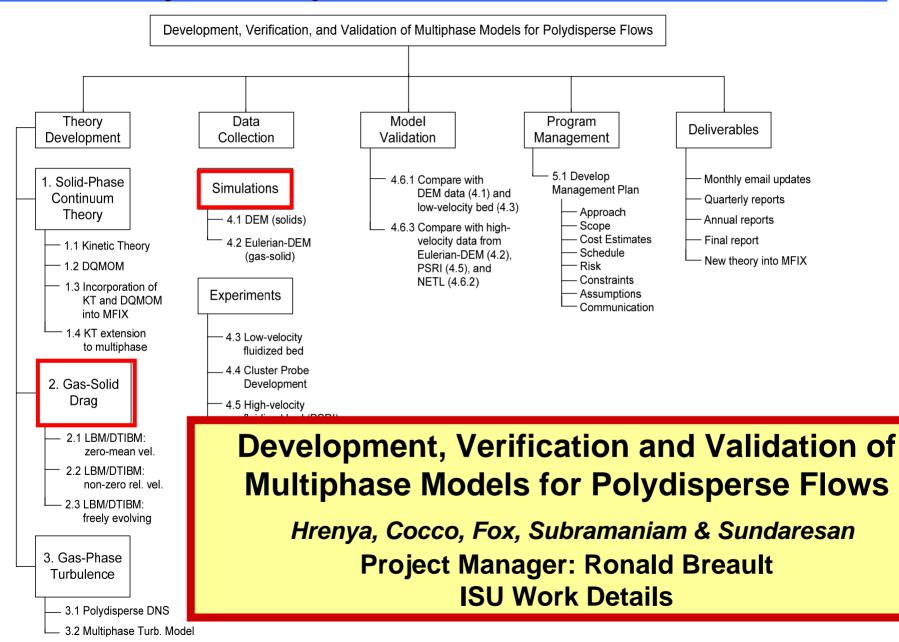
Modeling Particle-Fluid Momentum Transfer in Polydisperse Gas-Solid Flows Through Direct Numerical Simulations Based on the Immersed Boundary Method

Principal Investigator: Shankar Subramaniam Research Assistant: Sudheer Tenneti

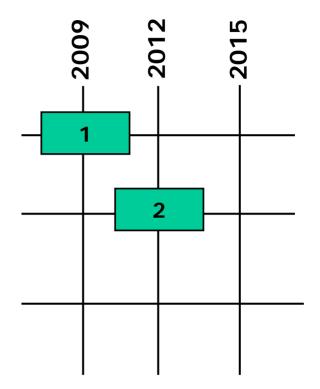
> Department of Mechanical Engineering Iowa State University

Project scope: Work breakdown structure

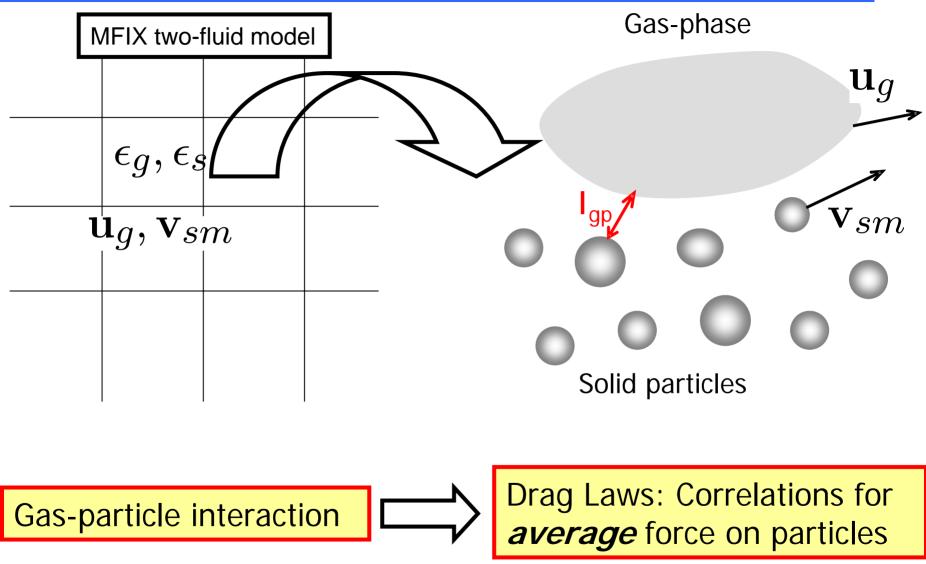


Connections to Multiphase Flow Roadmap

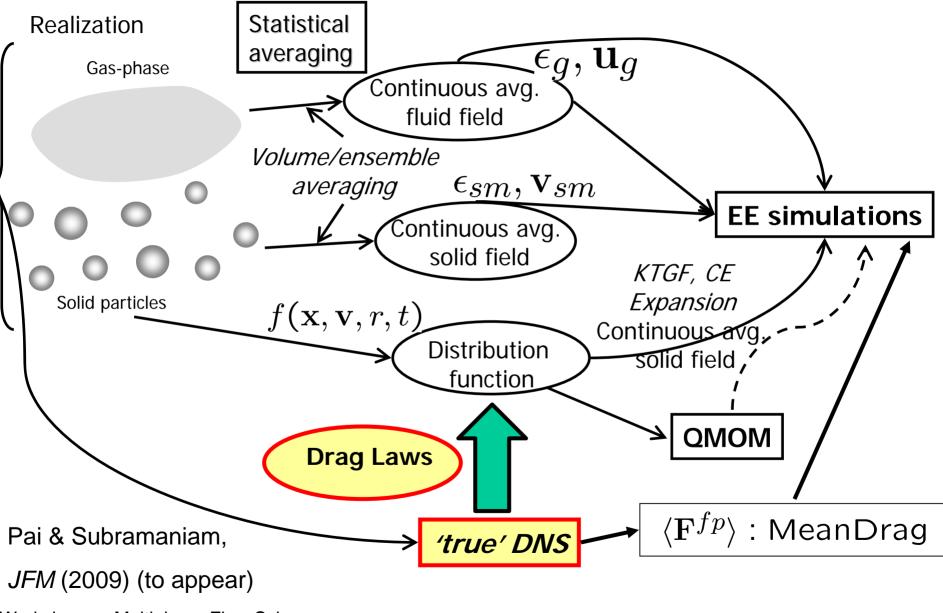
- 1. Develop drag relations that can handle particle size and density distributions
- 2. Development of constitutive relations for continuum models from high fidelity simulations



