial gas 

velocity is 2.6 m/s. 
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Figure 4.4. (c). Bubbling fluidized bed simulation results showing the particle position 

and the corresponding velocity vectors. (Continued in next page). The superficial gas 

velocity is 2.6 m/s. 
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t = 3.0s

t = 3.1s

t = 3.2s

 

t = 3.3s

t = 3.4s

t = 3.5s

 

 

Figure 4.5. (a). Bubbling fluidized bed between 3 and 4 seconds of simulation. Two 

bubbles form and collapse. (Continued in next page). The superficial gas velocity is 2.6 

m/s. 
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t = 3.6s

t = 3.7s

t = 3.8s

t = 3.9s

t = 4.0s

 

 

 

 

 

 

 

 

Figure 4.5. (b) Bubbling fluidized bed between 3 and 4 seconds of simulation. Two 

bubbles form and collapse in 1 second. Bubble swaying is also shown. The superficial 

gas velocity is 2.6 m/s. 
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Figure 4.6. (a). Bubbling fluidized bed showing the local velocity vectors to explain the 

particle motion and velocity changes that occur when bubbles form and collapse. 

(Continued in next page). The superficial gas velocity is 2.6 m/s. 
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Figure 4.6. (b). Bubbling fluidized bed showing the local velocity vectors to explain the 

particle motion and velocity changes that occur when bubbles form and collapse. The 

superficial gas velocity is 2.6 m/s. 
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Figure 4.7.  Pressure (Pa) vs Time (s) in a fluidized bed. Pressure at various heights from 

the bottom of the bed. The various plots shown are for pressure at a height (the height in 

cm from the bed floor is denoted by the number beside P in the legend) from the bed 

floor. 
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Figure 4.8. Pressure drop (Pa)  vs Time (s) in a fluidized bed. Pressure at various heights 

from the bottom of the bed. The pressure drop range across the bed can be seen to be 

about 2000 Pa. The various plots shown are for pressure drops between two heights (the 

height in cm from the bed floor is denoted by the number beside P in the legend). 
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Figure 4.9. Pressure fluctuation from (a) experiment and (b) simulation reported by Tsuji 

(1993). The pressure drop across the bed, of about 2000 Pa can be seen. 
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Figure 4.10. Instantaneous particle positions and velocity vectors in a wall-driven cavity. 

The simulation parameters are shown in Table 4.2. 
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Figure 4.11 (a). Trajectories of 12 particles during the simulation time t= 0s to t=40s 

seconds for wall- driven cavity. The simulation parameters are shown in Table 4.2. 
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Figure 4.11 (b). Particle positions of 12 particles during simulations time t = 0s to t = 40s 

seconds for a top wall driven cavity. The simulation parameters are shown in Table 4.2. 
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Chapter 5 

Fluidized Bed Simulations 
 

 A fluidized is a bed of fine particles through which a fluid is passed upward from 

the bottom of the bed, typically though a single inlet jet in the center. If the flow rate of 

the fluid is low, the particle bed acts as a porous medium and fluid merely percolates 

through the voids created by the stationary particles. As the fluid flow rate increases, the 

particles move apart and a few of them vibrate in restricted areas. This is known as an 

expanded bed. As the flow rate is further increased the particles get suspended in the 

upward moving fluid. This occurs because the drag exerted by the fluid on the particle 

counter balances the weight of the particle. This is known as a minimum fluidized bed 

and the velocity of the inlet jet is referred to as the minimum fluidization velocity. A 

further increase in the flow rate results in more agitated movement of the solids and 

formation of bubbles and channels occurs. Such a bed is called a bubbling fluidized bed. 

On further increasing the flow rate the particles get dispersed and the solids get carried 

out of the bed. This is referred to as a fluidized bed with pneumatic transport of solids.  

Fluidized beds are very important in the chemical industry and are used for 

chemical conversions. A variety of applications exist namely, coal gasification, particle 

coating, transportation, mixing of fine powders, heat exchange, drying, particle growth 

and gas-solid reactions. Due to practical hurdles, fluidized beds used for these processes 

are difficult to study experimentally. For example, the coal gasification process is 

extremely difficult to see as the bed is soon coated with soot; as a result, particle motion 

and reaction dynamics cannot easily be studied. In such situations simulations of many of 
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these processes helps in better understanding the dynamics of a fluidized bed and also 

aids in better design and analysis. 

 The focus of this chapter is the influence of drag correlations on gas-solid flow 

predictions. As explained in Chapter 4, the choice of drag correlation is critical to 

determining the interphase drag force between the gas and solid. Some of the drag 

correlations published in the literature were listed in Chapter 4. In this chapter, gas-solid 

flows are computed using some of these published correlations and both local flow 

details and global quantities such as bed pressure drops are compared. In addition, one of 

the drag correlations is used to compute segregation in a fluidized bed containing a 

mixture of particles of two sizes. Comparisons of segregation for two different inlet jet 

velocities are made. 

 

5.1 Comparison of drag correlations 

 A non-dimensional analysis is done to compare the drag correlations. 

 

5.1.1. Non-dimensional analysis 

 A one-dimensional analysis is done in the y direction. Consider a particle falling 

in a stationary fluid in a tank of height L. The force balance equation for the particle is 

( ) ( )s
s gs g s g s

v F v v g
t

ρ ρ ρ∂ = − + −
∂

                                                                                  (5.1) 

where the left hand term is the force on the particle. The first term on the right hand side 

is the drag force on the particle and the second term in the right hand side accounts for 

buoyancy.  Here, sρ is the solid particle density, gρ  is the gas density, sv  is the solid, 
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particle velocity, gv  is the gas velocity, gsF  is the drag coefficient and g  is the 

acceleration due to gravity.  

