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ABSTRACT

The effect of two—body forces on the structure of dynamic waves in fluidized beds is studied, with particular emphasis on expan-
sion waves. Averaged equations of motion are used for the study, so the media appear to be interpenetrating continua. Both inertial
and viscous two-body effects are considered for incompressible materials fluidized by an incompressible fluid. Inertial effects are
included in the averaged momentum exchange force, using exact (classical) results for the potential flow generated by the motion
of one submerged body relative to another body. Viscous effects are represented, in the limit of zero relative Reynolds number, by
solutions to Stokes’ equations for the two—body problem. For simple one—dimensional motion the inertial force is repulsive always,
giving a positive compressibility to the dispersed field; the force is of such a magnitude that the single—pressure continuum equations
are unconditionally hyperbolic. The corresponding 1-D viscous force is attractive when the bodies move apart, and therefore intro-
duces a negative compressibility to the dispersed field. Competition between the two—body inertial and viscous forces ultimately
determines the nature of dynamic waves in a given fluidization system.

1. INTRODUCTION and the grains. Because no additional grains enter the tube at the
grid, alower value of willimmediately arise at the grid and prop-
agate upward toward the free surface. Conversely a small sudden
decrease ity will be accompanied by a uniform downward motion

Among the great many outstanding problems in the science
called “two—phase flow” is the determination of the speed and

structure of dynamic waves in fluidized beds [1]. Two—phase . .
. . ) . o of the bed. Because no grains leave the tube at the grid, a larger
dynamic waves, in the one—dimensional approximation of a flu- .
value off will occur there and propagate upward toward the free

idized bed, form the subject of this paper. Of interestis the manner ‘ h h that the fluidizadi .
in which 1-D multibody forces may affect the nature of these well— surface. Hence any ¢ : angeUrr?'uc t atthe g|d|zat|on spegd IS
between/,,,; andUr will result in adjustment in the be@lthat is

known dynamic waves. (As will be made clear below, we prefer : . : L
B o : o accomplished over time by an upward moving wave, originating
the more general term “multifield” to describe this science.) . .
at the grid. In general the speed and structure of the rising wave

A simple fluidized bed is created by the upward flow of fluid . ; X .
N ) 7 ., depends on the dynamics of the interacting materials. Hence these
(gas or liquid) in a vertical tube containing a packed bed of solid . L . .
are dynamic waves rather than continuity (kinematic) waves.

grains, initially resting on a grid at the tube bottom. A pump fur- In the science of gas dvnamics the study of dvnamic waves
nishes the power needed to make the fluid flow upward through the g y y y

grid, through the bed of grains, and through the tube. As the fluid 'S, 26COMPlished in the frame of reference of the moving wave,
. : o . . which is typically not the frame of a moving element of mass. In
speed is slowly increased a point is reached at which the grain

become levitated by the fluid, so the weight of the grain bed issthe wave frame, the positive direction is the direction of the wave

no longer carried by the grid. The flow at this point is said to be (relative to a laboratory observer); let us call the uniform state in

at the minimum fluidization velocity/,,s. As the flow speed is the positive direction the “right” side of the wave, and let the other

increased further, and then held fixed, the bed expands so that thgIOIe be the_ left”. The d(?c_rease in causes an Increase in toFaI_
o mass density on the left; in the lexicon of gas dynamics this is

free surface reaches a constant height in the tube. Although the . . .
. o . called a compression wave. The increas&’inauses a decrease
grains may be moving in some general pattern in the tube between

the grid and the free surface of the bed, the velocity of the grains,In mass density on the left, so this would b? called an expansion

; . ; ‘wave (or rarefaction). The wave structure is the variation of the
averaged on the entire tube, is zero. For this reason the bed 'Yelocities and densities between the left and right uniform states:;
called a fixed fluidized bed (rather than a traveling bed or fast 9 '

fluidized bed). The fraction of the tube volume occupied by the the left state being the new density, and the right corresponding to

. . . . the density prior to the step changedlin The “width” of the 1-D
grain material can be observed by measuring the height of the free . . ) .
surface. For all flow speeds that are lower than the terminal wave is the distance spanned between the left and right uniform

velocity of one grairUr, there will be a single (averaged) volume states.
City graiftr, the 9 9 Of course any physical fluidized bed exhibits multidimensional
fraction of the solid grains in the beU). . : ; ;
) ) . . motions. That is, across any horizontal plane in the tube, the state
Now consider a small increaselih accomplished very quickly

by a sudden change in pump speed. The bed will begin to rise uni_can be quite different from point to point. This is because the grid

formlv. at a rate determined by the force acting between the fluid atthe bottom cannot assure a perfectly uniform inflow, and because
Y. y 9 of the inherent (Rayleigh—Taylor) instability associated with the

1By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty—free license to publisbestheeprodu
published form of this contribution, or to allow others to do so, for U.S. Government purposes. This is work performed under the auspices of the U
Department of Energy.



levitation of a heavy material (the grains) with the impulse of a used for multifield flow in the limit of incompressible materials.
lighter material (the fluid) in a gravitational field. In many appli- Section 3 shows the origin of what is called the “standard” force
cations the formation of voidage bubbles due to this instability is for the interaction among material fields, on average. Section 4
an undesirable feature because large volumes of the fluid will notis the development of the two—body potential flow (inertial) force
come into contact with the grains. Such contact may be the goal ofdensity; and Sec. 5 develops the corresponding two—body viscous
a fluidized bed chemical reactor, for example. Nevertheless, theforce. Section 6 displays the character of the 1-D equations, and
study of multidimensional phenomena necessarily begins with aSec. 7 is a summary.
sound understanding of the 1-D behavior of the system. For this
reason attention is confined here to the 1-D approximation, which2. AVERAGED EQUATIONS
is approached to a satisfactory degree in the laboratory by choos- A \yide variety of methods have been used to obtain averaged
ing a tube diameter that is not too large compared to the average,qations for multiple interacting materials. One of the accepted
spacing of the grains in the bed. In this way the horizontal vari- 50516aches uses ensemble averaging of an exact (closed) set of
ation in the multidimensional motions is minimized by the tube dynamical equations [2,3,4]. The ensemble average makes con-
walls. o . ) ] } _tinuous variables out of discontinuous ones; so the result is a set of
The fluidized bed in a narrow tube is a relatively simple device continuum equations. The continuum equations for multiple fields
to construct in the laboratory, and the waves are easily observedyre needed in this study. In order to make it clear where it is that

through a clear tube wall. Unfortunately the quantitative measure-ne two—body forces fit into this framework, a brief description of
ment of the wave speeds and wave structures is difficult owing t0the averaging process is given here.

