NETL 2009 Workshop on Multiphase Flow Science

Meso-scale Structure and Multi-scale Strategy in Simulating Multiphase Systems

Jinghai Li, Wei Ge, Wei Wang, Ning Yang, and Jingdong He

State Key Laboratory of Multi-Phase Complex Systems Institute of Process Engineering, Chinese Academy of Sciences Beijing, P. R. China

Mogantown, WV, April 22~23, 2009

Outline of presentation

Multi-scale and multi-level features of process engineering

Process

Material

Challenge In Physical Modeling

Poor predictability

Deviation between different methods

Almost impossible

Process

Bone

Material: Protein

MACRO

unfolding
folding

A Chain	5		-5			
Gly-Ilo-Vol-G	Au-Gin-Cys-Cys	Ma Ser Val	Cys-Ser-	Lou Tyr Gin	Lou-Olu-Aon-Ty	Cys Ans
1 2 3 4	4 5 6 7	8 9 10	11 12	13 14 15	16 17 18 19	20 21
	ś					5
D Chain	s					¢.
B Chain		Ch - Roy - Ha		Chi-Ma-Cau		പഞ്ഞാ
1 2 3	4 5 6 7	8 9 10	11 12	13 14 15	16 17 18 19	
						Gfr 51
						Ang 22
	8 9 10			Ala-Lys-Pro	Try Ty Pho-Ph	9 GY 23
A Chain -	Ala Sor Val	Cow		30 29 28	27 26 25 24	0.000
-	Thr-Ser-10-	Pig				
-	Ala Gly Val	Sheep				
-	The Gly - Do-	Horse				
-	The Sor Ma	Whale				

Challenge in physical modeling is poor predictability

Understanding of meso-scale structure is the bottleneck

Meso-scale structure is the key to achieve high predictability:

Dong et al, Chem. Eng. Sci., 63,2008, 2798-2823

Challenges In Computation High cost & low efficiency

 Disparity
 Structure of problems
 : Multi-scale

 Configuration of software : Diversity

Architecture of computers: Single scale

Single-scale architecture

Long-range correlation **Global communication**

Ø	30	Val.	5	\sim	0	$\left(\begin{array}{c} \\ \\ \\ \end{array} \right)$	Ô
	ĬO,	A.S.	pog	5¢	QÇ	Ŏ	b
5	- 270	20		60		10	
R	\odot	Ř		60	æ	O	18
					63		X
2	0	Y	(C)	26	2)Č	Č	8
\bigcirc	O		Ø.	0	H D		ð
0	φ	2		ΣO		Q	X

Strategy In Physical Modeling

Varational Multi-scale Methodolgy

"Multi-scale science "

Glimm and Sharp, SIAM News, 1997 Multi-scale Science the challenge of 21st century

 Krumhansl, Material Science Forum, 2000 Multi-scale Science – Material Science of 21st century

"Multi-scale" OR "Multiscale" within Keywords/Title/Abstract <u>http://isiknowledge.com/</u> on Nov. 14, 2008

Variational multi-scale methodology

The 1st practice in gas/solid system

Insufficiency of conservation equations

21

Physical Concept of EMMS Model

Mathematical Formulation

To find : $X = \{ U_{\text{pc}}, U_{\text{c}}, \varepsilon_{\text{c}}, f, d_{\text{cl}}, U_{\text{pf}}, U_{\text{f}}, \varepsilon_{\text{f}} \}$ Minimizing : $N_{st} = \frac{W_{st}}{(1-\varepsilon)\rho}$ $F_1(\mathbf{X}) = m_c F_c f + m_i F_i - f (1 - \varepsilon_c) (\rho_p - \rho_f) g = 0$ $F_{2}(\mathbf{X}) = m_{f}F_{f} - (1 - \varepsilon_{f})(\rho_{p} - \rho_{f})g = 0$ $F_{3}(\mathbf{X}) = m_{f}F_{f} + m_{i}F_{i}/(1-f) - m_{c}F_{c} = 0$ **s.t.** $F_i(X) = 0$ $F_4(X) = U_p - U_{pf}(1 - f) - U_{cf} = 0$ $F_5(X) = U_g - U_f(1 - f) - U_c f = 0$ $F_4(\mathbf{X}) = U_p - U_{pf}(1-f) - U_{pc}f = 0$ $F_{6}(\mathbf{X}) = d_{cl} - \frac{d_{p} \left[\frac{U_{p}}{1 - \varepsilon_{max}} - (U_{mf} + \frac{U_{p} \varepsilon_{mf}}{1 - \varepsilon_{mf}}) \right] \cdot g}{N_{st} \frac{\rho_{p}}{\rho_{p} - \rho_{f}} - (U_{mf} + \frac{U_{p} \varepsilon_{mf}}{1 - \varepsilon_{mf}}) \cdot g} = 0$

Previously:

Local structural parameters

8 variables

Gas velocity U_c Solid velocity U_{pc} Voidage ε_c Volume fractionfCluster diameter d_{cl} Gas velocity U_f Solid velocity U_{pf} Voidage ε_f