Defining non-dimensional parameters as 

* s
s

t

vv
v

=  

 * g
g

t

v
v

v
=  

* tvt t
L

=  

 Here tv  is the inlet jet velocity. The non-dimensional form of Equation 5.1 would be 

*
* *

* 2( )gs g ss
g s

s t s t

LFv gLv v
t v v

ρ ρ
ρ ρ

−   ∂ = − +   ∂    
                                                                           (5.2) 

 For the drag correlations implemented a comparison of the non-dimensional term 

gs

s t

LF
vρ

 
 
 

 is first done to understand the differences in the basic drag correlations.   

 

MFIX Drag Correlation 

For  the MFIX drag correlation  (Syamlal et al, 1994) 
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, denoted by Dm,  is given by: 

2

Re3
4

s g g m
m DS sm

rm pm s t rm

L
D C V

V d v V
ε ε ρ

ρ
 

=  
 

 

 



 124

Tsuji Drag Correlation 

For the Tsuji drag (Tsuji et al, 1993) correlation, we have the following value of 

dimensionless drag coefficient. 

When 0.8ε ≤ , ( ) [ ]2

1
150(1 ) 1.75Regs

p

F
d

µ ε
ε

ε
−

= − + . 

The corresponding value of gs

s t
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Wen and Yu Correlation 

For Wen and Yu’s (1966) correlation  
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In the present comparison ( ) 4.7f ε ε −=  is shown. 
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Figure 5.1(a) shows the graphs for Fgs versus the void fraction for the MFIX drag 

correlation for various Reynolds numbers ranging from 30 to 2000. Figure 5.1(b) shows 

the graphs for the corresponding mD  versus the void fraction. Figure 5.2(a) shows the 

graphs for Fgs versus the void fraction for the Tsuji drag correlations for various Reynolds 

numbers ranging from 30 to 2000.  Figure 5.2(b) shows the graphs for the corresponding 

tD  versus the void fraction. Figure 5.3(a) shows the graphs for Fgs versus the void 

fraction for the MFIX drag correlations for various Reynolds numbers ranging from 30 to 

2000. Figure 5.3(b) shows the graphs for the corresponding kD  versus the void fraction. 

Clearly for all the correlations the graphs show unrealistic values for void fractions 

around zero. A void fraction of zero would mean a solid volume fraction of 1, which is 

higher than the closest packing solid fraction. For values typical of practical beds,  void 

fractions in the range  0.42 - 0.9 are studied.   

Figure 5.4 shows the comparison of the non-dimensional drag coefficient 

obtained from the MFIX correlation to the one obtained from  the Tsuji correlation. 

m

t

D
D is plotted against the void fraction. The ratio is very close to one for the void 

fraction range of 0.42 to 0.9 and for all Reynolds numbers. This shows that the two 

correlations would predict similar bed behavior. Figure 5.5 shows the comparison of the 

non-dimensional drag coefficient obtained from MFIX correlation to the one obtained 

from the Wen and Yu correlation. m

k

D
D is plotted against the void fraction. The ratio for 

the void fraction range of 0.42 to 0.9 is quite different for different Reynolds numbers 

and is much greater than 1 (almost 10 in some cases). This shows that the two 

correlations would not predict similar bed behavior. A similar analysis can be done from 
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Figure 5.6. It shows the comparison of the non-dimensional drag coefficient obtained 

from  the Wen and Yu correlation to the one obtained from the Tsuji correlation. k

t

D
D is 

plotted against the void fraction. The ratio for the void fraction range of 0.42 to 0.9 is 

quite different for different Reynolds numbers and is much lesser than 1. This shows that 

the two correlations would not predict similar bed behavior.   

 

5.1.2. Fluidized Bed Results 

 Fluidized bed simulations have been performed for the simulation parameters as 

listed in table 4.1. The MFIX drag correlation, Tsuji’s drag correlation, and Wen and 

Yu’s drag correlation (with α values of 4.7 and 8) have been implemented. Simulations 

were done for  the first 10 seconds of bed operation. Ten snap shots of the bed are shown 

for the different drag correlations in Figures 5.7, 5.8, 5.9 and 5.10. In Figure 5.7 the bed 

simulated by using the MFIX drag correlation is shown. In Figure 5.8 the bed simulated 

by using the Tsuji drag correlation is shown. Figures 5.9 and 5.10 are snap shots of the 

bed simulated by using Wen and Yu’s correlation for α values of 4.7 and 8 respectively. 

It can be seen that the details of the bed behavior are quite different for the four cases, 

with the bed being most violent in the case of α value of 8. The initial bed height in all 

cases is 22 cm. The maximum bed height in case of MFIX drag correlation is about 32 

cm; in the case of the Tsuji drag correlation, it is 35 cm; in the case of  the Wen and Yu 

correlation with 4.7α = , the value is 38 cm;  and for the Wen and Yu correlation with  

8α = , the maximum bed height is 50 cm.  For the same initial conditions and the same 

inlet jet velocity, the bed height varies for the difference cases because of the drag 

exerted on the particles changes and hence the movement of the particles is predicted 
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differently.  Though the MFIX, Tsuji and Wen and Yu correlation with  α = 4.7 predict 

maximum bed heights with 20% of each other, the strong non-linear dependence on void 

fraction for α = 8.0 makes for large differences in both bed height and flow patterns. 