the finite width of the waves, and to finite multidimensionality. An ConsiderN different incompressible materials, only one of
ingenious experiment that facilitates measurement of the expanyyhich can reside at a location in space—tifrg, t). Let the state
sion wave was developed by G. B. Wallis; a second grid is placeday 3 space-time point be described by the material density, velocity,
at the top ofthe tube so thf’it for > Ur a “stack” of grains is held stress, and{ function: [p,, u,, o, o). The subscript o signifies

at the top grid. By reducing the flow speed to somewhat below 4 point in space-time, and the integer subscript r is a material
Ur, but abovelU.,;, grains will fall from the stack, and a very  nymper suchthat < r < N. The state evolves according to con-
clearly defined wave rises through the stack toward the Up_perg”d-servation of mass, momentum, volume, and material type. With
At U < Uy the entire stack falls away from the upper grid, and o change in material type (no phase change), and no thermal

a sharp wave moves into the stack as it falls. effects, the exact equations for this evolution are
Data from this experiment are reported by Wadlisl. [1], who
referred to the expansion wave as a “decompression” wave, and Po+poV-u,=0 (1a)
made important progress relative to finding a physical mechanism Polle — V- 06 — pog =0 (1b)
explaining the data. Unfortunately a full mechanistic explanation V.ou =0 (1c)
of the data is still lacking. o
G =0 (1d)

The main purpose of the present work is to study the possibil-
ity that certain two—phase flow wave phenomena are controlledWhere the overdot signifies the Lagrangian derivative along

by ﬂ;fe m%r%ent# mf transfs r between_ tui ”Tterab‘“g?g matenal_s “|f the stress is represented by an isotropic hydrodynamic pressure
as affected by the forces between neighboring bodies transmitted,, ¢ 5 yiscous deviator this is a closed set of equations (otherwise a

by the mteryemggdf.de.To beg!(rj], ths for_cr(]a gor;\tr_lbutprll dug t(_) stress evolution equation is needed). The parameteas a value
two mteraggng 0 _|es| 'Z C(?n_f_'h ere ’I\.N't f'otj Ik?elrtla an V('js' of one if —material is at the space—time point, and zero otherwise.
cous contributions included. The goalis to find the lowest-0rder ;s ,nction has been called the “phase indicator function” [2],

model that contains these effects, and to observe the nature of th&?unction of presence” [3], and other things by different authors
modelin terms_of physical _expectations. [Remgrk: S_tudie; of this We prefer the terri function, following Saffman [5], who seems
gor:]are not uﬂ!qm} rl:or ;]hls rer:];\son, remarkslrlije th|s ar? mserteqo have been the originator, and who furnishes the essential rules
In the text to highlight w ere the Prese”F work deviates from, or ¢, applying the ensemble average to quantities that are multiplied
adheres to, the norm established in the literature.] i

~Asecond, more distant, purpose of this study isto find an appro- ~ pere e let angle brackets indicate the ensemble average, which
priate set of averaged_equat_lons of motl_o_n that can be used for so¢ pe thought of as a sum over a great many observations of the
called Large-Eddy—Simulations of multifield turbulence. Numer- gia16 4t a point in space—time. These averages are referred to as the
ical LES has been helpful for modeling closures for single—fluid «,a5n” and the r index refers to the material “field”. The mean

turbulence theories, and are based on the Euler equations from gagad variables are continuous ones generated by theeighted
dynamics. However, there exists a serious roadblock to multifield o ygemple average of discontinuous variables. Of particular inter-

LES: the multifield analog of the Euler (nonviscous) equations gt are the mean mass density, mean momentum density, and mean
are not hyperbolic. This means that numerical calculations on a,_ie|d stress. defined respectively by

very fine grid can possess nonphysical wave structures that can-

not be included in LES statistics; and separation of the physical pr = (arpo) = mean rfield total mass density (2a)

wave data from the nonphysical data is impossible. Hence a reli- prtty = (appoti,) = mean r—field momentum density (2b)

able, physically—based, nonviscous multifield model would finally '

enable multifield LES turbulence closures. b:0; = {0,0,) = mean r-field stress (2¢)
The plan for the paper is as follows. Section 2 is a brief dis- Whose evolution equations may be expressed in terms of the aver-

cussion of the origin of the averaged equations most commonlyages



0, = {a,) = mean rfieldH function (2d) can be expressed as a vector—valued delta function pointing into
o = (0,) = mean mixture stress (2e) T-material from whatever one of the othat materials may lie

on the other side of the interface. Hence the ensemble averaged
. _ _ _ exchange force density is the net force on the r-field, as a result
u, = u, — u, = r-field velocity fluctuation (2f)  of interactions with all other materials, at interfaces. Because the

o' = o, — o = stress fluctuation (2g) average is impossible to evaluate exactly, except for trivial cases,

with averages of the velocity fluctuation giving the all-important We express the exchange force symbolically by
multiphase Reynolds stress Fiensﬂy _ (o Va) = SN g )
o Ry = (o poulul) = r-field Reynolds stress density. (2h)

having associated fluctuational parts defined

) ) ) ) (The sum works out alright becaugg = 0.) There exist many
Equations for the time evolution pf andu;, are formally obtained  \yays to approximate the force term, some of which are given in
py tak'lng the time derivative of the deﬁmﬂon itself, and rearrang- the various texts on this subject [6,7 for example], much of which
ing with the help of the exact equations. The result is a set of js sketched in the next section. The following section is offered
expressions that look just like conservation equations for massj, order to place the present work into proper context with the

and linear momentum with a momentum exchange term and tur-commonly known ways of making this important approximation.
bulence effect added on. The additional terms require models,

so the closure modeling still remains to be done. The unclosed3  THE “STANDARD” FORCE

equations are, . : -
Because of the enormous variety of possible multifield flows,

