## Pressurized Coal Pyrolysis and Gasification at High Initial Heating Rates



Thomas H. Fletcher and Randy Shurtz Chemical Engineering Dept Brigham Young University Provo, UT 84602



U.S. Department of Energy ~ National Energy Technology Laboratory 2010 Multiphase Flow Science Workshop Pittsburgh Airport Marriott ~ May 4-6

#### Utah Clean Coal Program



### DOE-sponsored Gasification Research at BYU and U of Utah



#### **BYU Flat-Flame Burner**

## **Equipment to Study Particle Reactions**

| Equipment             | Heating<br>Rate<br>(K/s) | Temperature<br>(°C) | Advantages                                                                            | Disadvantages                                                                                     |  |
|-----------------------|--------------------------|---------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--|
| TGA                   | 0.1-1                    | 25-1000             | Well-controlled T and gas<br>concentration, Precise mass<br>measurement               | Not representative of industrial<br>conditions, hard to collect tar,<br>Small samples             |  |
| Heated grid           | 1-1000                   | 25-1000             | Moderate heating rate,<br>quick quench of tar, direct<br>mass measurement             | Small samples, char not available after test                                                      |  |
| Drop Tube             | 10,000                   | 25-1700             | Electric heaters easily<br>controlled, high heating<br>rate, char and tar in quantity | Hard to measure T <sub>p</sub> , secondary tar reactions                                          |  |
| Radiant<br>heaters    | 10,000                   | 25-1200             | Avoids secondary reactions,<br>char and tar in quantity                               | T <sub>p</sub> not known                                                                          |  |
| Flat-flame<br>burners | 100,000                  | 1100-2000           | Very high heating rate, char<br>and tar/soot in quantity                              | Minimum temperature, secondary<br>tar reactions, effect of post-flame<br>gases ( $CO_2 \& H_2O$ ) |  |

## **Effects of Pressure Studied**

| Equipment             | Heating<br>Rate<br>(K/s) | Temperature<br>(°C) | Advantages                                                                            | Disadvantages                                                                                     |
|-----------------------|--------------------------|---------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| TGA                   | 0.1-1                    | 25-1000             | Well-controlled T and gas<br>concentration, Precise mass<br>measurement               | Not representative of industrial<br>conditions, hard to collect tar,<br>Small samples             |
| Heated grid           | 1-1000                   | 25-1000             | Moderate heating rate,<br>quick quench of tar, direct<br>mass measurement             | Small samples, char not available<br>after test, mass transfer affects<br>char reactions          |
| Drop Tube             | 10,000                   | 25-1700             | Electric heaters easily<br>controlled, high heating<br>rate, char and tar in quantity | Hard to measure T <sub>p</sub> , secondary tar reactions                                          |
| Radiant<br>heaters    | 10,000?                  | 25-1200             | Avoids secondary reactions, char and tar in quantity                                  | T <sub>p</sub> hard to calculate                                                                  |
| Flat-flame<br>burners | 100,000                  | 1100-2000           | Very high heating rate, char<br>and tar/soot in quantity                              | Minimum temperature, secondary<br>tar reactions, effect of post-flame<br>gases ( $CO_2 \& H_2O$ ) |

### Total Volatile and Tar Yields Decrease with Increasing Pressure for hv Bituminous Coals



Pittsburgh hv bituminous coal data from heated grid experiments, Anthony (1974) and Suuberg (1977), 1000 K/s to 1000 °C. CPD model predictions from Fletcher, et al. (1992)

## Effect of Pressure on Low Rank Coal Devolatilization is Small



Zap lignite data from heated grid experiments, Anthony (1974) and Suuberg (1977), 1000 K/s to 1000 °C. CPD model predictions from Fletcher, et al. (1992)

## **Effect of Heating Rate on Swelling**



Zygourakis, n., Energy & rueis 1, 33-41 (1993).

Gale, T. K., C. H. Bartholomew and T. H. Fletcher, Combustion and Flame, 100(1-2), 94-100 (1995).

Eiteneer, B., et al., 26th Annual International Pittsburgh Coal Conference, Pittsburgh, PA (2009).

Shurtz, R. C., et al., 26th Annual International Pittsburgh Coal Conference, Pittsburgh, PA (2009).

# **Effect of Pressure on Swelling**



- Effect of pressure on swelling at ~10<sup>4</sup> K/s
- Swelling ratios as high as 3 reported

Yu, J., D. Harris, J. Lucas, D. Roberts, H. Wu and T. Wall, *Energy & Fuels*, **18**(5), 1346-1353 (2004).

Yu, J., J. A. Lucas and T. F. Wall, Progress in Energy and Combustion Science, 33(2), 135-170 (2007).

Lee, C. W., R. G. Jenkins and H. H. Schobert, Energy & Fuels, 6(1), 40-47 (1992).