Thus, the MFIX drag correlation, the Tsuji drag correlation and the 4.7α =  case exhibit 

a single bubble forming periodically. For the case of 8α = , bubble formation is not as 

periodic as in the other cases and the bubble splits into smaller bubbles before collapsing.  

 Some of the parameters considered in the design of a fluidized bed are the 

pressure drop across the bed and at various heights in the bed, as well as the bubble size, 

bubble velocity and bubble frequency. The pressure drop across the bed is plotted against 

time for the fours cases being studied and are shown in Figures 5.11, 5.12, 5.13 and 5.14. 

Though the maximum and minimum values are different, the RMS values of the pressure 

drops are not. The RMS pressure drop value for MFIX drag correlation is 1022 Pa. For 

Tsuji correlation case it is 1019 Pa, 0.27 percent different from the MFIX value. For 

4.7α = , the RMS pressure drop value is 942 Pa, which is 7.8 percent different from 

MFIX value. Even the 8α =  case, which appears most violent in behavior, has a RMS 

pressure drop value of 1043 Pa, which is about 2.11 percent different from MFIX drag 

correlation. This shows that though the apparent local behavior of the fluidized beds 

simulated using the various drag correlations is different, the pressure drop is predicted 

almost similarly by all the correlations. Also shown in the figures are the power spectrum 

of the pressure drop curves. In all the four cases the dominant frequency is found to be 2 

per second. This indicates that the bubbling frequency is 2 per second because it is the 

formation and collapsing of the bubbles that is a major contributor to the pressure 

fluctuations across the bed. This shows that the drag correlations in general do a similar 
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job in predicting the global quantities for a fluidized bed, which are used in design. But 

this is to be expected as the correlations are generally developed over time averaged 

quantities and not spatially and temporally local quantities. But local behavior in the   

fluidized bed is important because this affects the overall heat and mass transfer and 

hence the chemical conversion. From Figures 5.7 to 5.10, it can be seen that the drag 

correlations predict similar global quantities like pressure drop, bubble frequency as 

explained earlier but can differ substantially in the local behavior.   

 

5.1.3. Granular Temperature  

 In this section, we present plots of the granular temperature in the bed. Granular 

temperature is a measure of the particle velocity fluctuation in the bed. It is defined as the 

specific kinetic energy of the random fluctuating component flv  of the particle velocity.  

23 1
2 2 flvθ =  

 Where θ  is the granular temperature of a particle and flv is the fluctuating component of 

the instantaneous velocity 1v of the particle, such that 

1 ave flv v v= +  

where avev  is the average velocity of the particle over a time interval that is  sufficiently 

long time  compared to the time scale of the fluctuating velocity, but short compared to 

the larger times scales in the problem, such as the bubble formation frequency. 

The granular temperature of the solid in each computational cell has been 

computed. The average velocity of the particle is computed from the particle velocity 

values of previous 100 time steps. Figure 5.15 shows the granular temperature plots at the 
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8th second in the simulation, for all the four drag correlations studied. The difference in 

the local behavior can be clearly seen.  The peaks represent higher granular temperature; 

in other words higher particle fluctuation.  Comparing the case of 8α =  with the others 

we can see that the fluctuation is more distributed in this case, meaning that the bed is 

more mixed and hence would predict higher contact times and better chemical conversion. 

In the other cases the maximum granular energy is near the inlet jet as can be expected as 

that particles near the jet inlet would experience most drag. The rest of the bed is 

comparatively quiescent except for localized regions of particle fluctuation. 

 

5.2. Simulation of Binary Mixture Fluidized Beds 

Most published research on the simulation of fluidized beds has focused on 

single-sized particle suspensions using both kinetic theory and, to some extent, discrete 

element models. In reality, though, there exists a distribution of particle sizes, and 

segregation patterns are determined by the gas flow. The segregation patterns determine 

the contact time between the gas and particles of different sizes. This contact time is 

critical in determining the rates of chemical reactions.  A few studies have begun to 

appear in the literature which study fluidized beds with binary particle distribution. Both 

kinetic theory (Huilin et al 2003) and discrete element simulation (Tsuji et al, 2003) have 

been employed for the study of binary mixture fluidized beds.  Huilin et al (2003) have 

implemented the kinetic theory for granular material to study a distributed jet bubbling 

fluidized bed with binary mixtures. They have reported that segregation occurs in a 

binary fluidized bed such that the bigger particles sediment to the bottom and the smaller 

particles remain in the upper regions. For higher superficial velocities more mixing 
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occurs. Tsuji et al (2003) used DES to study a single central jet binary mixture fluidized 

bed. They studied the particle size effect and the fluidized bed cylinder size effect on 

mixing and have reported that better mixing occurs for smaller particles in larger 

cylinders and at high superficial velocities. They have further studied the effect of 

particle size ratios and density ratios on the behavior of binary mixture fluidized beds. 

They reported that depending on the particle size ratio and density ratio, binary mixtures 

in a fluidized bed can be made mixable or non-mixable. They reported better mixing of 

particles with lesser difference in size as well as density. Nevertheless, much remains to 

be understood about the dynamic behavior of binary fluidized beds. 

The present work is a further contribution to the growing interest in binary 

mixture fluidized bed behavior studies. Fluidized beds with binary mixtures have been 

simulated for the simulation parameters shown in Table 5.1.  A particle size ratio of 1 to 

2 has been simulated for a single central inlet jet fluidized bed. The minimum fluidization 

velocity for the bed is 3.8 m/s. Two of the simulated cases are presented here: one for a 

superficial velocity of 4.5 m/s and the other with the superficial velocity of 6 m/s, much 

higher than the minimum fluidization velocity. Initially the bigger particle layer is 

sandwiched between two layers of the smaller particles. The initial bed height is 26 cm.  

