Computer Automated Radioactive Particle Tracking (CARPT) and Power Point Presentation
Gamma Ray Computed Tomography (CT) for Opaque Multiphase Flows with Notes

NERL-DOE Workshop on Multiphase Flow Research
Morgantown, WV, June 6-7, 2006

Being unable to attend this important workshop, | would like to share with attendees some of my thoughts and
suggestions via this presentation.

Understanding multiphase flows on all scales, from nano to very large equipment scale, and being able to
model them quantitatively is essential for a myriad of technologies, including generation of liquid fuels and
energy from novel sources. While both accurate experimentation and mathematical models are needed on all
scales and for all types of flows (e.g., gas-solid, gas-liquid, liquid solid, gas-liquid-solid, gas-liquid-liquid-solid,
etc) | will focus here on a subset of problems that deal with quantification of fluid dynamics in multiphase
reactor systems. This requires the development of codes that can effectively handle large systems of complex
geometry, the improved understanding and better physical models of inter-phase interaction and turbulence,
and the experimental validation of these codes.

In our Chemical Reaction Engineering Laboratory (CREL) at Washington University (WUSTL) we have
developed and implemented two unique facilities for determination of velocity and holdup (volume fraction)
fields in opaque systems of large volume fraction of dispersed phase. Our Computer Automated Radioactive
Particle Tracking (CARPT) and Gamma Ray Computed Tomography (CT) have been used successfully to map
bubble columns, stirred tanks, fluidized beds, etc.

The enclosed power point slides and notes (please read the document in Notes format) illustrate some of
the successful uses of these techniques and continued remaining challenges for which we hope to attract
collaborators from the workshop attendees.

Please see our last slide 33 for areas in which we seek partners for collaboration
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PN > Flow pattern and phase distribution determination
- Conventional tracer technique and densitometry
- Particle tracking and tomography
- Computational fluid dynamics (CFD) -
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ADVANCES IN MULTIPHASE REACTORS REQUIRE:
Flow Mapping and Modeling of Opague Multiphase Systems

REACTOR SCALE MODELS FOR CONTACTING OF TWO MOVING PHASES
|ldeal Reactor Concepts:

@ R
A) Plug Flow (PFR) 7
@ | -y, K
/
@—> .“ K Uy
B) Stirred Tank (CSTR) —A
@ ' ob u,

C) Axial Dispersion Model

D) Need More Accurate Flow & Mixing Description Via
Phenomenological models based on:
1) CFD Models (Euler-Euler Formulation) ‘T
2) Experimental Validation: Holdup Distribution and Velocity Field |

Dudukovic, AICHE Symposium Ser., 321, 30-50 (1999)
Dudukovic, Larachi, Mills, Catalysis Reviews (2002), 44(1), 123-246
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High energy gamma ray can pass through opaque objects

This concept is used:

To determine chordal densities via gamma ray densitometry and

global flow patterns (RTD) by radioactive tracer studies
To quantify phase distributions with the aid of Computer Tomography

To monitor the motion of a single radioactive particle which mimics
the density and flow behavior of a particular phase in order to obtain

velocity fields and mixing patterns




Radioactive Techniques in Reactor Model Development

Classic Methods for trouble shooting and “blackbox” model development
Tracer impulse response Gamma Ray Densitometry

R Response

: Source Detector
§ Y§§§&h / reactor

Line averaged holdup

[ === Meanholdup

4 Input

From a number of line measurements

02:> Dispersion coefficient obtain an approximate assessment of
density and phase holdup distribution

Match dispersion model or CSTR in series
model or some other compartmental
model to observed response

Modern methods for CFD validation and flow and mixing model development.

Tomography and single particle tracking.

S5



Computed Tomography (CT)

Plexiglass

Single source CT is a technique for
measurement of the cross-sectional density
distribution of two phase flow by measuring
the attenuation distribution in two phase
systems ( e.g. G-L, ...).
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Kumar (1994), Kumar et al., (1995)

20 LLCHEI\/IICAL REACTION ENGINEERING LABORATORYi ZE mm&gam




Radioactive Particle Tracking

Lin et al. (1985), Moslemian (1986), Devanathan (1990), Devanathan et al.
(1991), Chaouki, Larachi and Dudukovic (1997)

Computer Automated Radioactive
- Particle Tracking System (CARPT)
G L
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Radioactive
Particle

+ Seintillation

CARPT (RPT) Schematic Experimental Setup
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Computer Automated Radioactive Particle Tracking (CARPT)

Counts from Detectors (t)
+

1.In-situ calibration 2. Particle Tracking Distance - Count Map

Radioactive Scandium bubble column, slurry bubble colur .
(Sc 46, 250 embedded in 0.5 to 2.3 mm / RengSS|On / Mante-Carlo Search