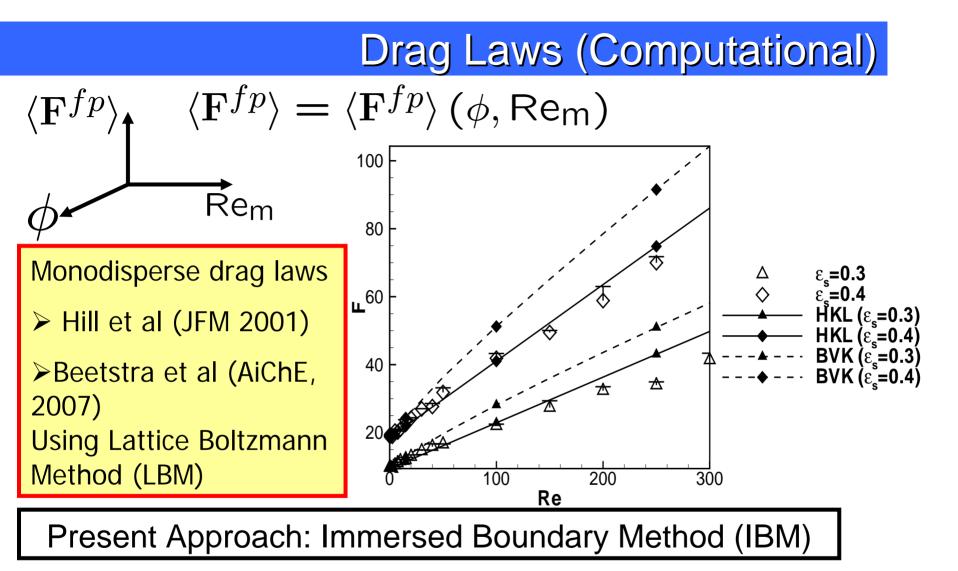
MFIX Two-Fluid Model



Introduction

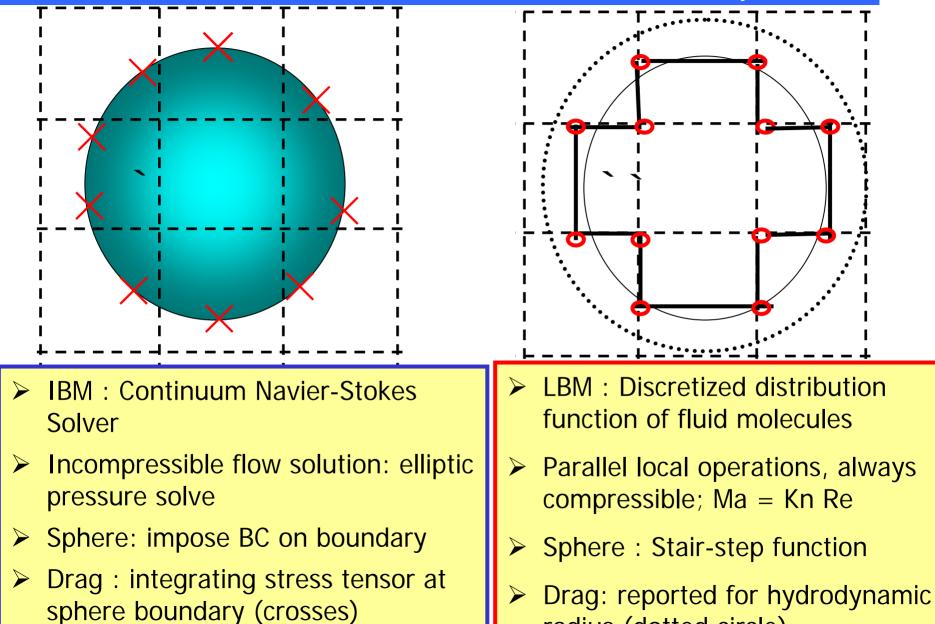


Workshop on Multiphase Flow Science



"Direct Numerical Simulation of Gas-Solids Flow based on the Immersed Boundary Method", Garg et al. in *Computational Gas-Solids Flows and Reacting Systems: Theory, Methods and Practice*, eds S. Pannala, M. Syamlal and T. J. O'Brien (in review)

IBM-LBM Comparison

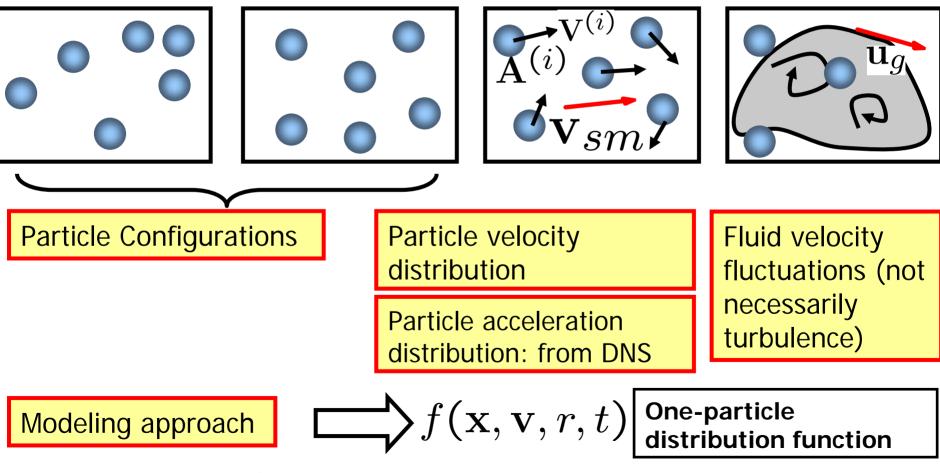


radius (dotted circle)