For the purpose of drag correlation implementation, in the present simulations the bed 

depth has been taken to be the maximum of the two particles diameters. Another option 

would be to take a mean diameter and use it as the bed depth. The MFIX drag correlation 

has been used in this simulation. 

For the case with superficial gas velocity of 4.5 m/s, the bed rises through bubble 

formation to 75 cms in the initial transient stage. 5 snapshots of the particle positions in 
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the first second have been shown in Figure 5.16. The corresponding velocity vectors are 

shown in Figure 5.17. In Figure 5.18, a snapshot of the bed is shown with both the 

particle positions and velocity vectors. The bed settles to a maximum height of about 50 

cm. The pressure drop across the bed is shown in Figure 5.19. 

For the case with superficial gas velocity of 6 m/s, the bed rises to a height of 135 

cm through a spouting kind of behavior in the initial transient stage. 5 snapshots of the 

particle positions in the first second have been shown in Figure 5.20. The corresponding 

velocity vectors are shown in Figure 5.21. In Figure 5.22, a snapshot of the bed is shown 

with both the particle positions and velocity vectors. The bed settles to a maximum height 

of about 60 cm. The pressure drop across the bed is shown in Figure 5.23. 

Comparing the two cases clearly demonstrates that for the same bed conditions 

for low superficial gas velocity, there is substantial segregation at the bed base when 

binary mixtures are present. The bigger particles tend to settles at the base while the 

smaller particles occupy the upper regions of the bed. For higher superficial velocities 

mixing dominates and the segregation at the bed base is not dominant. Also it is 

interesting to note from the simulations that bigger particles tend to keep away from the 

side-walls. They typically are in the inlet jet core or around the bubble or segregated on 

the bed base while smaller particles move closer to the walls. In both the cases slugs are 

formed on the top of the bed. The bubble forms below the slug and the gas seeps out of 

the slug as in a porous medium. The pressure drop across the bed in both the cases is 

around 300 Pa.  
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5.3. Closure 

 The effect of drag correlations used to calculate the interphase drag force has been 

studied and presented in this chapter. This is very important because accurate drag force 

calculation is needed for predicting both the local and global bed behavior correctly. The 

drag correlations used here have been developed by using time-averaged data. Therefore 

they predict similar values of global quantities such as the bed pressure and bubble 

frequency. But local predictions of void fractions and granular temperatures are 

substantially different, and may indicate that quantities depending on the local variations, 

such as chemical reaction rates, may depend strongly on what correlations are used. 

Better drag correlations fluidized and bubbling beds are necessary, as well as more local 

experimental data for validating simulation results. 

 A fluidized bed with two particle sizes has been simulated. The bed behavior for 

two superficial gas velocities is compared. For superficial velocities closer to the 

minimum fluidization velocity, segregation takes place with the bigger particles settling 

at the bed base. For higher superficial velocities, mixing dominates segregation. Slugs are 

formed in the cases simulated. 
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Table 5.1. Binary mixture fluidized bed simulation parameters 

 

Bed Dimensions (W X H) 150 mm X 900 mm 

Fluid mesh size 15 X 50 

Cell dimensions 10 mm X 20 mm 

Particle bed height at rest 260 mm 

Minumum fluidization velocity 3.8 m/s 

Superficial gas velocity 4.5 m/s and 6 m/s 

Number of Particle: N 1850 

Particle number ratio: 1 2N N  1650/200 

Particle diameter ratio:  1 2d d  4mm/8.1mm (1:2.1) 

Particle density: sρ  2700 kg/m3 

Gas density: gρ  1.205*10-3 kg/m3 

Gas viscosity: gµ  1.80*10-5 N/m2 

Particle coeff. of restitution: ε 0.9 

Particle stiffness coeff: k 800 N/m 

Particle damping coeff: v 0.18 (N.s)/m 

Particle friction coeff: µf 0.3 

Ratio of fluid time step to particle 

time step:  f

s

t
t

∆
∆  

3

4

5*10 25
2*10

−

− =  
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Figure 5.1. (a) Fgs versus the void fraction for the MFIX drag correlation for various 

Reynolds numbers ranging from 30 to 2000 (b) the corresponding mD  versus the void 

fraction 
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(b) 

Figure 5.2. (a) Fgs versus the void fraction for the Tsuji drag correlation for various 

Reynolds numbers ranging from 30 to 2000 (b) the corresponding tD  versus the void 

fraction 
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(b) 

Figure 5.3. (a) Fgs versus the void fraction for the Wen and Yu ( 4.7α = ) drag correlation 

for various Reynolds numbers ranging from 30 to 2000 (b) the corresponding kD  versus 

the void fraction. 
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Figure 5.4. m

t

D
D   versus void fraction for Reynolds numbers range of 30 to 2000 
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Figure 5.5. m

k

D
D   versus void fraction for Reynolds numbers range of 30 to 2000 
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Figure 5.6. k

t

D
D   versus void fraction for Reynolds numbers range of 30 to 2000 
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Figure 5.7. Fluidized bed simulated using 

MFIX drag correlation. 10 snapshots are 

shown between the 6th and 8th simulation 

seconds. Superficial gas velocity s 2.8m/s. 