# Why Is Particle Swelling Important?



- Influences particle heatup rate (external surface area)
- Affects net heterogeneous reaction rate (drive towards film diffusion limit)
- Affects ash particle size distribution
  - Highly swollen particles fragment, yielding smaller ash particles

## Atmospheric Flat-Flame Burner (FFB)

- Advantages:
  - Char and soot formation at high heating rate ( $\sim 10^5$  K/s)
  - Fueled by  $CH_4$  or CO
    - Allows temperature flexibility (1100 K to 2000 K)
  - Adjust stoichiometry for %  $O_2$  in post-flame zone
  - Very fast heat-up and shut-down times for ease of use
  - Residence time adjusted easily
- Disadvantages:
  - Limited to experiments at ambient pressure



# **Upgraded HPFFB**

- Changed to up-flow
  - Reduces wear on the burner
  - Recently reduced burner diameter to 1"
- Probe moves to change residence time
  - Up to 800 ms for 1 section
  - Up to 1600 ms for 2 sections
  - Very short residence times available
- Operational pressures of 2.5-15 atm
  - Upgradeable to 30 atm
- Uses either CH<sub>4</sub> or CO with some H<sub>2</sub>
  - Greater flexibility in gas composition
  - CO will not form soot
- Optical access available near burner
  - Check particle feeding
  - Limited optical particle velocities
- Faster startup
- Easier to disassemble



## 15 atm Centerline Temperature with Quench at 3"





# **Optical Particle Velocities**



Distance from Burner (mm)

# **Problems Encountered**

- Fuel-rich CH<sub>4</sub> flame found to form soot at slightly elevated pressures (2.5 atm)
- Sooting eliminated by using 84% H<sub>2</sub> and 16% CH<sub>4</sub>
  - High H<sub>2</sub> increased flame speed
  - Preheated burner surface
  - Caused clogging for bituminous coals due to early pyrolysis
  - Sub-bituminous coals did not clog



# **Particle Analysis**



- ICP for tracer analysis (Ti, Si, Al)
  - Mass release determined from tracers
- Tap density
  - Bulk density ratio ( $\rho/\rho_0$ ) = Apparent density ratio
- Average diameter

 $-m/m_0 = (\rho/\rho_0) (d/d_0)^3$ 

# **Experimental Conditions**

| Condition              | H <sub>2</sub> O-rich | CO <sub>2</sub> -rich |  |
|------------------------|-----------------------|-----------------------|--|
| Pressures (atm)        | 2.5                   | 2.5, 5, 10, 15        |  |
| Peak Temperature (K)   | 1640                  | ~1700, 1900           |  |
| Inlet Fuel Mixture     | 84% H <sub>2</sub> ,  | 97.5% CO,             |  |
|                        | 16% CH <sub>4</sub>   | 2.5% H <sub>2</sub>   |  |
| Post-flame composition |                       |                       |  |
| CO <sub>2</sub> mol %  | 3.0                   | 15.7 – 21.0           |  |
| H₂O mol %              | 27.4                  | 0.6 - 2.1             |  |
| CO mol %               | 1.1                   | 7.5 - 11.9            |  |
| H <sub>2</sub> mol %   | 1.8                   | 0.1 - 0.4             |  |
| N <sub>2</sub> mol %   | 66.7                  | 69.0 - 70.8           |  |

# 2.5 atm Wyodak Gasification



Residence Time (ms)

### Steam Gasification of Wyodak Coal (2.5 atm)

- 90 ms char fully pyrolyzed
  - CPD predicts ~62% MR<sub>daf</sub>

90 ms

- Little change in structure from 208-868 ms
  - Linear gas temperature decrease of ~300 K from peak over 14 inches
- Highly porous chars
  - $N_2$  surface area of 360 m<sup>2</sup>/g at 208 ms
- Zone II behavior near burner
  - Both  $d_p$  and  $\rho_p$  changing in first 200 ms
  - Zone III calculations predict 100% conversion in ~60 ms





208 ms

868 ms

## Wyodak CO<sub>2</sub> Gasification, 5 atm



## Wyodak CO<sub>2</sub> Gasification, 15 atm



Residence Time (ms)

## **Bituminous Coal Data**

(atmospheric pressure so far)

## Atmospheric Swelling during Pyrolysis of a Bituminous Coal

- U.S. bituminous coal
- Atmospheric FFB
  - Varied particle size to change heating rate
- Swelling trends consistent with previous work
  - Sharp decrease between 10<sup>4</sup>-10<sup>5</sup> K/s
  - Apparent asymptote of ~0.9 above 10<sup>5</sup> K/s
  - Eiteneer data indicate maximum swelling occurs slightly below 10<sup>4</sup> K/s



Shurtz, R. C., et al., 26th Annual International Pittsburgh Coal Conference, Pittsburgh, PA (2009).

Eiteneer, B., et al., 26th Annual International Pittsburgh Coal Conference, Pittsburgh, PA (2009).