Mean Drag

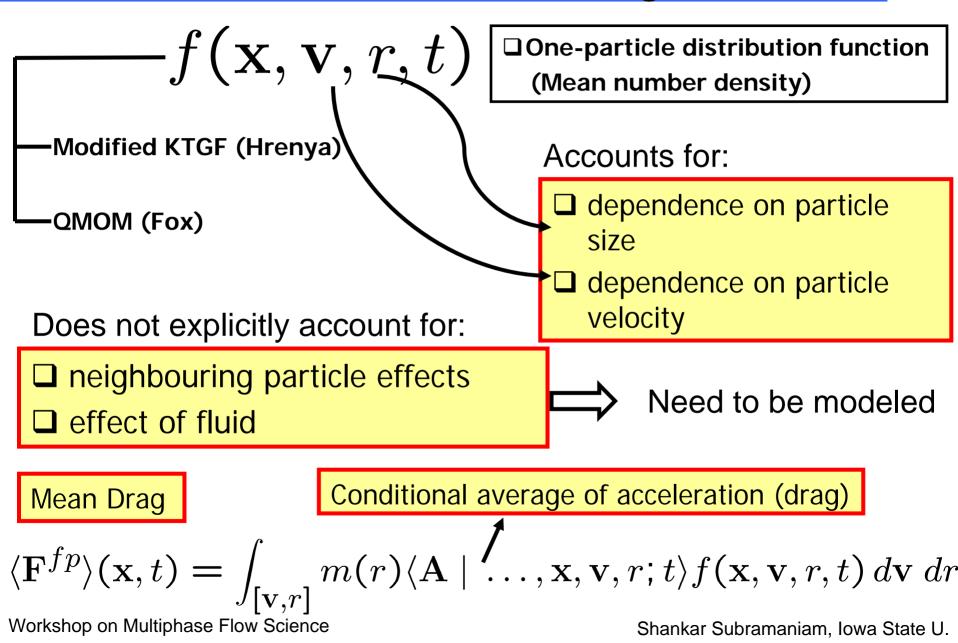
Drag Laws: Correlations for *average* force on particles

What is the averaging performed over?



Workshop on Multiphase Flow Science

Drag Law Model



Instantaneous Particle Acceleration Models

Drag Law: Mean Acceleration

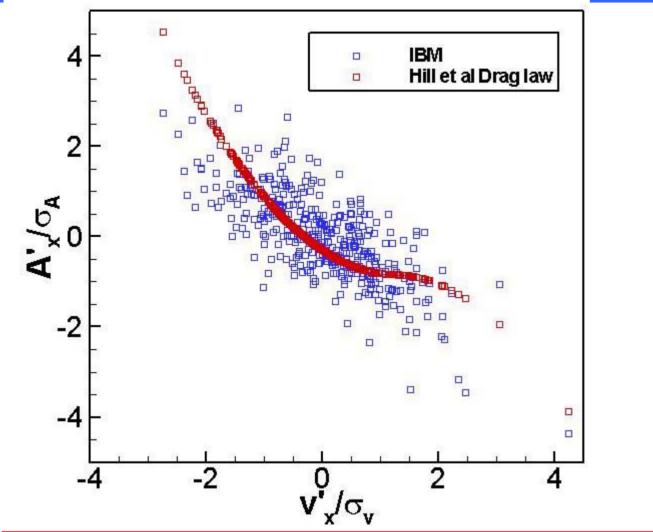
$$\langle A_i \rangle = \beta \left(\langle v_i \rangle - \left\langle u_i^{(f)} \right\rangle \right)$$

Simple extension of mean acceleration model to instantaneous particle acceleration

$$A_{i} = -\beta W_{i}$$
$$W_{i} = v_{i} - \left\langle u_{i}^{(f)} \right\rangle$$

Workshop on Multiphase Flow Science

Fluctuating Particle Acceleration-velocity Scatter



$$Re_m = 20$$

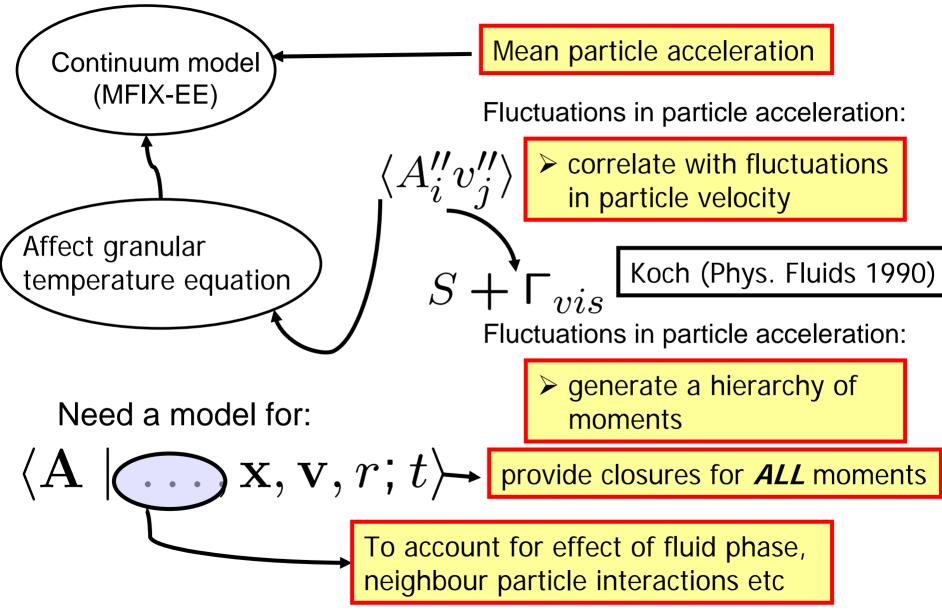
 $Re_T = 16$
 $\phi = 0.2$

$$A_i = -\beta W_i$$

β: Hill et al. (JFM 2001)