(Continued in next page) 
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Figure 5.7. Fluidized bed simulated using 

MFIX drag correlation. 10 snapshots are 

shown between the 6th and 8th simulation 

seconds. Superficial gas velocity is 

2.8m/s. 
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Figure 5.8. Fluidized bed simulated 

using Tsuji drag correlation. 12 

snapshots are shown between the 6th and 

8th simulation seconds. Superficial gas 

velocity is 2.8m/s. (Continued in next 

page) 
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Figure 5.8. Fluidized bed simulated 

using Tsuji drag correlation. 12 

snapshots are shown between the 6th and 

8th simulation seconds. Superficial gas 

velocity is 2.8m/s. 
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Figure 5.9. Fluidized bed simulated 

using Wen and Yu drag correlation for 

4.7α = . 12 snapshots are shown 

between the 6th and 8th simulation 

seconds. Superficial gas velocity is 

2.8m/s. (Continued in next page) 
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Figure 5.9. Fluidized bed simulated 

using Wen and Yu drag correlation for 

4.7α = . 12 snapshots are shown 

between the 6th and 8th simulation 

seconds. Superficial gas velocity is 

2.8m/s. 
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Figure 5.10. Fluidized bed simulated 

using Wen and Yu drag correlation for 

8α = . 12 snapshots are shown between 

the 6th and 8th simulation seconds. 

Superficial gas velocity is 2.8m/s. 

(Continued in next page) 
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Figure 5.10. Fluidized bed simulated 

using Wen and Yu drag correlation for 

8α = . 12 snapshots are shown between 

the 6th and 8th simulation seconds. 

Superficial gas velocity is 2.8m/s. 
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Figure 5.11. Pressure drop (centi Pascals) versus time for fluidized bed simulated using 

MFIX drag correlation. The middle plot is the pressure drop across the bed. Superficial 

gas velocity is 2.8 m/s. The frequency is plotted and is 2 per second. 
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Figure 5.12. Pressure drop (centi Pascals) versus time for fluidized bed simulated using 

Tsuji drag correlation. The middle plot is the pressure drop across the bed. Superficial gas 

velocity is 2.8 m/s. The frequency is plotted and is 2 per second. 
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Figure 5.13. Pressure drop (centi Pascals) versus time for fluidized bed simulated using 

Wen and Yu drag correlation for 4.7α = . The middle plot is the pressure drop across the 

bed. Superficial gas velocity is 2.8 m/s. The frequency is plotted and is 2 per second. 
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Figure 5.14. Pressure drop (centi Pascals) versus time for fluidized bed simulated using 

Wen and Yu drag correlation for 8α = . The middle plot is the pressure drop across the 

bed. Superficial gas velocity is 2.8 m/s. The frequency is plotted and is 2 per second. 
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(d) 

Figure 5.15. Granular temperature plots for the fluidized beds simulated using (a) MFIX 

drag correlation (b) Tsuji drag correlation (c) Wen and Yu’s drag correlation of 

4.7α = and  (d) 8α =  at t=9s. The fluidized bed is in XY plane. Inlet to outlet is in the 

positive y direction. Granular temperature is plotted in the Z axis; range is from –250 to 

2000 (m/s)2. 
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Figure 5.16. Binary mixture fluidized 

bed simulated using MFIX drag 

correlation. 5 snapshots of the particle 

positions in the initial transient one 

second are shown. Superficial gas 

velocity is 4.5 m/s. 
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Figure 5.17. Binary mixture fluidized 

bed simulated using MFIX drag 

correlation. 5 snapshots of the particle 

velocity vectors in the initial transient 

one second are shown. Superficial gas 

velocity is 4.5 m/s. 
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Figure 5.18. Binary mixture fluidized bed simulated using MFIX drag correlation. 

Snapshot of the particle positions at the end of 3 seconds and the corresponding velocity 

vectors are shown. Segregation and slug formation can be seen. Superficial gas velocity 

is 4.5 m/s. 
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Figure 5.19. Pressure drop (Pa) versus time (s) in a binary mixture fluidized bed for 

superficial velocity of 4.5 m/s. Pressure drop at various heights from the bottom of the 

bed. The pressure drop range across the bed can be seen to be about 300 Pa. 
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Figure 5.20. Binary mixture fluidized 

bed simulated using MFIX drag 

correlation. 5 snapshots of the particle 

positions in the initial transient one 

second are shown. Superficial gas 

velocity is 6 m/s. 
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Figure 5.21. Binary mixture fluidized 

bed simulated using MFIX drag 

correlation. 5 snapshots of the particle 

velocity vectors in the initial transient 

one second are shown. Superficial gas 

velocity is 6 m/s. 
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Figure 5.22. Binary mixture fluidized bed simulated using MFIX drag correlation. 

Snapshot of the particle positions at the end of 3 seconds and the corresponding velocity 

vectors are shown. Mixing and slug formation can be seen. Superficial gas velocity is 6 

m/s. 
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Figure 5.23. Pressure drop (Pa) versus time (s) in a binary mixture fluidized bed for 

superficial velocity of 6 m/s. Pressure drop at various heights from the bottom of the bed. 

The pressure drop range across the bed can be seen to be about 300 Pa.  
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Chapter 6 

Summary and Recommendations 

 

The present thesis has addressed the simulation of gas-solid flows by combining 

discrete element simulation (DES) with a computational fluid dynamic (CFD) simulation 

of the gas phase. A soft sphere model for DES was implemented and used to simulate 

various observed phenomena in pure granular flows. These included a study of  vibrated 

granular beds consisting of single-sized particles as well as binary mixtures.  DES for the 

solid phase was then coupled to continuum simulations of the gas phase. The coupled 

solver was used to simulate fluidized beds. The effect of various drag correlations on the 

bed simulations was studied. Simulation of fluidized beds containing binary mixtures was 

also performed. 

A brief overview of thesis work done and recommendations for future work are 

presented in the following sections. 