pr+pVeou, =0 (3a) there can be no single expression for the force derfsjtyhat
appliesin all cases. Hence the force density must be modeled on a
case—-by—case basis. Nevertheless it is possible to distill from the
~V-pR: (3D) vast multifield literature [2,4,6,7,8,9,10 for example], an expres-
V-u=0 (3c) sion for f,s that contains most of the physical features currently
0, — pyvy =0 (3d) in common use, with the case—specific data left as parameters. In
this paper, the functional form of this force density is called the
whereu = Zi\;l@sus, v, is the specific volume of —material, and “standard force”, whose origins are discussed briefly as a reminder
the overdot with the r—subscript is used to signify the Lagrangian of the assumptions that are applied in its derivation.
derivative relative to the mean motion of r—material. That is  Consider a single arbitrary rigid body in steady motiomel-
(); = 9()./0t +u, - V(),. The isotropic part of the mean ative to a stationary infinite fluid of densiy?. The compo-
stress is the hydrodynamic pressure= —pl, the deviatoric part ~ nent of total force acting the body in the direction of motion is
is neglected here. —Cyip?w? A, whereCy is a drag coefficient and is the cross—
Equation (3c) is a formal result of considering incompressible sectional area of the body. This force contains the effects of flow
materials, without phase change. The assumption central to thisseparation (pressure) and fluid viscous stress; it is to be averaged
result is that the volume fraction is connected to the averdged and placed into general coordinates. The standard way to do this is
function according to to suppose that there exist a great many bodies of identical nature
each of which contributes a like amount to the total force on the
(o) = 0, = prvy . (4) entire collection, which is the field of dispersed bodies. #et
be the fraction of the total volume occupied by the field of like
Equation (4) is, in effect, the thermal equation of state for r— bodies. Thes = nV; wheren is the number density of bodies,
material. When, = 1/p¢ is a constant for all materials, Eq.(3¢c) andV/ is the volume of one body. The force density acting on the
becomes the equation fpi{4]. field is then— (3 A/V;)0,Cap?w?, on average. This is typically
The system Eq.(3) is the ensemble average of the system Eq.(1)salled the drag force.
using the collection of definitions given in Eq.(2). System Eq.(3) It is customary to assume that the fluid “field” has an arbi-
is displayed this way to emphasize that the averaged equationsrary (space-time varying), but averaged, veloaify and that
look just like the exact equations, but with extra (unclosed) termsthe collection of bodies has an averaged center—of-mass veloc-

o, —0,V-0—pg=V-0.(0, —0)— (6’ -Va,)

on the right side of the momentum equation. ity us. With these velocities, the drag force density in gen-
The first term on the right side of Eq.(3b) is an acceleration due eral coordinates is typically written in terms of a drag coef-
to the difference between the r—stress and the mean streser ), ficient that correlates extensive laboratory data for fluidization

which arises, for example, when grains in the fluidized bed comeand sedimentation (many grains). The expression often used is
into direct contact. In this example the stress difference has been-1(A/V;)0,0,Cyp?|us — u,|(us — u,), whereCy can be a strong
called a “configuration” stress, because it depends on the topologfunction of volume fraction. Hence the functional form of the drag
ical orientation of a packed bed of grains. The configuration stressforce density, appearing frequently in the literature [4,7] is
leads to waves that depend on the elastic properties of the grains
themselves. Simple models exist for the configuration stress [4] fr = —Kstb0s(us — uy) (6a)
but are not needed in this paper.

The second term on the right side of Eq.(3b) will be called where the scalar exchange coefficient is
the “exchange force density”. The gradient in thefunction,
Vo, is formally zero everywhere, except at an interface; there it Ky = 2Cap%lus — ug|/d (6b)



in which the factor% corresponds to spheres of averaged diam- ones, along with the superposition of forces, are practices that will
eterd, and the appropriate material density is designategdZpy be retained in this paper.]

which may be either the s— or f—field material density, depend-  Finally, the effects of turbulence as manifested through the mul-
ing on the definition of”; (and on which field is declared to be tiphase Reynolds stress forms another (but not necessarily sepa-
“continuous”). About the only known exact value 6f; is that rate) important and unresolved problem. Multiphase turbulence is
for the very slow motion of a single sphere in an infinite viscous an equally artful modeling endeavor that is not addressed here, but
fluid, Cy = 24/ Re, of course due to Stokes, and valid for relative must be kept in mind in any discussion of multifield phenomena.
Reynolds numbeRe, based on the fluid viscosity argdsuch that (See [11] for a good discussion.)

Re < 1. For any other case (hon—sphere, polydispefge;> 1,
time—unsteady,. .) an experimental correlation is required. 4. THE TWO-BODY POTENTIAL FLOW FORCE

Itis almost universal practice to superpose (add) additional con- Multibody inertial forces in two—phase flow have been devel-
tributions tofy; that arise from other physical effects. (This prac- oped in the literature. For example Zhang & Prosperetti [12] used
tice is so commonthatitis very easy to forget that the superposition, configuration space method to affect an ensemble average of a
is itself an approximation.) Perhaps the best known of the S“per'potential flow about rigid bodies. Fendezet al. [13] consid-

posed force contributions is that due to time-unsteady motions; itgreq two rigid bodies submerged in an infinite fluid to obtain the
is known variously as the “added mass’, “virtual mass’, “invis- - _pody force arising from motions both in the line of centers
cid”, or potgnna'l flow” force. ThI'S is most commonly estlm.ated and perpendicular to the line of centers in a potential flow. Their
asa purely inertial process that is a consequence of the d'_SpIaceéveraging technique required assuming a form of the radial prob-
ment of fluid by a submerged body. As the body accelerates it must,jjity gistribution function for the presence of the second sphere,
move fluid out of its way, so the force needed to create the acceler,n integrating to infinite separation radius. Unfortunately results
ation increases with the amount of fluid displaced. Because onlys.q the literature are not in a form useful for the present pur-
the inertial part of the fluid displacement is considered, the force poses. This is because we wish to use potential flow solutions
depends only on the_ fluid material _den5|ty and the accel_eratlon.that are expressible in analytic form (rather than that of an infinite
And because potential flow theory is used almost exclusively 10 series) and valid for very close—spacing of the submerged grains.
determine the force, the term “potential flow force” will be used | oty the potential flow case and the viscous (Stokes) flow case,
here. . . i analytic solutions appear in the form of infinite series. Numerical
Forthe case ofsinglesubmerged body (replicated many times, - ¢qefficients arise in both cases that can be parameterized by the

to form afield) in a uniform flow, the results from the literature are separation of the two bodies. These coefficients can be expressed
almost always the same: the force depends on the difference in thg, fiing to a simple functional involving the series expansion
Lagrangian acceleration of the two interacting fields, and acts in parameter itself, as was shown by Batchelor & Green [14] for
suchaway to reduce the relative acceleration. When a nonuniformy,« viscous flow case of two spheres. Here we accomplish the
flow field is permitted (that is, one with gradients in velocity) an gnai0gous task for the potential flow of two identical spheres.
additional force appears that is proportional to the mean relative g, the study performed here the simple technique used is
velocity, and acts perpendicular to it —this is a potential flow “lift”  o|ated to that of Drew & Lahey [8], and also to that of Femdez
force [8]. ) . i et al. [13]. This method begins with the total force on a certain