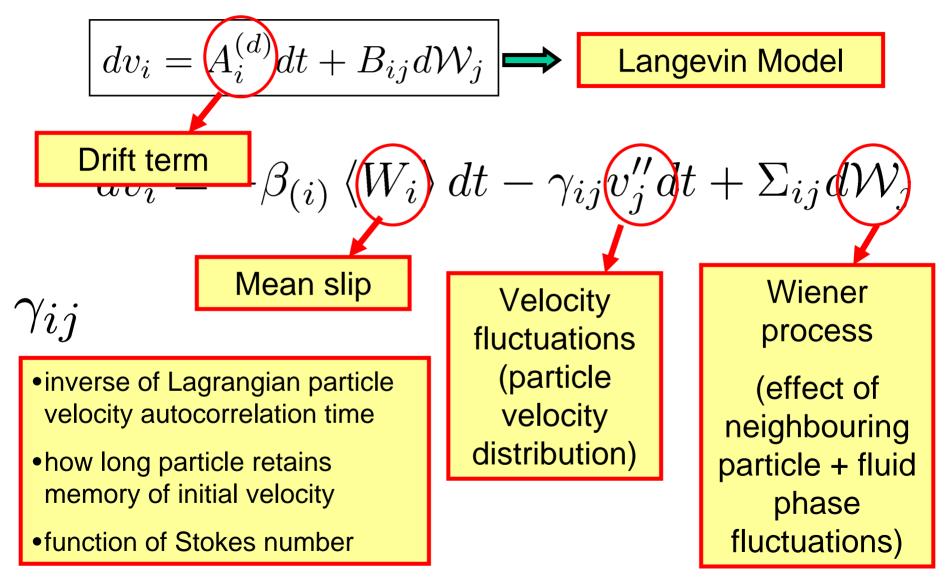
Drag law applied to velocity distribution does not recover the acceleration distribution

Role of Particle Acceleration Fluctuations



Workshop on Multiphase Flow Science

Instantaneous Particle Acceleration Model



Langevin Model: Coefficients

$$\beta_{(i)} = \beta_{(i)} (\phi, \text{Re}_{m}, \text{Re}_{T})$$

$$\Rightarrow \text{Depends on volume fraction}$$

$$\Rightarrow \text{Reynolds number based on mean slip velocity}$$

$$\Rightarrow \text{Reynolds number}$$

based on particle granular temperature

Volume fraction = 0.2Re₇=2.0 Re_=8.0 Re_=16.0 2 Re_m^{50} 20 30 40 60 70 80 Freely evolving suspensions

Workshop on Multiphase Flow Science

 $oldsymbol{\gamma}, \Sigma$

Langevin Model: Coefficients

$$dv_i'' = -\gamma v_i'' dt + \Sigma d\mathcal{W}_j$$

Use Lagrangian structure function

$$D_L(s) = \left\langle \left[v_i''(t+s) - v_i''(t) \right]^2 \right\rangle$$

Lagrangian structure function for Langevin model

$$D_L^*(s) = \Sigma^2 s$$

$$\frac{\Sigma^2}{2\gamma} = \frac{1}{3}T$$

Extract the structure function from the DNS of freely evolving suspensions (particles feel the fluid force)

Workshop on Multiphase Flow Science

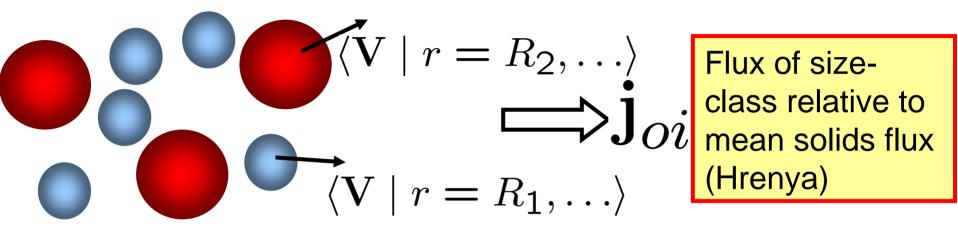
Test Particle in a Homogeneous Assembly

Test particle

- Assembly of fixed particles: initialized with a velocity distribution
- Particles within radius of influence of moving test particle are allowed to move
- Velocity autocorrelation and Lagrangian structure function will be extracted to determine coefficients

Drag laws: Effect of Particle Size Distribution

Bidisperse Example



Segregation due to drag manifests as flux of size-class relative to mean solids flux

$$\langle \mathbf{A} \mid r = R_{\alpha}, \ldots \rangle - \langle \mathbf{A} \mid \ldots \rangle$$

Driving force is drag conditional on size

Workshop on Multiphase Flow Science

Instantaneous Particle Acceleration Model

Extension to bidisperse case
$$\langle W_i \mid r = R_{\alpha} \rangle = \langle v_i \mid r = R_{\alpha} \rangle - \langle u_i^{(f)} \rangle$$

$$m^{\alpha}dv_{i}^{\alpha} = -\beta_{(i)}^{\alpha\eta} \langle W_{i} \mid r = R_{\eta} \rangle dt - \gamma_{ij}^{\alpha\eta}v''_{j}^{(\eta)}dt + \Sigma_{ij}^{\alpha\eta}d\mathcal{W}_{j}^{\eta}$$

$$(\cdot \cdot \cdot) \qquad (\cdot \cdot \cdot) \qquad (\cdot \cdot \cdot) \qquad (\cdot \cdot \cdot)$$
Effect of species diffusion velocity on mean drag of a size class
Effect of particle velocity distribution in a size-class

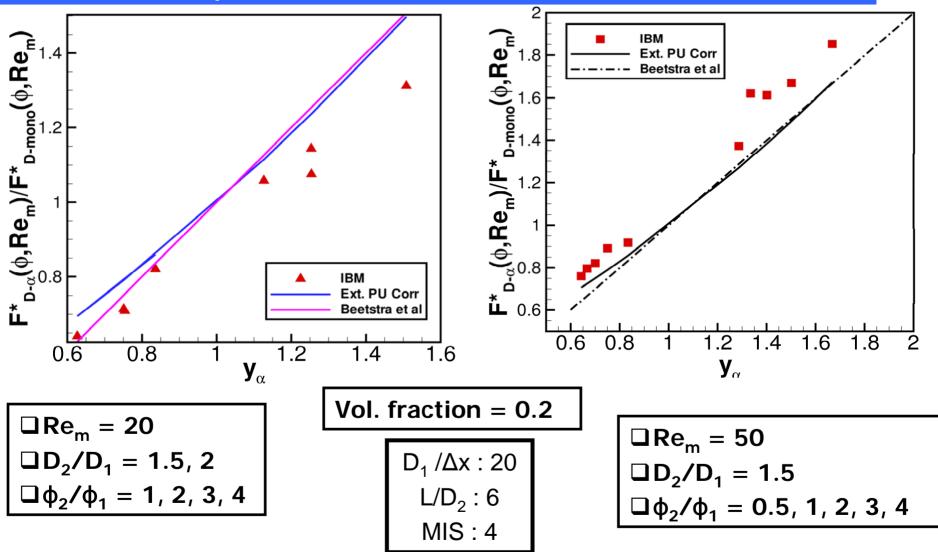
All terms include effect of the presence of other size-class