 

6.1. Overview of the Thesis 

6.1.1. Discrete Element Simulations 

 The objective of the first phase of the thesis was to compute the particle 

trajectories in a pure granular system with no gas/fluid interaction. The following steps 

explain the work done in this area. 

DES Soft-Sphere Model: The discrete element method which uses Newton’s laws to track 

a solid particle has been implemented. Inter-particle collisions and particle-wall collisions 

were modeled using the soft-sphere model. The deformation during contact was 
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accounted for by considering particle overlap during collisions. The normal and 

tangential forces were computed using a spring-damper-slider model. The model 

accounts for particle sliding and rotation. The key parameters in discrete element 

simulations (DES) are the spring stiffness constant and the damping coefficient, as they 

determine the value of contact forces computed. The spring stiffness constant and the 

damping coefficient impose a limit on the solid time step for computations. The solid 

time step is typically about a millionth of a second making DES very time consuming.  

 

Neighbor Search: Determining the neighbors of every particle in the system at every time 

instant is necessary to find  contact forces. Efficient, effective and faster algorithms other 

than the basic N2 search, like octree/quadtree  and No-Binary search (NBS) have been 

implemented for neighbor searching. NBS is applicable only for systems of similar sized 

particles where as the octree/quadtree algorithms are indifferent to the particle size. NBS 

provides searches in O(N) operations, whereas the octree/quadtree algorithms are 

O(NlogN).  

 

Vibrated Granular Bed Validation: Pure granular material behavior has been studied for 

the case of vibrated beds. The granular material bed floor is vibrated sinusoidally with a 

specified frequency and amplitude. Benchmark cases have been simulated to validate the 

code and the results have been matched with the published literature. The factors 

governing vibrated bed behavior are the non-dimensional acceleration amplitude and the 

non-dimensional bed height. For a given granular bed height, for a range of acceleration 

amplitudes, various interesting behaviors like heaping, round and cusp surface standing 
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waves and kinks have been observed. The ranges of bed heights and acceleration 

amplitudes and also the theory explaining the formation of these phenomena have been 

confirmed from the simulations. 

 

Vibrated Binary Mixture Simulations: Granular mixtures with two particle sizes in a 

vibrated bed have also been studied. In the kink formation regime the binary mixtures 

have been found to demonstrate horizontal segregation, wherein the bigger particles 

cluster at the kinks thus forming alternating sections of big and small particles. This type 

of horizontal segregation is explained by the convection cells that occur in kinks. 

 

6.1.2 Coupled Gas-Solid Simulations 

The objective of the second phase of the thesis is to couple the particle trajectories 

to gas/liquid flow, by using DES for the solid phase and MFIX for the continuum gas 

phase. MFIX contains a capability to simulate incompressible Newtonian flow in 2D and 

3D. At present, it contains a kinetic-theory based model for granular flows; DES forms a 

more accurate alternative to this theory. The following steps have been implemented in 

this phase of the work. 

 

Calculation of Solids Volume Fraction in the Fluid Cell: Each particle from the DES 

simulation is located within the fluid control volume; the sum of all particle volumes in 

the cell yields the solid volume fraction. The particles are classified by size to feed into 

the multiple-phase capability of MFIX. This requires the computation of several solids 
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volume fractions per cell. Once the volume fraction is made available to MFIX, blockage 

effects are automatically taken care of. 

 

Calculation of Averaged Solids Velocity in the Fluid Cell: All the particles in a fluid cell 

are identified.  The velocities of individual particles of a given size are volume-averaged 

to obtain a single representative solids velocity in the cell. The volume- averaged solids 

velocity thus obtained are used by MFIX to compute interphase drag. 

 

Calculation of Gas-Solid Interaction: Though a variety of interaction forces couple the 

gas and solid, the focus in the present work is on the simulation of gas-particle flows for 

fluidized bed applications. Two interaction forces which are the most dominant for this 

application, namely interphase drag and  buoyancy, have been considered.  Since the gas-

phase mesh is much larger than the individual particle, it is not possible to resolve the 

drag numerically. The interphase drag has been computed from experimental correlations 

for fluidized beds. An important issue in the development is to ensure that the gas and 

solid drag are equal and opposite to each other, so that net momentum is conserved. 

Various drag correlations used in literature have been implemented and tested. 

 

Coupling Algorithm for Gas-Solid Flows: A sequential and iterative procedure for 

coupling the two calculations has been used. Far larger time-steps have been used for the 

gas than the solid, since the gas has no explicit time-stepping limitations. At every gas-

phase time-step, several DES sub-steps are taken and the volume fraction computed at the 

end of the sub-steps. The gas flow is assumed stationary at old values during this sub-
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stepping.  Then the gas flow is iterated to convergence within the time step. The 

procedure is repeated until the desired time interval is covered. 

 

Fluidized Bed Validation: Benchmark 2D fluidized beds have been simulated. Global 

parameters of interest such as the pressure drop across the bed over time and the bubbling 

frequency have been matched satisfactorily. 

 

Investigation of the Effect of Drag Correlations on Fluidized Bed: Various drag 

correlations used in literature have been implemented and their effect on the 2D 

simulation results has been studied. It is found that all the correlations studied predict 

similar values of global quantities such as the bed pressure drop and bubbling frequency. 

But they differ in predicting the local bed behavior.   

 

Binary Mixture Fluidized Bed Simulation: Fluidized Beds with binary mixtures have also 

been simulated in 2D. Segregation is predominantly seen at the bed base for superficial 

velocities close to the minimum fluidization velocity. 

