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Project Goals & 2006 Technology Roadmap

Theme: Particle Size Distribution (PSD) Relevant Tracks in 2006
Technology Roadmap

1. Continuum Theory for the Solid Phase

2. Improved Gas-Particle Drag Laws __ Theory and Model
Development

3. Gas-Phase Instabilities: Turbulence Models

. . . Physical and
4. Data Collection and Model Validation | Computational
Experiments
S. Project Management Communication,

— Collaboration, and
Education




Project Scope: Work Breakdown Structure

Development, Verification, and Validation of Multiphase Models for Polydisperse Flows

Development

Theory

1. Solid-Phase
——  Continuum

Theory

Data
Collection

Simulations

Model
Validation

1.1 Kinetic Theory

1.2 DQMOM

t— 4.1 DEM (solids)

4.2 Eulerian-DEM
(gas-solid)

1.3 Incorporation of
KT and DQMOM
into MFIX

1 1.4 KT extension

to multiphase

Experiments

2.

Gas-Solid
Drag

2.1 LBM/DTIBM:
zero-mean vel.

2.2 LBM/DTIBM:

non-zero rel. vel.

2.3 LBM/DTIBM:
freely evolving

3. Gas-Phase
Turbulence

-

3.1 Polydisperse DNS
3.2 Multiphase Turb. Model

— 4.3 Low-velocity
fluidized bed

| 4.4 Cluster Probe
Development

— 4.5 High-velocity

fluidized bed (PSRI)

riser data

—4.6.2 Liaison to NETL

4.6.1 Compare with
DEM data (4.1) and
low-velocity bed (4.3)

4.6.3 Compare with high-
velocity data from
Eulerian-DEM (4.2),
PSRI (4.5), and
NETL (4.6.2)

Program Deliverables
Management
{— 5.1 Develop — Monthly email updates
Management Plan
— Quarterly reports
_ ggg;ach — Annual reports
+— Cost Estimates| — Final report
— Schedule .
L Risk — New theory into MFIX
— Constraints
— Assumptions

— Communicatiorl




Task 1.1 Kinetic Theory

Mass Balance (s balances)
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Constitutive Relations

Mass flux
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Summary of New Theory

1) No limiting assumptions: non-equipartition & non-Maxwellian

2) Fewer hydrodynamic variables

e Current Theory: n, U,and T (s + 2 governing equations)
* Previous Theories: n;, U;, and T; (3s governing equations)

but...new theory has implicit form of constitutive relations

3) No restrictions on dissipation levels

* Previous theories: expansion aboute ~ 1
* Current theory: expansion about HCS



Representation of Continuous PSD

Basic Idea: How to accurately represent a continuous PSD using the
transport coefficients for ‘s’ discrete species.

N
Q1: What method do we choose to find o’s 0,=? 0,=7
and ¢;s for given @? \ ¢ =7 @ =7
dlp d2

Al: moment-based method <=3

0,=7 0,=? 05=7
Q =? Q=7 @ =7

Frequency

Q2: What value of ‘s’ is required for
‘accurate’ representation of
continuous PSD?

A2: “collapsing” of transport coefficients
from new KTGF




Representation of Continuous PSD’s with discrete
Mixed distributions (Gaussian-lognormal)

approximations:
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Gaussian-lognormal distributions (cont...)
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Representation of Continuous PSD’s with discrete
approximations: Experimental distribution (NETL)
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* Weight based distribution is bidisperse in
nature.

e The number based frequency (f,) is obtained
using the weight based frequency distribution
(fu)-
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3

n , dimensionless shear viscosity
o
I

NETL distribution (cont..)
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Task 1.3: Incorporation of KTGF into MFIX

NETL Collaborators
Sofiane Benyahia
Janine Galvin

Verification of 11 transport coefficients
- Coded in Matlab

» System of linear & nonlinear algebraics
» Analytical derivatives: Mathematica
» Numerical derivatives
- Verification tests
» monodisperse limit (s=1 & 2)
» non-dimensionalization testing
» switching of indices