Workshop on Multiphase Flow Science

$$\begin{array}{l} & \underset{m^{\alpha}dv_{i}^{\alpha}=\overbrace{-\beta_{(i)}^{\alpha\eta}\left\langle W_{i}\mid r=R_{\eta}\right\rangle}^{\alpha\eta}t-\gamma_{ij}^{\alpha\eta}v''_{j}^{(\eta)}dt+\sum_{ij}^{\alpha\eta}d\mathcal{W}_{j}^{\eta}}\\ & \underset{m^{\alpha}dv_{i}^{\alpha}=\overbrace{-\beta_{(i)}^{\alpha\eta}\left\langle W_{i}\mid r=R_{\eta}\right\rangle}^{\alpha\eta}t-\gamma_{ij}^{\alpha\eta}v''_{j}^{(\eta)}dt+\sum_{ij}^{\alpha\eta}d\mathcal{W}_{j}^{\eta}}\\ & \underset{m^{\alpha}dv_{i}^{\alpha}=\overbrace{-\beta_{(i)}^{\alpha\eta}\left\langle W_{i}\mid r=R_{\eta}\right\rangle}^{\alpha\eta}t+\sum_{ij}^{\alpha\eta}d\mathcal{W}_{j}^{\eta}}\\ & \underset{m^{\alpha}dv_{i}^{\alpha}=\overbrace{-\beta_{(i)}^{\alpha\eta}\left\langle W_{i}\mid r=R_{\eta}\right\rangle}^{\alpha\eta}t+\sum_{ij}^{\alpha\eta}d\mathcal{W}_{j}^{\eta}}\\ & \underset{m^{\alpha}dv_{i}^{\alpha}=\overbrace{-\beta_{(i)}^{\alpha\eta}\left\langle W_{i}\mid r=R_{\eta}\right\rangle}^{\alpha\eta}t+\sum_{ij}^{\alpha\eta}d\mathcal{W}_{j}^{\eta}}\\ & \underset{m^{\alpha}dv_{i}^{\alpha}=\overbrace{-\beta_{(i)}^{\alpha\eta}\left\langle W_{i}\mid r=R_{\eta}\right\rangle}^{\alpha\eta}t+\sum_{j}^{\alpha\eta}d\mathcal{W}_{j}^{\eta}}\\ & \underset{m^{\alpha}dv_{i}^{\alpha}=\overbrace{-\beta_{(i)}^{\alpha\eta}\left\langle W_{i}\mid r=R_{\eta}\right\rangle}^{\alpha\eta}t+\sum_{j}^{\alpha\eta}d\mathcal{W}_{j}^{\eta}}\\ & \underset{m^{\alpha}dv_{i}^{\alpha}=\overbrace{-\beta_{(i)}^{\alpha\eta}\left\langle W_{i}\mid r=R_{\eta}\right\rangle}^{\eta}t+\sum_{j}^{\alpha\eta}d\mathcal{W}_{j}^{\eta}}\\ & \underset{m^{\alpha}dv_{j}^{\alpha}=\overbrace{-\beta_{(i)}^{\alpha\eta}\left\langle W_{i}\mid r=R_{\eta}\right\rangle}^{\eta}t+\sum_{j}^{\alpha\eta}d\mathcal{W}_{j}^{\eta}}\\ & \underset{m^{\alpha}dv_{j}^{\alpha}=\overbrace{-\beta_{(i)}^{\alpha\eta}\left\langle W_{i}\mid r=R_{\eta}\right\rangle}^{\eta}t+\sum_{j}^{\alpha}d\mathcal{W}_{j}^{\eta}}\\ & \underset{m^{\alpha}dv_{j}^{\alpha}=\overbrace{-\beta_{(i)}^{\alpha\eta}\left\langle W_{i}\mid r=R_{\eta}\right\rangle}^{\eta}t+\sum_{j}^{\alpha}d\mathcal{W}_{j}^{\eta}}\\ & \underset{m^{\alpha}dv_{j}^{\alpha}=\overbrace{-\beta_{(i)}^{\alpha\eta}\left\langle W_{i}\mid r=R_{\eta}\right\rangle}^{\eta}t+\sum_{j}^{\alpha}d\mathcal{W}_{j}^{\eta}}\\ & \underset{m^{\alpha}dv_{j}^{\alpha}=\overbrace{-\beta_{(i)}^{\alpha\eta}\left\langle W_{i}\mid r=R_{\eta}\right)}{\overset{m^{\alpha}dv_{j}}t+\sum_{j}^{\alpha}d\mathcal{W}_{j}^{\eta}}\\ & \underset{m^{\alpha}dv_{j}^{\alpha}=\overbrace{-\beta_{(i)}^{\alpha\eta}\left\langle W_{i}\mid r=R_{\eta}\right)}^{\eta}t+\sum_{j}^{\alpha}d\mathcal{W}_{j}^{\eta}}\\ & \underset{m^{\alpha}dv_{j}^{\alpha}=\overbrace{-\beta_{(i)}^{\alpha\eta}\left\langle W_{i}\mid r=R_{\eta}\right)}{\overset{m^{\alpha}dv_{j}}t+\sum_{j}^{\alpha}d\mathcal{W}_{j}^{\eta}}\\ & \underset{m^{\alpha}dv_{j}^{\alpha}=\overbrace{-\beta_{(i)}^{\alpha\eta}\left\langle W_{i}\mid r=R_{\eta}\right)}^{\eta}t+\sum_{j}^{\alpha}d\mathcal{W}_{j}^{\eta}}\\ & \underset{m^{\alpha}dv_{j}^{\alpha}=\overbrace{-\beta_{(i)}^{\alpha\eta}\left\langle W_{i}\mid r=R_{\eta}\right)}{\overset{m^{\alpha}dv_{j}}t+\sum_{j}^{\alpha}d\mathcal{W}_{j}^{\eta}}\\ & \underset{m^{\alpha}dv_{j}^{\alpha}=\overbrace{-\beta_{(i)}^{\alpha\eta}\left\langle W_{i}\mid r=R_{\eta}\right)}^{\eta}t+\sum_{j}^{\alpha}d\mathcal{W}_{j}^{\eta}}\\ & \underset{m^{\alpha}dv_{j}^{\alpha}=\overbrace{-\beta_{(i)}^{\alpha\eta}\left\langle W_{j}\mid r=R_{\eta}\right)}\\ & \underset{m^{\alpha}dv_{j}^{\alpha}=\overbrace{-\beta_{(i)}^{\alpha\eta}\left\langle W_{j}\mid r=R_{\eta}\right)}{\overset{m^{\alpha}dv_{j}}t+\sum_{j}^{\alpha}d\mathcal{W}_{j}^{\eta}}\\ & \underset{m^{\alpha}dv_{j}^{\alpha}=\overbrace{-\beta_{(i)}^{\alpha\eta}\left\langle W_{j}\mid r=R_{\eta}\right)}{\overset{m^{\alpha}dv_{j}^{\alpha}}t+\sum_{j}^{\alpha}d\mathcal{W}_{j}^{\eta}}\\ & \underset{m^{\alpha}dv_{j}^{\alpha}=\overbrace{-\beta_{(i)}^{\alpha\eta}\left\langle W_{j}\mid r=R_{\eta}\right)}\\ & \underset{m^{\alpha}dv_{j}^{\alpha}}t+\sum_{j}^{\alpha}d\mathcal{W}_{j}^{\alpha}}t+\sum_{j}^{\alpha}d\mathcal{W}_{j}^{\eta}}\\$$