 

6.2. Recommendations for Future Work 

Some recommendations for future work in this area are listed below. 

 

Computational investigation of canonical gas-solid flows: The DES-MFIX coupled code 

is a powerful tool to investigate various gas-solids flow phenomena. Of particular interest 

is the investigation of cluster formation in riser flows. It has been observed both 
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experimentally and computationally that gas-solid flows are inherently unsteady, and 

over time, tend to aggregate into clusters or streak-like structures. A number of 

mechanisms have been postulated for this phenomenon, and all may be active to a greater 

or lesser extent. An important phenomenon is clustering due to drag. The presence of 

particles tends to form wakes in which other particles congregate. This is represented 

approximately by the drag correlations implemented here. The second reason for 

clustering could be inelastic collapse. Since particle-particle interactions are inelastic, the 

loss of energy during collision results in particles clustering together. A third possible 

mechanism is turbulent segregation. For dilute enough concentrations, turbulent eddies 

tend to segregate particles into low velocity regions between eddies. It is as yet unclear 

which of these mechanisms acts over what range of parameters, and all seem to be active 

to a greater or lesser extent. The code developed here  can be used to explicitly test the 

influence of some of these  mechanisms individually. The influence of particle properties, 

particle size and size distribution on cluster formation are of particular interest. To be of 

real interest, these computations must be done in three dimensions. In practical terms, it 

is likely that a combination of 2D and 3D calculations need to be performed. 

 

3D Simulations: Though the code developed in the present work has both 2D and 3D 

capabilities, only 2D simulations have been done due to computational time limitations. 

For more realistic simulations and more significant contributions to gas-solid flows, 3D 

simulations need to be performed. To simulate the same solids volume fraction, a larger 

number of particles must be simulated, substantially increasing the computational cost.  

However, the computational models and the solution algorithm would remain the same.  
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Parallelization of DES: Parallel computing must be exploited for realistic gas-solid flow 

simulations. This is because as the particle number increases, the computation time 

increases drastically and hence the cost. Strategies for parallel DES must be explored. 

Coupling of parallel DES and parallel continuum simulations must also be performed. 

 

Comparison with Other Theories: To be useful to the researcher, the DES results at each 

time step should be able to obtain temporally or spatially-averaged quantities. These 

include quantities like the solids stress tensor and granular temperature, which are useful 

for comparison with competing theories for granular flow. Though some of these 

capabilities (such as the granular temperature calculation) have been implemented, more 

detailed output quantities would be useful.  

 

DES for Complex Particle Shapes: DES for spherical particles is implemented in the 

present work. Though this gives good insight into granular material and gas-solid flow 

behavior, for practical purposes it would be of interest to implement other shapes like 

ellipsoids, chains, and rods. Calculation times increase substantially as contact detection 

and drag force calculations become more complicated. Approximate representations of 

particle shape using agglomerations of spherical particles should be explored as an 

alternative. Of particular interest to the chemical process industry would be mixing and 

segregation behavior of particle systems of different particle shapes. 
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DES for Nano-Fluids: Nano-fluids are essentially suspensions of nano-sized particles and 

carbon nanotubes in fluids, and have been know to exhibit substantial increases in 

thermal conductivity. Extending the DES technique to include other forces such as 

electrostatic, Brownian, and Van der Waals forces would yield a powerful tool for 

analyzing and understanding this class of fluids  

 

Other Chemical Processes: Many other chemical processes such as particle coating, 

particle growth, gasification etc., which are performed in a fluidized bed, may be 

simulated for better understanding. 
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Appendix 

Description of MFIX 
 
 

 Multiphase Flow with Interphase eXchange (MFIX) is a general-purpose 

hydrodynamic code, which solves for multiphase flows in energy conversion and 

chemical processing applications (MFIX Theory Guide, User's Manual: Syamlal et al, 

1994).  It addresses both dense and dilute gas-solid flows as well as species transport, 

chemical reactions and heat transfer. It is written in FORTRAN 90 and admits three-

dimensional Cartesian and cylindrical coordinate systems with non-uniform grids. MFIX 

admits a single fluid phase and several solid phases.  A continuum approach is taken for 

both fluid and solid phases, which are treated as interpenetrating continua. The fluid 

phase is considered to be a Newtonian, incompressible flow, and can be either laminar or 

turbulent. Each solid phase is tracked separately, and is described by its own momentum 

and mass conservation equations. At present, a kinetic theory treatment of the solid phase 

stresses is adopted (Lun et al, 1984). The discrete element simulation (DES) serves as a 

replacement the kinetic theory model for the solid stresses, as well as the present 

procedure for computing solid-phase volume fractions and other solids related values. 

The fluid phase governing equations and calculation procedure are described below. 

 

1. Gas-Phase Governing Equations 

The governing equations for the gas phase are given below. 

Conservation of Mass 

 ∑
=

=⋅∇+
∂
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n
gnggggg Rv
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The first term in the left hand side of the above equation is the rate of mass accumulation 

per unit volume and the second term is the net rate of mass flux. Both the terms on left 

account for the gas void fraction. The term on the right hand side is the interphase mass 

transfer. 

Conservation of Momentum  

  
1

( ) ( )
M

gg g g g g g g g g gm g
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t
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The first term in the left hand side of the above equation is the rate of momentum 

accumulation per unit volume and the second term is the net rate of momentum flux. 

Both the terms on left account for the gas void fraction. The first term on the right hand 

side   is the gas-phase stress tensor, the second term is the body force, the third term is the 

interaction force representing the momentum transfer between the gas phase and the mth 

solid phase and the last term is the flow resistance. 