_ Because the Ilterat.ure on the potential flowforges is very acces+qqy and performs an average on it, assuming a linear variation
sible, the results are simply used here and placed inthe form needeg, {he averaged velocity of the grain field. It is possible that the

for this paper. Hence the standard force becomes, finally, configuration space method, pioneered by Batchelor [15] and uti-
_ ) lized by Zhang & Prosperetti [12], would produce more accurate
frs = —Krs:6s (ur — ug) — Coppba (0 — 105) results by including the spatial variation in the grain field volume
—Coppa (uy — ug) - 2We  (7) fraction as well as the velocity variation. For now the interest is

in finding the lowest—order physical effect, so a more transparent
where the first right side term is the drag force density, derived method is considered sufficient, at least for now.
above. The second term is the single—body potential flow force  The analysis uses classical methods from the literature summa-
with coefficientC, = % for uniform rigid spheres. The thirdterm  rized long ago by Lamb [16]. Briefly, an infinite, incompressible,
is the Drew & Lahey [8] lift force, with antisymmetric f—strain  nonviscous, fluid is considered inwhich two bodies are submerged.
rateW; = % (Vllf — Vu;f) where the subscript f signifyies the  The fluid is at rest infinitely far from the two bodies. The force
“continuous field” index number, and the subscript d signifies the on the two bodies is determined by Lagrange’s energy method.
“dispersed” field number. Of course Eq.(7) is simply a functional This requires the total kinetic energy of the fluid and the two bod-
form, and not a specification fdy,; particular values of the coef-  ies, which is a function of the velocity potential that satisfies the
ficients, furnished by the analyst, make the equation into a specifi-boundary conditions at the surface of the bodies, and infinitely far
cation. There still exists substantial “art” in the process of select- away.
ing the coefficients, and there is widespread disagreement on the There are two cases to work out: motion in the line of centers,
best way to do so for any well-defined multiphase flow problem. and motion perpendicular to it. Consider two identical spheres of
[Remark: It is common practice, but by no means universal, to radiusa, as illustrated in Fig.1. Let be the velocity of sphere
obtain vector—valued averaged forces by averaging scalar—valuedi, positionx, and letV be the velocity of spher®, positiony.
forces. The practice is successful in multifield problems becauselLet M be the mass of each sphere, add be the corresponding
there is a single dominant direction, which is that of the averagedmass of displaced fluid. Letbe the vector pointing from to B
relative velocity. The method of making vector forces out of scalar (c = y — x, ¢ = |c|), with associated unit vectér The general



motion of each sphere can be split into two parts, one part thatand likewise forC,. Here the super prime signifies the derivative
is parallel to the line of centers, and the other part which is not of the coefficient with respect to the spacing between cemters
parallel. LetU; = ¢- U, so thatU; = ¢¢ - U is the parallel Lagrange’s equations are then

part, and leU, = U — U be the perpendicular part &f, and

similarly for V. Using this decomposition, equations of motion ) ) )

will be found using the energy method of Lagrange. M (Uy) =—-CoM' (Uy) +M' {(VH) Cy+ qu"c} (12a)

M(Uy) =-C,M' (U) - M [(VL)‘ CL+ Vfc;e} (12b)

where the overdot again signifies the Lagrangian (total) deriva-

tive. This is a classical and well known result, and is obtained by

assuming that’, is a constant (independent of spacingRecall

that for the case of large spacing/¢ < 1), C| = 2(a/c)® and

CL = 3(a/c). HenceC| = —3(a?/c*) andC’ = —%(a®/c?).

Now observe the right side terms in order, it is clear that: a) any
Figure 1. Two spheres in an arbitrary cartesian three space. acceleration is retarded by an amount proportional to that acceler-
First, suppose that the motion is such that the velocity of both ation and the mass of displaced fluid; b) any acceleration of sphere

spheres is along the line of centers. The total energy of the fluid 3 Will cause an acceleration oh(and vice versa) that diminishes

and the two spheres is [16] with increasing separation; and c) regardless of any accelerations,
any motion in the line of centers, due to another sphere close by,
T = will result in a force that lies in the line of centers; the paral-

LM+ CM| U — Oy MUy - V) + }[M + C.M'TV (8) lel motion /is repu/lsive and the perpendicular motion is attractive
(becaus«e?’H andC’| are negative). The first partis the usual added

where the coefficients, andC) are infinite series that arise from  mass acceleration that a single isolated sphere would experience,
the potential flow solution for the velocity field. To obtain the fluid the second part alters the first if the second sphere is also acceler-
kinetic energy, the gradient of the velocity potential is squared, andating, and the third part acts as a repulsive—attractive force. [Two
integrated over all space. This is added to the sphere energies tRemarks: 1) In the classical literature the quarjtity+ C, M'] is
yield the total energy. If the separation of centers is large, so thatcalled the “virtual mass”; and’, M’ is called the “added mass”.
(a/c) < 1, the firstterm of each series is accurate, sothat= % 2) In the multiphase flow literatur€’, is called the added mass
andC| = 2(a/c)?. In order to examine the effects of close spac- coefficient, the value of which is very context dependent — a cause
ing a great many terms of the series must be evaluated, which igor both substantial confusion and lively debate.]

done shortly. o _ . It is tempting to add the two equations of motion together in
If instead the motion is confined to be perpendiculactthe  order to obtain the force associated with the figgneralrelative
total energy is motion between the two bodies. Unfortunately there will be an

T — error associated with this sum, becal$er 7', is not the actual

L= total energy of the system. It is true that the velocity potentials
1M +CMNUT+C MU, -V +iM+C,MVE. (9) are additive for the two cases (parallel and perpendicular motion),
so the true fluid kinetic energy at a point is the gradient of the
combinedpotential, squared. Hence adding the forces for the sep-
arate problems misses the cross term associated with squaring the
combined velocity potential. It appears that the total fluid energy
or the combined problems has not been computed (or at least does
not appear in the accessible literature). Until the general (com-
bined parallel and perpendicular) fluid energy is determined, we
shall confine our attention to the restricted flow associated with
d (9T d [T, fluidized .b.eds. In this restricted case we shall assume that the
= <m> - VT ,0 dt (8UL) — VT, . (10a,b) forces arising from two—body motions and accelerations that are

perpendicular to the line of centers will simply average to zero.

By carrying outthe indicated differentiation, Lagrange’s equations This is a 1-D approximation, on average.
of motion are obtained. For this, the derivatives of the coefficients  |n the 1-D approximation the full equation of motion becomes,

In the large—spacing approximatiof, = %(a/c)?’ and again
C, = % (In the perpendicular case for small spacing, both coeffi-
cients are not only different from these values, but very difficult to
evaluate. Fortunately for the purposes of this paper, the evaluatio
is not needed, as will be seen shortly.)