Workshop on Multiphase Flow Science

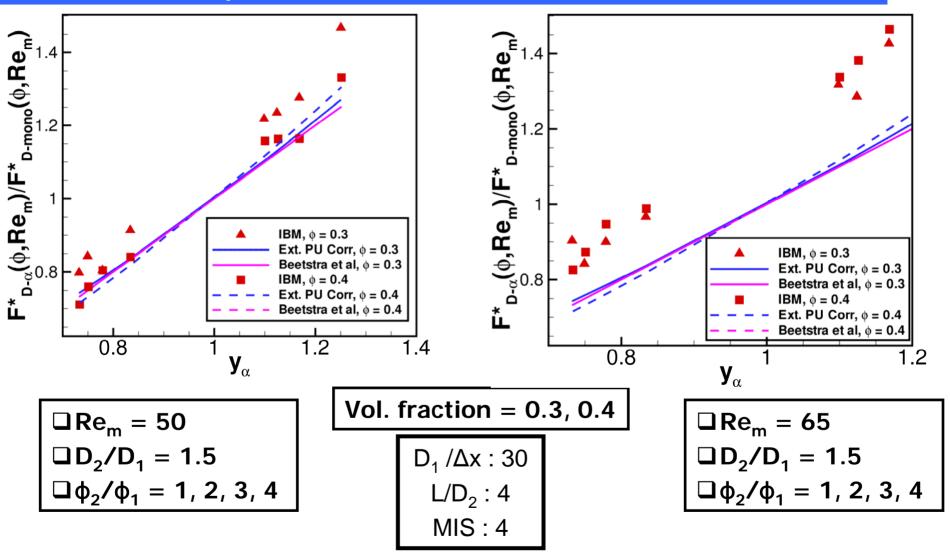
IBM Bi-disperse Simulations : Normalized force



IBM simulations indicate a dependence on Reynolds number

Workshop on Multiphase Flow Science

IBM Bi-disperse Simulations : Normalized force



Magnitude of drag also is different at higher Reynolds numbers

Current Efforts

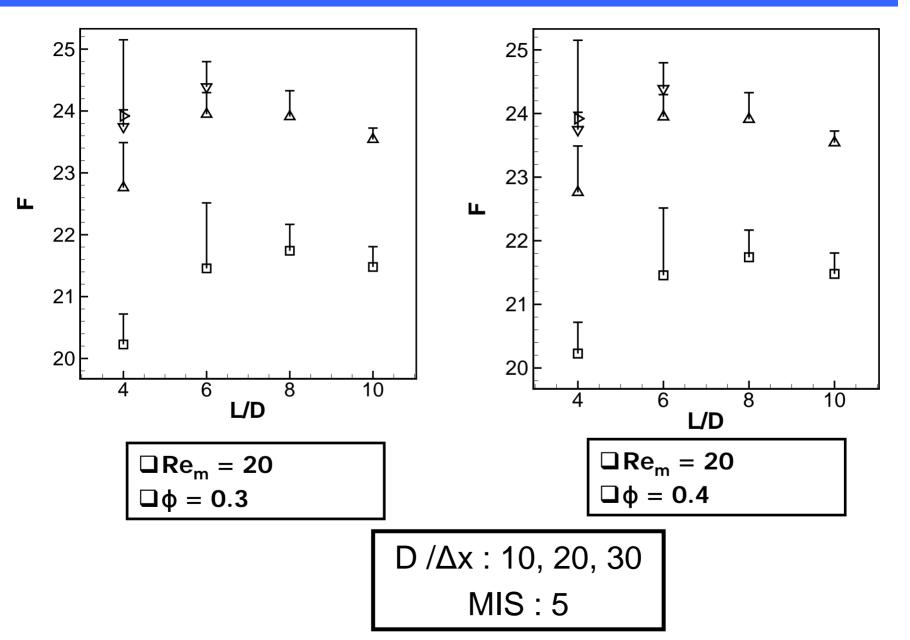
- 1. Development of test particle simulations to extract coefficients of the Langevin model
- 2. Propose a new bi-disperse drag law at moderate Reynolds numbers
- 3. Data-driven exploration of the parameter space for DNS of polydisperse systems
- 4. Publication in preparation
 - "Effect of hydrodynamic forces on particle velocity fluctuations in suspensions at moderate Reynolds numbers". S. Tenneti, R. Garg, S. Subramaniam, R.O. Fox, C.M. Hrenya. *In preparation, to be submitted to NETL special issue journal (2009)*