Regime diagram

Radial and axial distributions

Prediction of chocking

Ge&Li, Chem. Eng. Sci. 2002, Vol. 56; Wang et al Chem. Eng. Sci. 2007 Vol. 62

Intrinsic flow regime predicted by EMMS

http://pevrc.ipe.ac.cn/emms/emmsmodel.php3

Online service

http://pevrc.ipe.ac.cn/emms/emmsmodel.php3

EMMS Flow Prediction Tool

Introduction:

 This is a flow prediction tool for CFB risers based on the EMMS model proposed by Jinghai Li and Mooson Kwauk. The gas-solid system here is resolved into a dense phase in clusters and a surrounding dilute phase, the phase-averaged concentrations and velociti be calculated from given ma

Please specify your system:

Sketch of Model

DESCRIPTION	SYNBOL	UNIT	VALUE			
fluid density	$ ho_{ m f}$	kg/m^3 💌	user input(pf>0)	or CHOOSE		
fluid dynamic viscosity	μ	kg/m. s 💌	user input(µ>0)	or CHOOSE 💽		
#1 particle diameter	$d_{ m p}$	m 💌	user input(dp>0)			
#2 riser inner diameter	d_{t}	m 💌	user input(dt>0)			
minimum fluidization voidage	$\mathcal{E}_{\mathrm{mf}}$		user input(0 <amf<1)< td=""><td></td></amf<1)<>			
particle real density	$ ho_{ m p}$	kg/m^3 💌	user input(pp>0)	or CHOOSE		
solids flow rate	$G_{\rm s}$	kg/m^2.s 💌	user input(Gs>0)			
superficial fluid velocity	$U_{\rm g}$	m/s 💌	user input(Ug>O)			
Please select the way of attaining the results from this tool: • Send the results to your E-mail: • Show the results in the current window.						

submit

reset

Discrete simulation & verification

N_{st} = min ?

Whether or not ? If yes, why?

Pseudo-Particle Micro-scale description Macro-scale phenomena

Macro-scale Pseudo-Particle Modeling Numerical Operators \rightarrow "Interactions" between "Particles"

Ge & Li: CFB5, 1996; Chem. Eng. Sci., 58, 2003, 1565; Powder Tech. 137:99

Generating meso- and micro-scale structures with micro-phenomena:

$N_{st} \rightarrow$ min was verified in 2004

Li et al., Chem. Eng. Sci. Vol.59, 2004, 1687 ~ 1700

The 2nd practice in gas/liquid system

Insufficiency of conservation equations:

Path of energy transfer and dissipation

Zhao, Ge & Li, Chem. Eng. Sci., 2007

Physical Model

The jump change of flow structure

Yang, Chen, Zhao, Ge & Li, Chem. Eng. Sci., 2007

Extension to more systems for generalization

Extension 3: Turbulent Flow Compromise between Viscosity and Inertia

Extension 4: Microemulsion Compromise between Hydrophile and Lipophile

H: Hydrophile group (red)

T: Lipophile group (blue)

W: Water (green)

O: Oil (yellow)

Extension 5: Granular Flow

Compromise Between Two Streams of Granular Flow

Extension 6: Foam Drainage Compromise Between Surface Energy and Viscosity

Extension 7: Nano Gas-liquid Flow

Compromise Between Interfacial Potential and Viscosity

Summary:

1. Sy

Cross

flow of granula

materia

Turbule

Gas-soli

Turbule

gas-liqu flow

Nano

gas-liqu

pipe flo

Foam

drainag

Emulsio

system

flow

Ge et al Chem. Eng. Sci. 2007

stems			2. Dominant mechani	
	Nr.		Compromise	$(H_a = \min)\Big _{H_b = \min}$
r ls	A NAME		Definition	$H_{\rm a}$ potential a $H_{\rm b}$ potential b
			Compromise	$(\overline{W}_{\nu} = \min)\Big _{\overline{W}_{te}=\max}$
nt			Definition	$\overline{W}_{ u}$ viscous dissipat $\overline{W}_{ m te}$ turbulent dissip
d	a		Compromise	$(W_{\rm st} = \min)_{\varepsilon = \min}$
			Definition	Wst volume specific e consumption for transuspending particles suspending particles E local voidage of the ide
nt id			Compromise	$(N_{\text{turb}} = \min) _{N_{\text{surf}} = \min}$
			Definition	$N_{ m turb}$ dissipation liq turbulent $N_{ m curf}$ surface dissip
			Compromise	$(\varphi_{\rm r} = \min)_{\rm S=min}$
id w		Definition	φ_r dissipation associat transportation of unit kinetic energy across u S surface energy in	
e			Compromise	$(E_{\rm s}={\rm min}) _{E_{\mu}={\rm min}}$
			Definition	$E_{ m s}$ surface energy E_{μ} viscous dissipat
'n			Compromise	$(E_{\rm WT} = \min) _{E_{\rm OH} = \min}$
			Definition	$\overline{E}_{_{ m WT}}$ lipophilic pote $E_{_{ m OH}}$ hydrophilic p