Lagrange’s equations, for the variation alandthe trajectory

of sphereA) are

are needed. These are using Eq.(11) to express the result in terms of the directional gra-
_ (()CH _ dCH Jc B R dientVy,
and M(U)) = =M [C (U) = Oy (V)] (13)
. dcC
¢ ="le=cje -5 =cje (v-10) + M |Uy (V) = Uy) + § (UF + )| VxCa = MV

=C M-ty @) +M'CVx [Un Vi—=0y) +3 (Uﬁ + Vﬁ)} ~ MOV, VP



where the variation of’, with spacing:is permitted. Thisistobe  of the expansioV,.U = (dU) /df;) Vs, again the spatial gra-
averaged with respect to the possible directions for the separatiordient of volume fraction is a direction held fixed relative to the
vector, the velocity, and the coefficients. For this we assume thatdirectional averaging. The steps are

the velocity is already a continuous (averaged) field, so that

<Can [UH V=0 +3 (Uu2 + V\m - CHV"VH2>

V=U+c¢c-VU (14)
=2(C, — CH <U||V UH>+O VU
and let angle brackets signify the averager directions Con- 5C, — ) dUH
sider the term(U);) " which is the variation of the parallel part of = 2(Ca I <U b,
the velocity, along the center—of—-mass motion, whose average is = —2(C, — C)) ((&-U)(&-U)/6,) ¥V
=—3(Co— CH><U2/9S)V95 : (22)

((U))=(ec-U+(eey - U)=L0  (@5)

The first step uses the velocity expansion, eliminates odd terms

which assumes that the separation vector is isotropic, and time-in ¢ (which average to zero), and expands the directional deriva-

independent. The factdy arises from the directional averaging, tive. The second step expresses the directional derivative in terms
which is formally an integral over the surface of a sphere of radius of V¢,. The third step evaluates the derivativelaf for a 1-D

¢, and outward normat (See Landau & Lifshitz [17], footnote  domain. The last step performs the average over directions. (In

p. 79.) The nextterm is terms of the mean flow velocities on a 1-D domain, the quan-
tity > 6sus iS a constant, because of Eq.(3c). Accordingly,
~{cy(v))) = =5 U + O(VU)? (18)  dw/df = —(u1 — up)/61, SO We putdUy/df, = —Uj /6,
because the velocity is measured relative to that of the fluid field.)
becauseC does not involve the direction. HoweverVC; Hence Lagrange’s equation of motion for sphete averaged

explicitly dependsn the direction, which is quite importantin the ~ assuming alinear distribution of sphere velocity becomes, to low-
directional averaging of the other terms. For these, we make theest order in the velocity gradient,
following association: . .
MU =— (C, — ) M'U
d(Coa = C))  2(Ca—C))

1772
0 0 M'U?V0, (23)

Vi Cj — ﬂVe (19)
x| dgs S

which selects a specific direction — one associated with the gra-The right side is the total force on a body moving in a sea of
dient in volume fraction. This is equivalent to assuming that the fluid whose averaged velocity is zero. For a sea of perfect fluid
most probablelirection is that of increasing volume fraction ofthe - \yhose averaged velocity is nonzero, sayit is common practice
sphered, and the probability increases with its gradient. Thisis to replaceU with us — us whereu, is the ensemble—averaged
consistent with the assumption behind using Eq.(13) to obtain theye|ocity of the dispersed (in this case, solid) field. In developing
full force vector: the perpendicular parts have averaged to zero.the standard force it was assumed that each individual body con-

Hence it follows that tributes to the ensemble average the same amount of force, so the
) R . ) force density is simply the number density= 6/V; (volume
N <VH VXCH> = <(C ‘U+¢-cV-U) >VxCH fraction per volume of one sphere) times the force for a single
. 9 9 body; the same assumption is made here. With these provisions,
- <(C U) > VxCj +0(VU) the force density acting on the s—field due to motion relative to the
1..2dC) ffield, is
=—-3U a0, Vo, (20)

fsr = _edéap(s)f(ﬁs —ug) — CN’Tp(s)f(“s - uf)QVQS (24)
because the terms that are oddcimaverage to zero, and a term
proportional to the square of the velocity gradient is dropped. TheWhere the net coefficients, signified by the over-tilde, are
derivative of the coefficient is evaluated later. [Remark: On the .
first line the directional derivative is removed from the averaging Ca= (Car - OH) ) (25)

symbol because it is being held fixed; it is a known quantity by 5 d
way of Eq.(19). This is a departure from standard practice, the Cr=2(Ca =) - baa <C -Gy - (263)
consequences of which are important.] Similarly the next term, o _ ) )
averaged over directions, is and where the density’; is the material density of the “continu-
ous” field. The subscripf is “dispersed” field number. The net
Ll o L0 dCy coefficientsC, andC,. are both positive for all values 6, as will
<[UH Vi—=0y) +3 (UH Y )} cha> =3U b, Vo, be shown nextC,, is an added mass coefficient, afidmultiplies
(21) a term that represents a net repulsive force which arises from the
plus a term of orde(VU)2. motion of one body relative to another in a potential flow field.

The last two terms will be taken together, and averaged in the Positivity of the net coefficients is shown by observing the
same way; the result is important because it happens to have théehavior of the potential flow problem, with unrestricted spacing
largest coefficients. The average takes four steps, and makes udgetween the two spheres. Recall thatandC) are both sums



s

Q) B (b)

arising from the infinite series solution for the velocity potential. 500

As sphere separation decreaggsandC (and their derivatives 5
with respect to spacing) must be modified by factors that reflect 4
higher order disturbances in one sphere’s potential flow field intro- *
duced by the other sphere. The evaluation of these factors requires’
the truncation of the infinite series. By extending the prescription ' N oty
for generating these infinite series outlined by Lamb [16], correc- 0L 02080405 I
tion factors can be produced that, in principle, extend in validity Figure 2. Separation numbgft,) for k = 1,2, 3.

up to the point where the spheres are touching. If one hundredThe main point of this figure is to show that the separation number

terms are retained in each of the series@@randC), one can exhibits a strong dependence on the dimensionalityAt large

L%?E(;Z:?eie[;%r in the analytic results to less than 0.01 percent fot5eparation, the multibody effects vanish. A separation number

) . of 200 radii is 100 diameters; this occurs, roughly, at values of
In order to produce a tractable model that includes the phys'csvolume fraction of< 105 < 10~% and< 102 for k — 3.2.1
ofclose_—spacmg, as_et of fits to the infinite series is use_d. (Becaus?espectively. The modeling performed in this paper is to generalize
the derivatives are singular when the spheres come into contacty _n ¢orces into multidimensional ones. which suggestsihatl
the finite number of terms kept here only serves to guide the fit 4 he the consistent choice. Nevertheless, we shall momentar-

when the separation gap approaches zero.) The natual Va”ablﬁyleave the dimensionality as a parameter, lying somewhere in the

for expressing the fits is the quantify= (c — 2a)/a, which is hysical rangd < k < 3, that is yet to be determined. Because
the distance between sphere surfaces (the gap) expressedin sphe?#\e fits in EqQ.(27) are all decaying exponentials the nonviscous