Workshop on Multiphase Flow Science

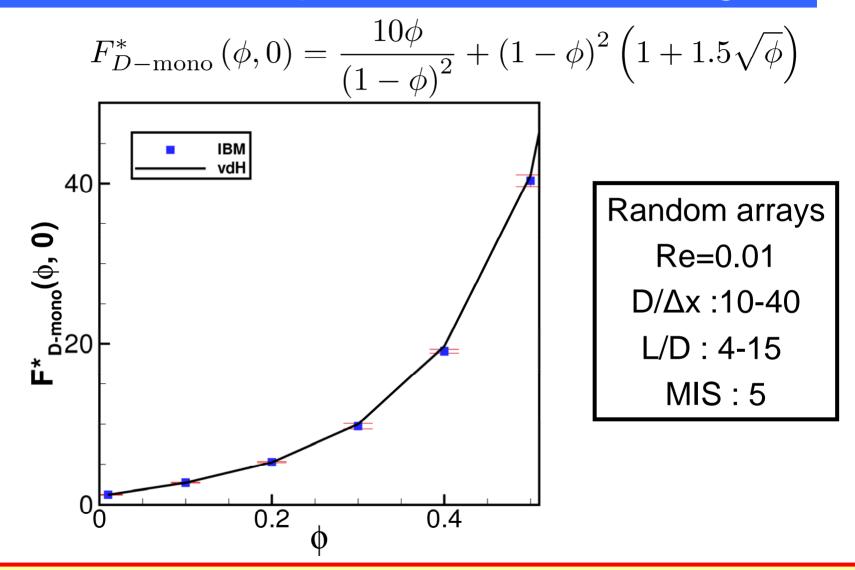
- This work is supported by Department of Energy grant DE-FC26-07NT43098 through the National Energy Technology Laboratory
- Rahul Garg, Iowa State University

Workshop on Multiphase Flow Science

IBM Numerical convergence

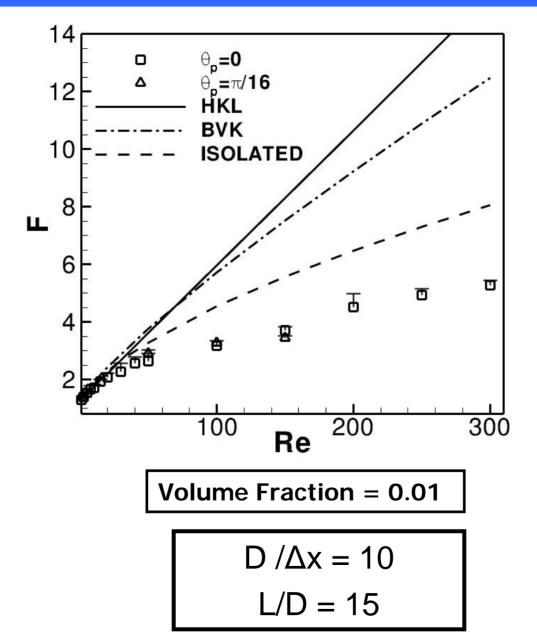


IBM : Monodisperse Stokes Flow Regime

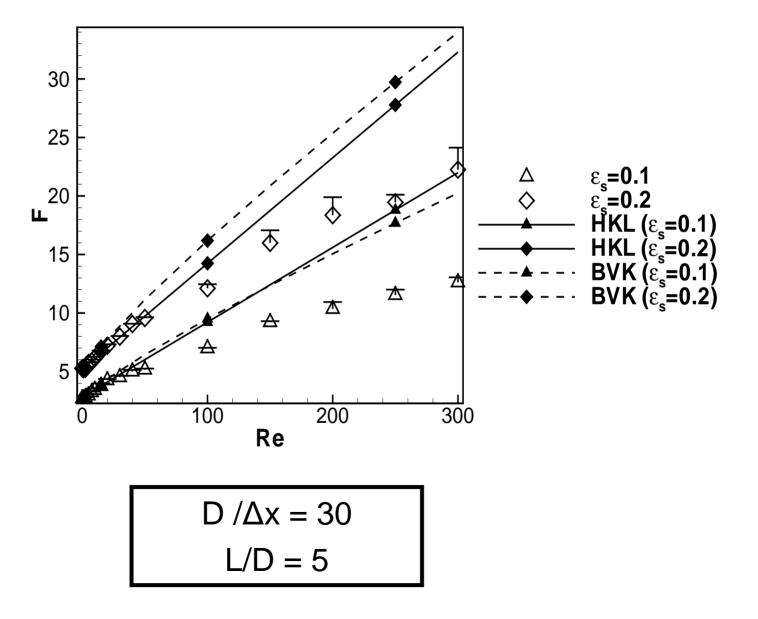


Excellent agreement of IBM with LBM drag law in Stokes regime

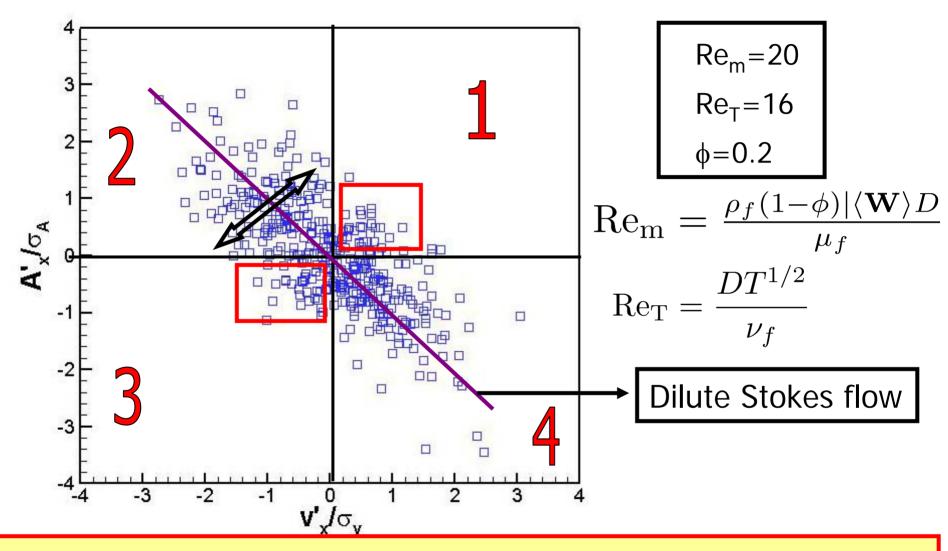
IBM : Monodisperse Dilute Arrays



IBM : Monodisperse Moderately Dense Arrays



Fluctuating particle acceleration-velocity scatter



Note: some positive velocity fluctuations (less slip) result in positive acceleration fluctuations (more drag)

