Integration of Tracks

Dimitri Gidaspow Illinois Institute of Technology

SUMMMARY OF TRACK PRESENTATIONS

	Track 1	Track 2	Track 3	Track 4
	Dense Gas-Solid	Dilute Gas -	Liquid-Solids	Computational Physics
	and Granular Flows	Solid flows	/Gas-liquid Flows	and Application
Theory	- Scaling Laws	- Drag laws over entire range	- High Reynolds number	- Micro-Meso-Macro
	- Cohesion	- Particle size distribution	multiphase turbulent flow	(See track 4 table)
	- Boundary conditions	- Non-spherical particles	DNS or LES	- How to handle large
	- Granular temperature?	- Electrostatics	- Effective bubble diameter	amounts of data?
	- Lasting contacts		(not predictive theory)	
	- Fluctuation dissipation		- Flow regimes	
	- Reaction			
Experiment	- Inclined flow	- Well - characterized	- Fluctuations &	
	- bunpy bed vs. Flat	experimet needed	Reynolds stresses	
	- Mixer - agglomerator	- Non-intrusive diagnostics		
	- What small scale			
	experiments?			
CFD	- DEM	- Clustering	- Grid dependence	- Visualization
	- Continuum Modelling :	- Boundary conditions:		- Integration with Aspen
	Lagrangian-Eulerian	Exit & Backflow		- Parallel Processing?
	Eulerian-Eulerian	- Kinetic theory		Moores' law
		- Coarse grid		- One code?
		- High Pressure		- Open source code
		'& High Temperature		- Graduate students
		- Internals		
		- Reactive flows:		
		Reaction drives flow		