MFIX implementation of 11 transport coefficients

- Conversion to stand-alone Fortran subroutines for each coefficient;
called as-is by MFIX (key ““finding™’!)
» New linear & nonlinear equation solvers added
- Independent check of hand-generated notes & Fortran code

- Verification test cases: simple shear flow & bounded conduction




Task 1.4: Extension of KTGF to Multiphase Systems

Basic Idea: Incorporation of fluid force into Kinetic equation

Monodisperse: O of 0 ( Fuia.i 5 o
(for illustration) a IPVIREPY m +gi5 =

instantaneous fluid force
on single particle

 Starting equation for KTGF & DQMOM

* Previous efforts: Koch and coworkers (e.g., Phys. Fluids 1990)
- Limited to low Re (Stokes flow)
- Uses concept of “fluid velocity at particle location”

J

gravity  collisions

» Will lead to unphysical statistics like single-point fluid-particle

velocity correlation

Alternative: IBM-based model of instantaneous
particle acceleration

Collaborators

Rodney Fox (ISU)
Vicente Garzo (Extremadura)
Shankar Subramaniam (ISU)




Idealized First Case: Stokes-flow-based acceleration

Stokes drag coefficient (=6zud)

o
Ffluid,i A IBSt U
n A=Y
e N S~
instantaneous instantaneous  mean gas velocity

particle acceleration particle velocity

Idea: Gain experience with Idealized Case
» Does not account for
- higher Re (Stokes flow only)
- presence of other particles on drag
- Instantaneous fluid velocity
» Does account for
- Instantaneous particle velocity



Idealized First Case: KTGF derivation

Balance Equations (Solid-Phase Momentum & Granular Energy)

DU+—VP=-Ps(U_u, g

mn m
mean drag
2
DT +3—n(V-q+ RV U )==(T- BT

sink due to  source due to fluid-dynamic
viscous drag interactions: missing!

Zeroth Order Solution to Kinetic Equation
« Same form for HCS (i.e., same scaling solution is used)

Constitutive Relations Modiﬁe{l by
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« Conductivity KX
 Dufour coefficient zX



Case II: IBM-based model for acceleration

¢ coefficients extracted
1 l l from IBM simulations

= A =—ﬁﬂ(ui ~U, )= =7V, + Bydw,

B O O

|:fluid N

instantaneous mean mean fluctuating Wiener process increment
particle acceleration particle gas particle (stochastic model for fluctuating
velocity velocity velocity fluid velocity)
Comments

» IBM-based coefficients will depend on n, Re, & Re;
e Inlimit of low Re,:

- By =1(n) only

- 7 =f(n)

- B;;=1(n, Rey)



Case II: KTGF derivation in low Re_, limit

Balance Equations (Solid-Phase Momentum & Granular Energy)

DtU+iv1)=—ﬂﬂ(U—Ug)-+g

mn m
mean drag
2 _ 2 kK|, P
D,T —|—3—n(V-q+ PV U, )==¢T ~3, 7P [P, BiBs

sink dueto  source due to
viscous drag  fluid-particle

Zeroth Order Solution to Kinetic Equation fluctuations

« HCS solution is non-isotropic, which is contrary to physical expectations
for no spatial gradients (P can be nondiagonal, q can be nonzero)

* If ; and By; are scalars instead of tensors (y;=y5; and B;; =BJ;):
- solution is isotropic
- scaling solution is possible (key for derivation of constitutive relations)

Comments
» Constitutive relations: all are modified by coefficients
Next step: Incorporate explicit relation for coefficients & evaluate impact



Task 4.3: Experiments in a Low-velocity Fluidized Bed

Basic idea: use a suite of validation sets with increasing
levels of “physics” to test new theories: low-velocity
fluidized bed does not involve gas-phase turbulence or
significant particle-particle interactions (kinetic theory)

» Existing experimental data at University of Colorado

- Segregation data for binary mixtures (glass/PS)
(Joseph et al., AIChE J., 2007)

- Bubbling data for binary mixtures (glass/ PS)
(Summer 2007)

 New data

- Segregation data for continuous PSD’s (sand)
(Current)
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Lognormal PSD: Non-monotonic segregation behavior
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