Drag law forms: Bi-disperse (Equal Velocities)

van der Hoef et al

$$\begin{split} F_{D-\alpha}^{*}(\phi,0) &= y_{\alpha}F_{D-\text{mono}}^{*}(\phi,0) \\ y_{\alpha} &= \frac{D_{\alpha}}{\langle D \rangle} \quad \langle D \rangle = \frac{\sum_{\alpha=1}^{2}N_{\alpha}D_{\alpha}^{3}}{\sum_{\alpha=1}^{2}N_{\alpha}D_{\alpha}^{2}} \\ \end{split}$$
 Yin et al
$$F_{D-\alpha}^{*}(\phi,0) &= \frac{1}{1-\phi} + \left(F_{D-\text{mono}}^{*}(\phi,0) - \frac{1}{1-\phi}\right) \left[ay_{\alpha} + (1-a)y_{\alpha}^{2}\right]$$

Workshop on Multiphase Flow Science

Drag law forms: Bi-disperse (Equal Velocities)

$$F_{D-\alpha}^* = F_{D-\alpha}^* \left(\phi, \operatorname{Re}_m \right)$$

Mixture Reynolds number

$$\operatorname{Re}_{\mathrm{m}} = \frac{\rho_f(1-\phi)|\langle \mathbf{V} \rangle - \langle \mathbf{u}^{(f)} \rangle |\langle D \rangle}{\mu_f}$$

 \sim

Mass-weighted mean particle velocity

$$\left\langle \widetilde{\mathbf{V}} \right\rangle = \frac{\sum_{\alpha=1}^{2} \rho_{\alpha} \phi_{\alpha} \left\langle \mathbf{v} \right| r = R_{\alpha}; t \right\rangle}{\sum_{\alpha=1}^{2} \phi_{\alpha} \rho_{\alpha}}$$

Beetstra et al

$$F_{D-\alpha}^*(\phi, \operatorname{Re}_m) = y_{\alpha} F_{D-\operatorname{mono}}^*(\phi, \operatorname{Re}_m)$$

Workshop on Multiphase Flow Science

Drag law forms: Bi-disperse (Equal Velocities)

$$F_{D-\alpha}^* = F_{D-\alpha}^* \left(\phi, \operatorname{Re}_m \right)$$

Mixture Reynolds number

$$\operatorname{Re}_{\mathrm{m}} = \frac{\rho_f(1-\phi)|\langle \mathbf{V} \rangle - \langle \mathbf{u}^{(f)} \rangle |\langle D \rangle}{\mu_f}$$

Mass-weighted mean particle velocity

$$\left\langle \widetilde{\mathbf{V}} \right\rangle = \frac{\sum_{\alpha=1}^{2} \rho_{\alpha} \phi_{\alpha} \left\langle \mathbf{v} \right| r = R_{\alpha}; t \right\rangle}{\sum_{\alpha=1}^{2} \phi_{\alpha} \rho_{\alpha}}$$

Extension of Yin et al's drag law

$$F_{D-\alpha}^{*}(\phi, \operatorname{Re}_{m}) = F_{D-\alpha}^{*}(\phi, 0) \left[1 + \alpha'(\phi, \operatorname{Re}_{m}) \operatorname{Re}_{m}\right]$$

Beetstra et al: Monodisperse drag law

Instantaneous particle acceleration model

$$dv_i = A_i^{(d)} dt + B_{ij} d\mathcal{W}_j \Longrightarrow \text{Langevin Model}$$

$$dv_i = -\beta_{(i)} \langle W_i \rangle dt - \gamma_{ij} v_j'' dt + \Sigma_{ij} d\mathcal{W}_j$$

Second moment of particle velocity

$$\frac{d}{dt} \langle v_i'' v_j'' \rangle = \underbrace{\sum_{ik} \sum_{jk} \gamma_{il} \langle v_j'' v_l'' \rangle - \gamma_{jk} \langle v_i'' v_k'' \rangle}_{m \frac{d}{dt} \langle v_i'' v_j'' \rangle = \underbrace{S_{ij,h} - \Gamma_{ij,h}}_{S_{ij,h}} \underbrace{Sangani \&}_{Koch (1999)}$$

Bidisperse Simulations: Resolution Rquirements

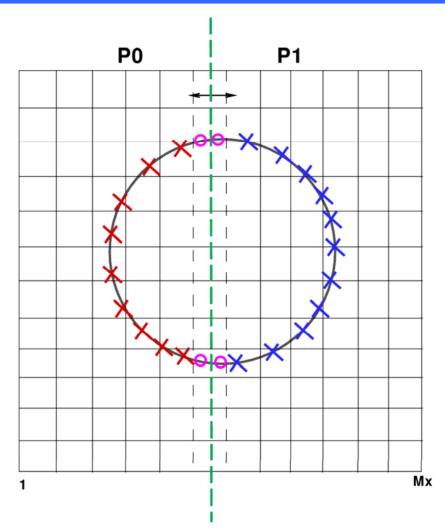
- Smaller particles must be well resolved Vol. fraction = 0.2, Re = 100, D/ Δx = 30
- Box length should be large compared to larger diameter

$$-L/D_2 = 6$$

 Number of larger paritcles must be large enough

Required box size: 360³: Need for parallel IBM

Parallel IBM



Schematic of domain decomposition

• Cyclic tridiagonal system of equations

- Previously used Gauss-Siedel : iterative solver
 - Bad for parallelization (Need to communicate in every iteration)
- Implemented direct solver based on Sherman-Morrison formula
 - Results in solving two tridiagonal systems
- Parallelized tridiagonal solver
 Parallel partition algorithm (LANL)

Parallel IBM: Validation Study

$$\epsilon_l = \frac{1}{M_x M_y M_z} \sum_{i=1}^{M_x} \sum_{j=1}^{M_y} \sum_{k=1}^{M_z} \left| Q_l^{(p)}(i,j,k) - Q_l^{(s)}(i,j,k) \right|$$

Configuration	$\frac{D}{\Delta x}$	ϵ_1	ϵ_2	ϵ_3	ϵ_4
Simple	46.4	0.63271616E-14	0.86949156E-16	0.88190940E-16	0.41440159E-14
FCC	29.24	0.23248653E-14	0.62514764 E- 15	0.62624656E-15	0.13055491E-14
Monodisperse	20	0.12112644E-11	0.79061513E-12	0.86040804E-12	0.57968924E-12
Bi–disperse	15	0.30301074E-15	0.89068307E-16	0.11269121E-15	0.65079639E-16

Validity of parallel IBM established: good for production runs