The interaction force between the gas phase and the mth phase solid is given by 

  0 0 0( ) [ ]gm g g gm sm g m m sm m gI P F v v R v vε ξ ξ=− ∇ − − − +
�

� � � �

 

 

 The first term on the right hand side is the buoyancy force, the second term is the 

drag force and the third term describes the momentum transfer from gas phase to solids 

phase.  

In all the above equations, gε is the gas phase void fraction, gρ  is the gas density, gv  is 

the gas velocity vector, smv  is the velocity vector of the mth phase solid. 
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2. Gas Phase Numerical Method 

 The numerical technique used for the gas phase in MFIX is based on the finite 

volume technique. The domain is divided into control volumes, each typically containing 

a large number of particles. Balances of mass, momentum, energy and species are written 

for these control volumes. Second-order discretization operators are used for both 

convection and diffusion terms, including a variety of second-order limited schemes for 

convection. A fully-implicit time stepping schemes with automatic time-step control has 

also been implemented. Pressure-velocity coupling in the gas phase is through the 

SIMPLE algorithm (Patankar, 1980). A variety of linear solvers, including a 

preconditioned conjugate gradient method and GMRES are available. MFIX uses a 

structured mesh, either Cartesian or cylindrical, in either 2D or 3D. All transported 

scalars are stored at cell centroids. A staggered-velocity formulation is used. Both gas 

and solids velocities are stored at cell faces, and the gas and solids pressures are stored at 

cell centroids. The equations described above may be cast into the form of a general 

convection-diffusion equation (Patankar, 1980).  

 

2.1. Discretization of Convection-Diffusion Terms 

For simplicity, we consider a 1-D situation.  The transport equations contain 

convection-diffusion terms of the form 

)()(
xxx

u
∂
∂Γ

∂
∂−

∂
∂ φφρ  

The domain is divided into rectangular control volumes. The convection-diffusion 

equation is integrated over the control volume (CV) to yield: 
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The diffusive flux at the east face can be approximated to  second order accuracy 

by 
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For the convection terms, MFIX uses a general second-order discretization which can be 

made to default to a first-order upwind scheme if desired. The value of φ  at the east face, 

for example, is written as 

PeEee φξφξφ +=  

where ee ξξ −=1  and ξe is a weighting factor. 

For the upwind discretization scheme 
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The value of φat the west face, for example, is then written as 

PwWww φξφξφ +=  

where ww ξξ −=1  

For the upwind discretization scheme 
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 MFIX provides a number of second-order accurate discretizations for the 

convection terms, which are essentially embodied in the ξ factor. Details can be found in 

(Syamlal, 1998). 
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2.2. Discretization of Scalar Transport Equation 

We now turn to the discretization of a complete transport equation for a scalar φ : 
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We integrate Equation (2.10) over a control volume and consider each term in 

turn. The terms from left to right are as follows: 

Transient term: 

Using a fully implicit scheme, we write 
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where the superscript ‘o’ indicates old (previous) time step values.  
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Diffusion term: 
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 The diffusive fluxes are approximated using the method described previously. For 

example, the diffusive flux through the east face is given by  

e
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 The cell face values of diffusion coefficients are calculated using a harmonic 

mean of the values defined at the cell centers. For example, 
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where we use the definition 
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 Source term: 

Source terms are generally nonlinear and are first linearized as follows: 

PRRR φφφφ ′−≈  

 For the stability of the iterative procedure, it is essential that 0≥′φR . Integration 

of the source term over a control volume gives 

 VRVRdVR P∆′−∆≈∫ φφφφ  

 

Combining the equations derived above we get 
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 This equation may be rearranged to get the following linear equation forφ  
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 where the subscript nb represents E, W, N, S, T, and B. Before using the above 

equation for determiningφ , it is recommended that the discretized continuity equation 

multiplied by φ  be subtracted from it. The coefficients are then defined as follows: 
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Here, the diffusion contribution, De is given by, 
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Other diffusion terms may be written analogously.  

The final form of the discretized equations is: 

∑ += baa nbnbPP φφ  

 To ensure the stability of the calculations, it is necessary to under-relax the 

changes in the field variable during iterations 
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where 10 ≤≤ φω . When 0=φω , the old value remains unchanged. MFIX provides a 

choice of linear equation solvers, including conjugate gradient and GMRES solvers with 

preconditioning. 

 

2.3. Outline of Solution Algorithm 

For every fluid time step 

1) Start of the time step. Calculate physical properties, exchange coefficients, and 

reaction rates. 

2) Calculate fluid velocity fields based on the current pressure field: *
mu , *

mv , *
mw  

3) Calculate fluid pressure correction gP′  

4) Update fluid pressure field applying an under relaxation: gpggg PPP ′+= ω*  
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5) Calculate fluid velocity correction from gP′  and update fluid  velocity fields: e.g., 

mmm uuu ′+= *   

6) Complete several iterations of the gas phase until a suitable convergence criterion is 

met. 

7) Begin DES sub-stepping. Use multiple solid time steps for a single fluid time step. At 

every solid time step 

a) Calculate the inter-particle and particle-wall contact forces 

b) Calculate the gas drag on each particle 

c) Calculate the pressure force on each particle 

d) Calculate each particles acceleration, new velocity and new position 

8) End of  sub-stepping: calculate the solids volume fraction and the void  fraction in 

each cell. Calculate the solids velocity in each cell. Feed these values into MFIX 

9) Compute the drag force exerted by the solid phase on the gas phase. This is done 

through the gas-phase source term.   

10) If the desired time interval for simulation has been reached, stop simulation. Else, go 

to Step 1. 
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