Challenges in Modeling Dilute Gas-Solid Flows

Two approaches have been used for modeling of gas-solid flows, namely, Eulerian-Lagrangian approach or Eulerian-Eulerian Approach. The Eulerian-Lagrangian approach has attracted additional attention since the corpuscular nature of the particulate phase is directly accounted for. The Eulerian-Eulerian approach is, however, more economical for practical applications.

Challenges in Eulerian-Lagrangian Modeling

- Developing two-way interaction Eulerian-Lagrangian computational models for gas-solid flows including particle collisions with heat (and mass) transfer.
 - Two-equation and stress transport type models for gas-solid flows (short term)
 - DNS and LES models for two-way interaction for gas-solid flows (short to medium term)
 - Turbulence modulation for dilute and dense flows (short to medium term)
 - Momentum, heat and mass transfer during particle collisions (medium to long term)
 - Including the effect of particle deposition and resuspension for small particles on gas solid flows (medium term)
 - Extension of the model to include the effect of particle size distribution (long term)
 - Model validation with bulk experimental data (short term)
 - Non-intrusive measurement techniques capable of measuring particles and gas phase instantaneously for detailed model validation (long term)
 - Modeling gas-solid flows including the effect of electrostatic forces and particle surface forces (medium term)
 - Modeling non-dilute gas-solid flows with non-spherical particles (long term)

Challenges in Eulerian-Eulerian Modeling

- Developing Eulerian-Eulerian computational models for gas-solid flows with heat (and mass) transfer.
 - Two-fluid two-equation and stress transport type model including turbulence modulation effects (short term)
 - Two-fluid LES models for gas-solid flows (medium term)
 - Two-fluid models for gas-solid flows with heat and mass transfer (medium term)
 - Two-fluid models for gas-solid flows including the effect of particle deposition and resuspension (medium to long term)
 - Extension of the model to include the effect of particle size distribution (long term)
- Model validation with bulk experimental data (short term)
- Non-intrusive measurement techniques capable of measuring particles and
gas phase instantaneously for detailed model validation (long term)

References

Abu-Zaid, S. and Ahmadi, G., A Rate-Dependent Model for Dilute and Dense
Turbulent Flows of Two-Phase Solid-Liquid Mixtures, Powder Technology, Vol.89,

Soltani, M., Ounis H., Ahmadi, G. and McLaughlin, J.B. Direct Numerical
Simulation of Charged Particle Deposition in a Turbulent Flow, Int. J. Multiphase

He, C. and Ahmadi, G., Particle Deposition in a Nearly Developed Turbulent Duct

Soltani, M. and Ahmadi, G., Detachment of Rough Particles with Electrostatic

Zhang, H. and Ahmadi, G., Aerosol Particle Transport and Deposition in Vertical and

Zhang, H., Ahmadi, G., Fan, F.-G. and McLaughlin, J.B., Ellipsoidal Particles
Transport and Deposition in Turbulent Channel Flows, International Journal

Mansoori, Z., Saffar-Avval, M., Basirat Tabrizi, H and Ahmadi, G., Modeling of Heat
Transfer in Turbulent Gas-Solid Flow, International Journal Heat Mass and Transfer,

Mansoori, Z., Saffar-Avval, M., Basirat Tabrizi, H., and Ahmadi, G., Experimental
Study of Turbulent Gas-Solid Heat Transfer with Different Particle Temperatures,

Mansoori, Z., Saffar-Avval, M., Basirat Tabrizi, H., Dabir, B., and Ahmadi, G., Inter-
Particle Heat Transfer in a Riser of Gas–Solid Turbulent Flows, Powder Technology,

Liu, C. and Ahmadi, G., Transport and Deposition of Particles Near a Building