Mathematical model of complex systems

s.t. $F_i(X) = 0, i = 1, 2, ..., m$

J. Li et al., Chem. Eng. Sci., 2003, 58, 521-535

Strategy in Computation Problems Software Similarity **Multi-scale structure** Hardware

New computation approach

Multi-scale Discrete Parallel Computation

The 1.0 Peta flops system

Lenovo Co. /NV, 200T, Cuda

Cooperation -

Dawning Co./AMD, 200T, Brook/CAL

150T / AMD built by IPE Upgrading 120T \rightarrow 450T

1P flops

200T(Dawning)

200T(Lenovo)

150T(IPE)

450T(IPE)

System Architecture

55

Real performance in couette-cavity flow

Simulation of gas-solid system

1024 Particles

Experimental apparatus

Sample of rock

Industrial apparatus

Applications

Direct simulation of gas/solid system

1024 Particles 1024CPU

25 K Particles 200GPU 2.5M Particles 240GPU 62

GPU computation : 100K Particles +200M pesudo-particles

Direct simulation of industrial stirred tank

Stirred Tank 3D MaPM, 200 GPU

Stirred tank ~100 M particles, 32GPU , 5.5s/step , 61h/round

Metallurgy process

Slurry of steel

3D simulation of granular flow in blast furnace

2007-08:10CPU/2GPU

2009:20GPU

Coal-ash mixing in coal topping

DNS of flow in porous media

Protein folding in vivo

SR-KKK D358K, D360K, E362K SR-3N3Q E251Q, D252N, E254Q, D358N, D360N, E362Q

Polymer dynamics

Vesicle formation

1200 polyethylene chains Chain length : 300 CH2

NVT Ensemble

1392656 water 3375 dipalmiteyl phosphatidyl choline NPT Ensemble

Silicon crystal for solar cell

Atom number : 10^{10} Scale : $1\mu m^3 \rightarrow$ Thickness on silicon film
From Angstroms to Microns: MD-PPM simulation of interactions

2D simulation of liquid film rupture 40nm×35nm, solid velocity 3.2m/s LJ/PP fluid at 60K, constant P & V

10000 particles, 3.2G Intel CPU (1core)

Chen et al., Sci. in China, 52, 2008, 372-380

3D simulation: bubble-particle in liquid 0.1*0.1*0.15µm, bubble mean velocity 3m/s LJ/PP fluid at 60K, NVT ensemble 7M particles, 2 GPUs

Real-time CT Image Reconstruction

On-line

Off-line

CT Scanister

Two-fluid Limitation Average in grid Two-fluid Constitutive model Meso-structure Smaller grid size Meso-structure Correlation Stability

Spatial-temporal correlation

CFD + EMMS

Fine-grid TEM, big deviation from experiments

Solid flux: comparison between experiment & simulation

Simulation: with only CFX

Simulation: CFX + EMMS

Yang, Wang, Ge & Li, Chem. Eng. J., 2003

Comparison between experiment & simulation

 $U_{\rm g} = 3.5 \,{\rm m/s}$ $H_{\rm init} = 1.70 {\rm m}$

Riser height is a key factor !

EMMS/mass: Sub-grid mass transfer

Multiscale flow

Multiscale mass transfer

Comparison between CFD computation and experiments

Averaged flow & averaged mass transfer

Multi-scale flow & averaged mass transfer

Multi-scale flow multi-scale mass transfer

Dong et al, Chem. Eng. Sci., 63,2008,2798-2823

Commercial codes of EMMS

Applications to industries

SINOPEC Stage 1 : MIP (max. iso-paraffins) process

Novel FCC Riser

Height: 40 m Diameter: 1~3.5 m

Determine design parameter Diameter velocity Inventory

Shade of color: concentration 88

SINOPEC Stage 2 : Further optimization of MIP process

SINOPEC Gaoqiao MIP process, 1.4 M tons/a

SINOPEC: the influence of

Orifice number Distributor shape Outlets

PetroChina: slurry bed loop reactor

Before optimization

After optimization

Xinhui Power plant

480t/h (150MW)CFB boiler

Height:36.5 m Width:15.3 m Depth:7.22 m

Solid volume fraction

Dispersive particle

Classification of ore

Slag processing in metallugry

Cool model

Coarse particle → Fine particle/multi particle 1 billion particles

Hot model with phase transition

Secondary oil recovery from fractures to oil fields

Multi-scale Structure

— A common challenge for different areas

Breakthrough of computation capability is expected in near future

Applicationoriented

Principles for designing variational multi-scale computer systems

Breakthrough in understanding meso-scale structures:

Virtual Process Engineering: Dream

reality

Acknowledgement

Supports from:NSFC (Natural Science Foundation of China)MOST (Ministry of Science and Technology)CAS (Chinese Academy of Sciences)

Coworkers:

Thanks for your attention !

Retrospect and prospect:

