

NATIONAL ENERGY TECHNOLOGY LABORATORY

Issues in Chemical Looping Combustion 2006 NETL Multiphase Workshop April 22-23, 2009

Thomas J. O'Brien, Chemist

Outline

- Backstory
- Description of Chemical Looping Combustion (CLC)
- Advantages/Disadvantages of the Technology
- History of the development of CLC
- Status of the technology
- CLC of solid fuels

Perspective

- US coal-fired power plants (~40% of US power)
 - ~1,015 million tons of coal in 2009,
 - (~1,042 million tons in 2008, < 2.3%)
 - ~10 million coal car loads (100 tons/car load)
 - ~100,000 trains (100 cars/train)
 - ~275 trains/day

 $\begin{array}{r} C+O_2\rightarrow CO_2\\ 12+32\ =\ 44 \end{array}$

Atmospheric CO₂ Overview

Atmospheric CO₂

(Global Temp Change; Sea Level Rise – thermal expansion only)

> 284 ppm - pre-industrial level

- 380 ppm current (ΔT= 1 °C/1.8 °F)
- ▶ 450 ppm 2100

 $(+ \Delta T = 0.6 \text{ °C/1 °F}; \Delta H_{sea \ level} = 14 \ cm/5.5 \ in)$

U.S. Climate Change Science Program "an attainable target if the world quickly adapts conservation practices and new green technologies to cut emissions dramatically."

750 ppm - 2100 with current trends (+ ΔT= 2.2 °C/4 °F; ΔH_{sea level} = 22 cm/ 8.7 in)

Washington, et al., "How Much Climate Change Can Be Avoided by Mitigation?" Geophysical Research Letters, (in press, 2009)

EPA Endangerment Finding (4/17/2009)

Impacts that EPA believes may be significant for US citizens:

- an increased risk of droughts and floods
- sea level rise
- more intense storms and heat waves
- harm to water supplies, agriculture and wildlife
- EPA The science supporting the proposed endangerment finding was "compelling and overwhelming."
- > E.P.A. began the process of regulating 5 green-house gases (climatealtering substances) under the Clean Air Act «

Options to Reduce CO₂ Emission

- Conservation modify life style and economy to reduce energy intensity
- Efficiency increase efficiency of fuel conversion and utilization
- Fuel switching Increase non-fossil fuel based power produ
 - Solar
 - Nuclear
 - Biomass
 - Wind-power
 - Tidal
 - Geo-thermal
 - Hydro
- Fossil Fuels with Carbon Capture and Sequestration
 - Separation (75% of energy penalty ; 100-200 \$/ton C)
 - Post-combustion
 - Oxy-fired
 - Pre-combustion
 - Un-mixed combustion
 - Compression & storage (25% of energy penalty; 4-8 \$/ton C)

The Magenn Power Air Rotor System <u>http://www.magenn.com/technology.php</u>

Schematic of a Chemical Looping Combustor

7

Generic CLC Reactions

Fuel Reactor (FR) – endothermic (usually) ($\Delta H_{FR} > 0$)

$$C_nH_{2m}$$
 + (2n+m) MeO \rightarrow (2n+m) Me + m H₂O + n CO₂
(CH₄ + 4 NiO \rightarrow 4 Ni + 2 H₂O + CO₂)

Air Reactor (AR) – highly exothermic ($\Delta H_{AR} \ll 0$)

Net Reaction – highly exothermic ($\Delta H_{FR} \equiv \Delta H_{FR} + \Delta H_{AR}$)

$$\begin{array}{c} \textbf{C}_{n}\textbf{H}_{2m} \textbf{+} \textbf{O}_{2} \rightarrow \textbf{m} \textbf{H}_{2}\textbf{O} \textbf{+} \textbf{n} \textbf{C}\textbf{O}_{2} \\ \textbf{(CH}_{4} \textbf{+} \textbf{O}_{2} \rightarrow \textbf{2} \textbf{H}_{2}\textbf{O} \textbf{+} \textbf{C}\textbf{O}_{2} \textbf{)} \end{array}$$

Chemical Looping Combustion Process (gaseous fuel)

Air reactor – carrier is oxidized by air; heat is released

Cyclone – hot oxidized carrier is sent to fuel reactor; hot vitiated air is used for power generation

Fuel reactor – carrier oxidizes fuel to CO_2 and H_2O (usually endothermic); reduced carrier is returned to the air reactor (without any fuel).

Chemical Looping Combustion Process (solid fuel)

10

Advantages of CLC Technology

1) Produces separate CO_2/H_2O gas stream

No cost of separation Separation of H_2O on cooling/compression CO_2 stream at process pressure Could contain CO, H_2 , unburned fuel, SO₂, fuel-N, Hg, ...

2) No/Low NO_x

No thermal or prompt NO_x (low T of Air Reactor) No "hot-spots" (fluidized bed processes) (*Low temperature) fuel NO_x ... not determined (???)*

3) Compatible with S-capture technologies

Advantages of CLC Technology (cont.)

- 4) CLC uses well-established boiler technology similar to CFB boilers
- 5) Hg removal would be facilitated smaller volume, more concentrated stream from Fuel R
- 6) Heavy metals (other than Hg) may stay with the ash
- 7) Fewer materials concerns

lower temperatures than conventional combustion

8) Small vessel sizes/ lower construction costs higher volumetric heat release rate than conventional combustion

9) Higher thermodynamic efficiency

possible for some systems (decrease irreversibility)

Disadvantages of CLC Technology

1) Carrier circulation

Solids handling Non-mechanical valves

2) Dual reactors

3) Lower exhaust gas temperature (~1000 °C)/pressure Difficult to couple to a gas turbine – loss in efficiency

Overview – CLC Testing History

Ref: Anthony (2008) Ind. Eng. Chem res

NATIONAL ENERGY TECHNOLOGY LABORATORY

History of the development of CLC

1) Method to produce pure CO₂

Lewis and Gilliland (1954)

2) Proposed to improve combustion efficiency ... reduce exergy

Richter und Knoche (1968); Ishida (1982)

- 1) Implications for carbon capture are recognized
- 2) Chalmers program
- 3) European program
- 4) US effort

Criteria for Carriers (Ni-, Cu-, Fe-, ... ; CaSO₄/CaS)

- Chemical
 - High reactivity oxidation and reduction rates
 - Multiple oxidation states oxygen carrying capacity
 - Light weight
 - Complete conversion at (T,P)
 - No carbon deposition
 - Interaction with support & trace elements: S, N, AI, Si, Fe, Hg, K, Na, ...
- Physical
 - Attrition
 - Agglomeration
- Economics
 - Raw materials (carrier + support)
 - Fabrication
 - Durability
- Environmental Benign
 - CLC process
 - Extraction process

Bed of Fuel Reactor

- Fuel Reactor will have solid particles of different size and density.
 - Carrier (Metal Oxide or CaSO₄)
 - Coal (Solid Fuel)
 - Ash

Critical Issues in the Fuel Reactor (to be addressed by multi-phase CFD)

- Volatile fuel must be converted in the bed
 - \succ Fuel, CO or H₂ will escape the FR
 - Additional compression costs
 - Returned to the FR (or used as syngas)

Char burnout

- Complete conversion
 - Large residence time/reactor size
 - Tendency to move to the AR

Critical Issues between FR & AR (to be addressed by multi-phase CFD)

• Flow from FR to AR must not contain unburned fuel

- Fuel combustion in the AR
 - Additional heat release in the AR
 - CO₂ released will escape capture

• Air flow must not leak into the FR

- > N₂ will contaminate the CO₂/H₂0 stream
 - Additional compression costs
 - Inerts would be eturned to the AR

Char burnout

- Complete conversion
 - Large residence time/reactor size
 - Tendency to move to the AR

Process Design Issues

- Air Reactor: Me + $\frac{1}{2}O_2 \rightarrow MeO$
 - Transport reactor
 - In-bed heat removal
- Gas-Particle Separation after AR
 - Cyclone separator
 - Heat removal (air stream and/or solids stream)
- Fuel Reactor: solid fuel + MeO \rightarrow Me + H₂O + CO₂
 - Bubbling bed/Moving bed
- Gas-Particle-Particle Separation after FR
- Heat Removal
- Non-mechanical Valve

Pilot Plant Studies

- 10 kW_{th} scale
- Chalmers University (Tobias Mattisson, Anders Lyngfelt)
- 50 kW_{th} scale
- Vienna University of Technology (Hermann Hofbauer)
- 120 kW_{th} scale
- Alstom: Coal-CaS/CaSO₄ (Herb Andrus)
 - Phase II & III (<2009) 150 kW_{th}
 - Phase IV (>2009) 3 MW_{th}
- Ohio State University: Coal-Fe₂O₃ (L.S. Fan)

Vienna University of Technology http://www.chemical-looping.at/start.asp

•Gaseous fuel

•120 k W_{th} scale

22

NATIONAL ENERGY TECHNOLOGY LABORATORY

ALSTOM Power, Inc. (Heb Andrus)

Figure 2-1 - Indirect Combustion with CO₂ Capture – Option 1.

- CaSO₄/CaS carrier, formed from limestone
- Coal fuel
- 150 kW_{th} PDU, building a 3 MW_{th} PDU

Ohio State University

- 2.5 kW_{th}
- Patented iron oxide-based composite oxygen carrier
 particle.
- Cylindrical shape pellet, (3-5 mm x 1.5-4.5 mm)
- Coal

(75 to 250 micron)

Phase I Sub-Pilot Reactor
NATIONAL ENERGY TECHNOLOGY LABORATORY

Simulation of Lab-Scale CLC of Petcoke

(Leion *et al.*, 2007)

Experimental Parameters				
Temperature	1223 K (950 °C)			
Pressure	1 atm			
Carrier	Fe ₂ O ₃			
Fluidization Vel.	0.55 m/s			
	~50 u _{mf}		Chemica	al Kinetics
Thanks to Kartikeya Mahalatkar (ANSYS-Fluent) Dave Huckaby (NETL-DOE) John Kuhlman (NETL-WVU		De	evolatilization	Nagpal (2005)
		G	asification	Everson
		Ca	arrier Kinetics	Donskoi and McElwain (2001)
eion, H., T. Mattisson and A. Lyngfelt, The use of petroleum coke as fuel in chemical-looping combustion,"				

Laboratory Petcoke CLC

Laboratory Petcoke CLC

Results from y=10m

- Lower Concentration of CO2 is a because of assumption of 2D Cartesian geometry
- Differences in experimental and numerical CH₄ and CO concentration is due to inherent uncertanities in the devolatile composition.

E. David Huckaby Kartikeya Mahalatkar John Kuhlman

28