][adii. we sha@llfr_ef_ertqhas]:[_he “segz?]ration number”, which varies  popayior is fairly insensitive té&; however the corresponding fit
rom zero to infinity. The fits used here are for the viscous force can depend stronglyforas will be seen in

1., 3 -3 _7.69¢ the next section.
Ca=3+3lE+1E+3)]7 (14020467, (278) Finally the net coefficients can be displayed as functiorts of

400

300

200 | k=3 2 1

k=2
100

C| = 3(6€+2)7% (1+0.160e>7¢) | (27b) Using Eq.(29) the net repulsive coefficient becomes
d
—(C,—C) = 2(64+2)"* (1 —0.428e"1318) (27¢ . 2\ d
d¢ ( H) 5(€+2) ( ) (27c) C’TZQ(Ca*CH)+ (%) d_§<C“C“) (26b)

Note that the corrections 10, andC small, and occur & = 0 . -~ _ . o

where the spheres are touching. [Remark: The infinite series arévhere we retain the unspecified dimensionalityFigure 3 shows

analytic at¢ = 0, and are expressible in terms of the Riemgan ~ POth of the net coefficients, plotted for= 1,2, 3. The important

function. The difference between the fits and the analytic valuesPOINt here is that these coefficients are nonnegative for all val-

is very small ] ues offly, right up to the point of close—packing. [Two remarks:
Now recall that we really need the derivative with respect to 1) Holding the directional derivative fixed while averaging over

the volume fraction. This requires a modeling step, and the chaindirections is a crucial feature of the foregoing procedure. If the
rule from calculus. Hence we use directional derivative isiotheld fixed the model is fully isotropic,

and the net repulsive coefficie@t, is 2 times smaller. 2) Itis the

d e\ d net coefficients that are important here; they go together hand—in—
a0, (Ca =) = (d_9d> g (Ca=C) - @8 hand)
So last thing needed here is to relate the separation nupbéne J @ o ®

dispersed field volume fraction. For regular arrays of spheres, this o
can be transformeexactlyinto a function off,; and the volume ) :
fraction at closepacking.,. It turns out that 05y

0.4 k=3

¢ _ 1 - 0.3 _ o, 0,
E=——2=2|(0sp/0a)F —1| =&(64) (29) 01 02 03 04 05 01 02 03 04 05
a ~ ~
Figure 2. Net coefficients. (&), (04), (b) C\-(64).
wheref is the dimensionalityk = 3 corresponds to a cubic array

of spheresk = 2 is a 2-D array of spheres in a plane, d@ng 1 5. THE TWO—BODY VISCOUS FLOW EORCE
is a 1-D line of spheres. (In 2-D the depth of fluid normal to
the plane, and in 1-D the radius of fluid normal to the line, both  The contribution td that is due to the motion of one body rel-

factor out because, andé., both depend on the same arbitrary ative to another in a viscous fluid, is included here. The force con-

dimension.) tribution is a multidimensional generalization of the zero Reynolds
Fork = 3, 0., = /6 ~ 0.524 (a bit smaller than random  number 1-D force, developed by Batchelor & Green [14], aver-
close—packed uniform spheres, for whilj ~ 0.644). To fur- aged. For two identical spheres moving in the line of centers, the

nish a quantitative feel for the separation numgét, ) is plotted force on one sphere is, using the nomenclature of [14]
in Fig.2, fork = 1,2,3. Figure 2a shows for 6, down to one

percent. Figure 2b displays the rarige " < §; < 1072, F, = —371paV.h,(€) (30a)



where the function is wherew = |us — u¢|. As before the force density; is nF, with
n = 05/V;. The coefficient in square brackets is cast in terms of
ho(§) = [€71 + Flog(¢™!) + 2.763] (30b) the relative Reynolds numbéte = wd/p?u: (based on diameter
d = 2a). The result is

which becomes singular gt= 0. (A term proportional to a con-
stant fluid straining is not needed here, and is therefore omitted.) fir = £Cyhypf(us — ug)(us — ug) - VO (34)
This is accurate fof <« 1 where agairt = (¢ — 2a)/a is the
separation numbet’, is the total force on one sphere in the z— where the coefficient
component directiory, the fluid viscositya is the sphere radius,
V. is the relative velocity between spheres (confined tothe zaxis).  C, = [§(c/a)Re™ "] = [3(£+2)Re™ '] = [2Re™']  (35)
As before,c is the distance between sphere centers. The line of
centers coincides with the z axis. is accurate only foRe < 1. The approximation og is made

This force is also known classically. The viscous force acts in because Eq.(30) is accurate only for separation nurfiber 1.
such a direction to resist the relative motion of the two spheres;[Important remark: Because significant relative motion can only
it is the reason that two bodies falling in a viscous fluid will tend occur when the Reynolds number exceeds about one, multi-
to remain the same distance apart. [Two remarks: 1) Any motionfield problems will typically haveRe > 1. This means that
perpendicular to the line of centers tends to make the spheresome empiricism will be needed for determini@.] Now let
spin, because the total rotational moment is zero; the spheres spiwst = us — u; and the viscous force becomes
in opposite directions (like a pair of gears). Hence the falling
spheres may orbit one another at a fixed distance, while rotating fe = —signwys - VO]Cyphy g (Werwes - V) (35)
in opposite directions. 2) The classical streaming viscous force,
due to Stokes, is-6rpuaV whereV is the velocity of a sphere  Where the first factor makes the direction definite (the sign func-
relative to a uniform fluid; this part is already included as part tion has a unit value times the sign of its argument). The direction
of the standard force. The force given in Eq.(30), due to relative iS chosen so that the averaged equation has the same attractive—
motion between two identical spheres, is an additional one.] repulsive nature that the single-body force had to begin with. In

The functiork,, in Eq.(30b) is a fit to an infinite series, accurate the one dimensional fluidized bed waves, described in the Intro-
for ¢ < 1which corresponds to large (near close—packing). For ~ duction, the expansion wave has a positive vertical gradient of

this paper it will be assumed valid for ), but with unknown  solids volume fraction, ands — uy is negative. The foregoing
dimensionalityk. force acts upward, and therefore it appears that the grains are

attracting one another as they are pulling apart. Conversely in
the compression wave the vertical componenVéf is negative
while the relative velocity is also negative. The force again acts
upward, so the grains appear to be repulsive to one another as they
are coming closer together. Note that if the relative velocity is
perpendicular t&/6;, the force is zero.