- embedded in 2.3 mm
polypropylene particle

Instantaneous Positions

(neutrally buoyant with liquid) O
22— connection to (x,y, 2.0
\& ‘ data acquisition‘ ‘
7 — e
) _100'1 50 pm for solids % Nal detectors held by Al .
in a slurry bubble column support (not shown) Filtered Instantaneous

Positions (X, Y, z, t)
active surface of detector
Time-Difference Between
Successive Locations

Instantaneous Velocities
1 (x,¥,z,1)

Ensemble (Time) Average

distributor

A

Mean Velocities

I— gas inlet (X’ Ys Z) \ VL

Fluctuating
The tracer particle Lagrangian trajector Turbulent Parameters, —— ”
P grang J Yy Reynolds Stresses, Velocities
Moslemian (1986): TKE, Eddy diffusivities, (x.y,2,1)
’ etc.

Devanathan (1990); Degaleesan ( 1996);
S8 Chaouki, Larachi, Dudukovic (1997);



Particle tracking in multiphase systems
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Example of information gained from particle tracking

(Ug=2.4 cmls) (Ug =12 cmls)
140 T

140

120,

100

20

-7 0 7
Radial position, cm

Portion of Particle Lagrangian Trajectory Ensemble Averaged
from CARPT in a 6" Bubble Column Velocity Vectors
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Systems to which these techniques
have been applied in the past
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" Bubble Column And Some Important Applications

/J\—P Gas Outlet T, °C P, atm

Partial oxidation of 130 3
— =» Liquid/Slurry Outlet ethylene to acetaldehyde
Wet-air oxidation of
sewage sludge 200-300 40-120
2<L/D<20 idati
o:;:ztllon of cumene to 80-125 5.8
Ug sup Up to 50 cm/s P
Hydrogenation of
Yo.eup >> UL sup hydroxilamine - i
0<€d €50 um Conversion of natural gas
P -
to syngas 900 15-30
Methanol synthesis 220-250 50-100
— Liquid/Slurry Inlet Fischer-Tropsch synthesis 220-260 134-204

Hydroformylation (oxo)

, L Gas Inlet processes 160 50-100

CTH
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Bubble Column Example

CARPT-CT and other measurements are used to develop an appropriate phenomenological reactor flow
and mixing model. CFD generated data are used to assess model parameters at pilot plant or plant
conditions. Reactor flow and mixing model are coupled with the kinetic information.

Degaleesan et al., Chem. Eng. Sci., 51, 1967(1996); I&EC Research, 36,4670 (1997);
Gupta et al., Chem. Eng. Sci., 56, 1117 (2001)
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Ensemble Averaged Equations for Two-Phase Flow
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Dimensionless Radius
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Time Evolution of the Liquid Tracer Time Evolution of the Gas Tracer
Concentration Concentration

D = 14-cm; Ug =2.4cmls D =14-cm; Ug =2.4cml/s

¢
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COMPARISON OF COMPUTED (CFDLIB) AND MEASURED D,,
; Ug =12 cm/s
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Radioactive Particle Tracking
(CARPT) Provides Solids

Velocity and Mixing Information
Computer Automated Radioactive
-~ Paticle Tracking System (CARPT)
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Comparison of CFD with Data
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Circulating Fluid Bed (CFB) Reactor

Off-gas (CO,, H,0,..)
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GAS-SOLID RISER

Gas-Solid Riser
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OVERALL SOLIDS FLUX - TIME-OF-FLIGHT MEASUREMENTS

T « Solids Mass Flux (G,) in the downcomer is :
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Evaluation of Residence Time and First Passage Time Distribution:
from CARPT EXxperiments

Part of raw data from 3 detectors

Solids from  Solids + air into

800 -
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Solids RTD & FPTD Results — Dilute Phase Transport Regime
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Mean Solids Velocity Field and Holdup — CARPT & CT
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Axial Velocity PDFs — Spatial Variation, FF Regime
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U se" = 3.2 m.s?
G, = 26.6 kg.m2.s1

Axial Velocity —
sLarge radial gradients
» Negative near the wall

e Little axial variation in
the zone

* In the core (near
center) seems to have
two prominent velocities
- negative (downflow)

- positive (upflow)
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Q2N3 VrVz plot
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Computed
Tomography
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CT in Structured Packing under Counter-current flow

Corrugated Structured Packing
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Conclusions

Development of fundamentally based phenomenological
models for reactors with two (three) moving phases Is possible
(e.g. bubble columns, riser, stirred tank, etc.)

CARPT-CT provide a unique tool for evaluation of holdup and
velocity distribution in these systems and for validation of
CFD codes.

CFD codes based on Euler-Euler interpenetrating fluid model
with appropriate closures, upon validation, provide the means
for effective calculation of reactor flow and mixing
parameters.

Phenomenological reactor models are capable of predicting
tracer impulse responses. Thus they can predict reactor
performance for linear kinetics exactly.

Radioactive technigues have a major role to play in such
model development.
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