Scientific issues in multiphase flow raised by Hanratty et al.* workshop

By Sofiane Benyahia
Fluent Inc.

* A Summary of this workshop can be found in: T.J. Hanratty et al., “Workshop findings”, International J. of Multiphase Flow, 29 (2003), pp. 1047-1059
On microphysics1

- **Most critical scientific issues raised by this study group are not directly relevant to us:**
 - Boiling nucleation
 - Condensation and contact forces (surface tension)
 - Multiphase flow in microchannels

- **Breakup and coalescence**
 - VOF, LBM (etc) depend strongly on grid resolution
 - Need to establish theoretical and experimental criteria

- **Drag reducing polymers**
 - Mostly for gas/liquid flow. Few theoretical work conducted to understand the role of polymers in reducing drag (even at very low concentration)

On computational physics2

- **Issues related to computational multiphase flows**
 - Multiscale phenomena (large-scale phenomena affected by small-scale processes)
 - How to best exploit the enormous amount of data generated by simulations?
 - Transient phenomena: need to follow the evolution of an enormous range of scales for a long time

- **Foreseeable future: use averaged multiphase flow equations, which need:**
 - Better closure models developed from detailed simulations such as DNS, LBM etc.
 - High accuracy, fast algorithms and computers
 - Account for phase change, rheological effects, chemical reactions, electric and magnetic fields, etc.

On disperse flow

- Dilute particle laden flow (e.g. coal combustion)
 - Extending single-phase LES or DNS to include particles as point-force approximation. Issues:
 - Use of analytical or empirical drag law using explicit (undisturbed) relative velocity causing large particle tracking errors
 - Ignore the effect of particles on small-scale turbulence
 - Very fine grid near solid boundaries
 - Fluid-particle interaction due to drag need improvements for turbulent flows (particle-eddy interaction). Can be solved by highly resolved computations.
 - Particle-particle interactions can be important. Can be studied by numerical codes (tracking millions of particles) or particle-tracking velocimetry.
 - Turbulence and transition to turbulence modified by particles: need for detailed experiments

On disperse flow\(^3\) (continued)

- **Concentrated suspension (instantaneous particle collisions)**
 - Based on kinetic theory with dissipative effects in the fluid and particle collisions
 - Need for careful experiments and particle dynamic simulations to test/validate the theories
 - More work is needed to enhance our current understanding of boundary conditions
 - Theory should account for bubble deformation and bubble shape oscillation
 - Theory that include the effect of particle-size distribution (addition of fines) must be developed
 - Multiphase flows are unstable (need transient model)
 - Loss of stability can happen at small length scale (few particle diameters) and the validity of the averaged equations when gradients arise from such small scales is not clear
 - Develop coarse grid closures from statistical data acquired during fine grid simulations
 - Need non-intrusive measurements techniques with fine spatial and temporal resolutions

- **Dense systems (with enduring particle contact)**
 - Need to develop theories based on particulate-characteristics such as:
 - Cohesive inter-particle forces
 - Particle size, shape and their distribution
 - Frictional contact between particles

On disperse flow\(^3\) (continued)

- **Dense systems (with enduring particle contact)**
 - Role of frictional particle-particle and particle-boundary interactions:
 - Extend theories of particle angular momentum for gas/solids flow with experimental validation
 - In polydisperse systems, need models to describe segregation or mixing of particles of different size and density.
 - Several issues with MD simulations need to be resolved:
 - Parametric sensitivity
 - Handling of wall boundaries
 - Real material properties (non-spherical materials, multi-size etc.)
 - Multiscale models involving continuum and MD simulations can be tackled within 5-10 years

On flow regimes

- Mainly for gas-liquid flows, which recognizes two major approaches:
 - Steady fully-developed adiabatic flows
 - Lack of validity of current models (rate of droplets entrainment to walls, the effect of wall heat flux on entrainment of deposition of droplets etc.)
 - Need to understand (from first principles) slug formation and flow transition from disperse to slugging
 - Phase distribution in bubbly flows need improvements on how bubbles are formed at the inlet
 - Mixing flows
 - Modeling issues occur because of topological changes occur at relatively sharp spatial regions

Concluding remarks

- Many important issues were raised by the workshop, but few clues were given on how to solve them.

- Most relevant issue to us were raised by the study group on disperse flow

- We can choose and expand on the most relevant issues that will be addressed in our workshop