This force contributes a destabilizing term in the expansion

01 02 03 04 05 case. Thatis, a volume fraction gradient that is positive produces

Figure 4. The functior,, [£(64)]. aforce that is positive — which acts to increase the gradient. In the
case of compression the force is stabilizing because the force acts
in order to diminish the volume fraction gradient.

Now observe thaf; is in the symmetric form that is desirable
for general use; the interchange of s—f indices gives the force on
the f—field due to interaction with s—field, afig + f, = 0. To
summarize, the full force density used in the studies that follow,

Figure 3 displays.,[£(04)] for k = 1,2, 3, where itis clear that a
low—dimensionalityk = 1 permits the viscous effect to diminish
much faster as the volume fraction decreases figimwhere the
effect is infinite.

The task now is to place Eq.(30a) in general coordinates,
and average. Consider sphefein Fig.1; its velocity relative
to B is —c - VU, whose projection in the line of centers is
—¢-c-VU = —cV,U). As before we assume thltis continu- _ ~ o (e . N o, 2
ous, and therefore alrlleady averaged. Hence in general coordinates fir = = 0aCapls(8; = 0r) — Crpiru VO,

the forcemagnitudes = Cohypl(Weswss - VO;) — 0,0:Ksswys (36a)

F = 3rpahyc Vil . (31) where the potenual flow lift force is om|tteq because we are inter-
ested only in the 1-D case, and the net viscous coefficient is

We assume that the direction of actiontigus — u¢), which is ~ }
along the mean relative velocity between fields; the correct sign Cy = signwis - VOs]C, (36b)
will be chosen in the last step. (Choosing this direction assumes . . L -
that the sphere—sphere relative velocity and the sphere—fluid reIa‘—NhICh simply absorbs the sign into the unknown coefficept
tive velocity are similar. In the 1-D approximation, this is the only
choice.) Usindgv.U, = —(U) /05) V¥, force vector becomes 6. CHARACTER OF THE 1-D EQUATIONS

The character of the 1-D model equations, using only the stan-

F = =+ [3rpac/w] (hy/0s)(us — ug)(us — ug) - VO (32) dard force, is well known [2,10,11,19,20]. The eigenvalues of the



characteristic equation are complex, so the equation system is saidharacteristic equation is O& — AA] = 0, which turns out to
tobeillposed, inthe mathematical sense. Stewart & Wendroff [10] be quadratic in the eigenvalues The eigenvalues are exactly
comment that illposed problems are difficult, but not impossible, analogous to “characteristic speeds” in gas dynamics. Let field 1
in the context of two—phase flow. Indeed this has been the casebe the continuous field, so that, = p$. The eigenvalues are
a great deal of useful analysis has been accomplished with the
standard force, in a large collection of problems. For the study of
waves in fluidized beds the illposedness has slowed the progress,
but not stopped it altogether [1]. Nevertheless a well-posed model )
is helpful for the study of waves because real—valued eigenvalued™ Which

ermit analytic solutions to be found for the wave speeds and wave ~ ~
Etructures. Yl'he main purpose of this section is to (Ijoemonstrate that g1 =01y +Ca/6r] and gz =01+ Ca /6]
the addition of a two—body potential flow force is sufficient to

\ = (ulfh + u292 (39a)

w D +
91+ 92 ):F 12 /(91 + g2)

wherey = p3/p9 is the material density ratio of dispersed to

guarantee real eigenvalues, unconditionally.

Let us first consider the two—field case, and postpone the study,
of three or more fields for future work. Let the state vector be

V= [,017 P2, U1, Ug,p]T, and letwio = w1 — uq, With z the Single

coordinate direction. The force density acting on field 1 due to
interaction with field 2 is, from the summary of the last section,

fi2=— edéaptb(ﬂl —lg) — (ér + évh1))p?2w%2(91):x

— 91921C12w12 (37)

continuous fields. The factaD, which must be positive if the
eigenvalues are to be real, is

D= [ér + évhv] - [9192/(91 + 92)] 2 0. (39C)
The character of the equations can be observed by plofling
Consider the nonviscous case first. Figure 5 shbwier 6., =
/6 = 0.524, various values of the ratio of material densjtyand
for two values of the dimensioh. Fork = 1, D is positive for
all values off; and~. We conclude from this that the 1-D model

The corresponding 1-D model equations, expressed in matrixequations are unconditionally hyperbolic. (Fo& 2 or fork = 3

form, are there exist negative values &f in the very largey case, which
AV, +BV, =S5 (38a) means thak = 1 is consistent with the derivation of the nonvis-
h cous force.) Fo#., somewhat greater thary6, and for which
where the coefficients areot appropriate, the large case can exhibit
1 0 0 0 0 negativeD. When the volume fraction of the “dispersed” field
0 1 0 0 0 exceeds a value of /6 then the spheres have begun to overlap,
A=|0 0 p4+4A -4 0 (38b) forming a continuous chain; this means that they must become
0 0 —A  pat+A 0 the “continuous” field, which reverses the roles of the two fields.
vl Uy 0 0 0 With this role reversal) remains positive for all volume fractions.
[Remark: If in a physical syste#h,, is known to exceed /6 then
the physical geometry must not be that of uniform spheres, and
Uq 0 P1 0 0 . . . .
0 Y 0 p 0 a different set of potential flow coefficients must be developed.
2 2 f e . . . .
B=|Bu 0 (p+A)u — Aus 0, (38¢) Eor example, a foam consisting of gas bubbles in a thin Ilqwd
0 Bu _Au (po + Aus 8 film could exhibit a very large value @k.,, but can only do so if
0 02 0 ! p2 0 2 02 the bubbles deform and become flattened into various geometric
shapes having fairly flat sides. Solutions for potential flow of flat—
_ _ _ sided objects approaching one another would be needed to provide
and the right side vector is the correct coefficients in that case.]
0 D (a)
0 1
S = | ~0:162Kwiz + prg (38d)
+0102Kw12 + pag '
0 0.4
0.2 k=1 1000
. 1000
The dummy Varlables are 0.1 0.2 0.3 0.4 0.5 O 0.1 0.2 0.3 0.4 0.5
- - - 9 Figure 5.D for C, = 0. (a)k =1, (b) k = 3.
A=04Capty » B=(Cr+ Cyhy)wiszpls (38e,f) . " . . .
Now let us consider addition of the viscous attractive—repulsive
and force, and its corresponding effect on the system character. Recall
that the direction of action is given by sign(61)..] which is
01 = prv1, 02 = pava, v1 =1/p7, va =1/p3 . (38g,h,i,j) positive in the case of a compression wave; in the expansion wave

The densitiegp; + A) and(p, + A) could be called virtual mass
densities, for each field, and the densiycould be called an

the coefficient is negative. The analytic magnitud€pf~ Re~!
is only valid for Re <« 1, and so for practical conditions this
coefficient is an unknown parameter. Its value, in relation to all

added mass density. Because the material specific volumes aref the other modeling assumptions associated with the drag force
constant, this is a complete set of equations. The correspondingand added mass force, can only be grossly estimated, as follows.



Figure 6 displays the conditioP, plotted versus dispersed field

volume fraction, for two cases: &), = +0.01 (compression);
and b)C,, = —0.01 (expansion).

(b)

0.8
0.6

0.4
1000

k=1

0.2 k=1

0,

O
0.1 0.4

Figure 6.D for k = 1. (a)C, = +0.01, (b) C,, = —0.01.

0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.5

InFig.6, the volume fraction at close packing is aghin= 0.524.

In the compression cask is positive, and becomes large near
close—packing, which is to be expected because the viscous forc
is stable in compression waves. In the expansion £alsecomes
negative near close—packing; because the fundtiobhecomes
infinite até..,,, D will be negative there foanynegativeC,,, regard-
less of the magnitude df,.

Recall that when the bed of grains becomes close—packed, th(—{:h

configuration stress is nonzero (Sec.3). This brings in a large pos
itive contribution toD that is not included here, but the effect is

to produce 1-D wave speeds that depend on the elasticity of theCous and viscous problems.

grains themselves. So the issue with negativeeard.,, becomes

a question of how the state in a packed bed can transition to smallehew model
values off; in an expansion wave, by passing over those states '

for which D is negative. The answer is that such a transition can
only occur through a discontinuity @f;, so the expansion wave

takes on a compound structure. The compound structure is a dis

continuity fromé,,, to some lower value, after which the wave is
smooth, and travels with the speed of an eigenvalue. Which eigen
value will depend on the value 6f,; for this reason, the data from
Wallis et al. [1] are extremely important. Those data permit an
experimental determination of the coefficient that is not possible
to determine from theory alone, at least at the present time.

7. SUMMARY

A study of two—body forces due to both inertial (potential flow)
and viscous (Stokes flow) effects has yielded multifield model

equations that exhibit features that are new. The model is low—
order because gradients that generate the two-body forces ar
linear, time—independent, and one—dimensional. The nonviscous’

model is shown to be unconditionally hyperbolic; a feature that is
helpful for developing analytic solutions for 1-D wave problems,
and for ensuring physical statistics from three—dimensional LES

results used for turbulence closures. The viscous force acts in
such a way that an expanding fluidized bed appears to have graing

attracted to one another. This attractive force gives the expand
ing bed a sort of “strength” that must be overcome in order to
expand. If the magnitude is large enough, the attraction will slow

the expansion wave at the packed bed limit, and could bring the z

wave to rest relative to the packed bed.

while averaging over all other possible directions, in the develop-
ment of Lagrange’s equations of motion. If the directNgf, is

not held fixed, the model would be called isotropic, and the repul-
sive coefficient would b% as large; the isotropic model is not
hyperbolic.

The averaging method of Zhang & Prosperetti [12] does recog-
nize a gradientin volume fraction as an important direction. How-
ever their method of averaging results in a multibody force that is
in divergence form, and acts only on the continuous field. This
is in contrast to the exchange form that is developed here. (The
exchange form is one whose sum on all materials is zero, which
reflects the nature of the exact term in Eq.(5)). Therefore it is not
possible to compare the present results with those from Zhang &
Prosperetti [12]. The force density developed by Bad€zet al.
is isotropic, in the foregoing sense. Unfortunately leeiézet
. presented their force density in a segregated fashion, rather
than as a single expression involving combined coefficients such
as Eq.(26). Thus a direct comparison of the present results with
those of Ferahdezet al. (as presented) cannot be made. How-
ever, we expect that their coefficient for thet repulsive part of
e force (in terms of a functional, rather than an infinite series)
would be about timesC,.

The next step is to find the analytic solutions for 1-D nonvis-
In the viscous case, experimental
data are needed in order to gauge one of the coefficients in the
The data from Walligt al. [1] will serve that pur-
pose well. After that a higher—order model could be developed
by considering fully general relative motions between two grains
in the potential flow problem. This should lead to a two—body
correction to the potential—flow lift force found by Drew & Lahey
[8]; and the hyperbolic character of the 1-D nonviscous model
‘should remain.

NOMENCLATURE

A —like B, U, z, x, U ..., the Roman alphabet, in both plain
and bold face, is used for dummy variables defined locally in
the text.

a — sphere radius [length]

¢ —distance between sphere centers [length]

d — sphere diameter [length]

é” — force density [force/volume]

— gravity component [velocity/time]

h — close—spacing function [nondimensional]

n — number density [number/volume]

p — hydrodynamic pressure [force/area]

t —time

— velocity component [length/time]

v — material specific volume [volume/mass]
w — relative velocity component [length/time]
x — coordinate component [length]

— coordinate component [length]
C —nondimensional coefficient

The significant part of the present derivation for the potential ¥ — Saffman’s function (nondimensional) _ _
flow two-body force (as well as for the viscous two-body force) f2e — Reynolds number based on the mean relative velocity, sphere

is the recognition of a predominant direction in the flow that is
determined by the gradient in volume fraction. This is a straight-
forward way of including the effect of anisotropy in the two—body
force density. Thisis accomplished by holding one direction fixed,

diameter, and fluid properties (nondimensional)

c —vector from sphere A center to sphere B center [length]
f — force density [force/volume]
g — acceleration due to gravity [velocity/time]



u — velocity [length/time] 4
w — relative velocity [length/time]
x — position [length]
y — position [length] 5
I - the identity tensor [nondimensional]
R - Reynolds stress [force/mass]
U - velocity of sphere at positiox, called A 6
V - velocity of sphere at positiop, calledB
p —mass density [mass/volume] !
# —volume fraction [nondimensional]
1 — viscosity [mass/length/time] 8
& —separation gap in sphere radii [nondimensional]
o —stress [force/area]
Subscripts, superscripts, and over—-symbols 9
()a — having to do with added mass
()a —having to do with the dispersed material field 10.
()o —a point in space—timex, t)
()r —integer material index
(), — having to do with a repulsive force 11.
()» — having to do with viscosity
() — parallel
(). — perpendicular 12.
(' — The Lagrangian (material) derivative, sometinfes)” for
clarity of the operator, if the operand is a compound quantity.
— a unit vector 13.

—a dummy symbol for: a fluctuation, a derivative, or mass of
displaced fluid (defined in the text).

14,
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