Gale, T. K., C. H. Bartholomew and T. H. Fletcher, Combustion and Flame, 100(1-2), 94-100 (1995).

Zygourakis, K. Energy & Fuels 7, 33-40 (1993).

# U.S. Bituminous Coal A Swelling

### (0.85 atm)

| Particle Size (µm) | 149-177          | 88-105           | 53-66        |
|--------------------|------------------|------------------|--------------|
| Heating Rate (K/s) | $4.1 \cdot 10^4$ | $7.2 \cdot 10^4$ | $2.0.10^{5}$ |
| MR (% daf)         | 60.29            | 63.25            | 61.44        |
| ρ/ρ <sub>0</sub>   | 0.24             | 0.39             | 0.53         |
| d/d <sub>0</sub>   | 1.22             | 1.00             | 0.93         |
|                    |                  |                  |              |







## E Bitum A Coal Pyrolysis (40 ms)



Volatiles Yield (daf)

Pressure (atm)

Density or Diameter Ratio

## E Bitum B Coal Pyrolysis (40 ms)



Volatiles Yield (daf)

Pressure (atm)

Density or Diameter Ratio

## **Char Fragmentation**



### 1.1 gram coal fed

- 10 atm Char, U.S. Bituminous Coal B
  - Freshly pyrolyzed, 1700 K
- Cenospheric char particles fragile
- Char accumulates in horizontal cyclone
  - Must empty cyclone frequently and carefully to avoid fragmentation

### 0.4 gram coal fed



## **Large and Medium Particle Sizes**

U.S. Bituminous Coal B, 5 atm, 1700 K, 750 ms



Large cenospheric shells present



Large shells aerodynamically separated



U.S. Bituminous Coal B, 15 atm, 1700 K, 124 ms

Large cenospheric char particles carried onto soot filter

# **Soot with Char**

- High yield of large soot agglomerates
  - Not separating from char
  - Hinders determination of mass release, swelling, surface area
- Gasification implications
  - Soot radiates lots of heat due to high surface area
  - Kinetics of soot gasification largely unexplored
  - Conversion of volatiles to soot slows total carbon burnout



Bituminous Coal A, 5 atm, 1900 K, 750 ms



Bituminous Coal B, 5 atm, 1700 K, 750 ms

# **Next Steps**



- Does swelling decrease with heating rate at elevated pressures?
  - Bituminous coals
- Extend swelling correlations to account for this decrease in swelling at elevated pressures and heating rates
- Fit gasification data to kinetic parameters in a gasification model
  - Follow approach similar to CBK/G\*
    - Also try n<sup>th</sup> order kinetics for comparison
  - Compare to PTGA data on PFFB chars

# **Summary and Conclusions**

- Modified HPFFB suitable for gasification studies
  - Heating rates of  $\sim 10^5$  K/s at up to 15 atm
  - Gas composition, residence time more flexible
  - Initial studies in high H<sub>2</sub> flames
  - Currently working with CO flames to eliminate burner pre-heating
  - One-inch diameter burner at high pressure
- Preliminary steam gasification experiments
  - Subbituminous coal in Zone II conditions
  - High surface area and porosity
- Atmospheric swelling experiments
  - Confirms previous trends
  - Reinforce suggestion of swelling ratio < 1 at heating rates of  $\sim 10^6$  K/s
  - Proceeding with pressurized experiments
    - Taking care to avoid soot and fragmentation

# Acknowledgments



- Funding: DOE through the Utah Clean Coal Program and GE Global Research
- Undergraduate Research Assistants
  - Greg Sorensen
  - Sam Goodrich
  - Jeff Van Wagoner
  - Dallan Prince

## **The End**

### Shan G. PhD thesis, Department of Chemical Engineering, University of Newcastle (NSW), Australia, 2000.

Yu, J., J. A. Lucas and T. F. Wall, Progress in Energy and Combustion Science, 33(2), 135-170 (2007).

# Literature Review: Volatiles Yield

- Effect of increasing pressure
  - Inhibits release of tar
  - More light gases produced by cross-linking reactions
  - Net decrease in volatiles
- Effect of increasing heating rate
  - Causes devolatilization to occur at higher temperatures
  - Higher rate of devolatilization
  - Higher yield of volatiles, especially tar
- CPD model (and others) predicts experimental trends



# Wyodak Ultimate Analysis

| Sample      | С     | Н    | Ν    | S    | O (diff) |
|-------------|-------|------|------|------|----------|
| Wyodak Coal | 72.25 | 5.30 | 0.94 | 0.50 | 21.01    |
| 90 ms char  | 91.14 | 1.11 | 1.06 | 0.27 | 6.42     |
| 208 ms char | 92.50 | 1.16 | 0.86 | 0.39 | 5.10     |
| 868 ms char | 92.69 | 1.22 | 0.94 | 0.53 | 4.62     |

- Increase in C
- Decrease in H and O after devolatilization
- N and S relatively constant

## **Steam Gasification of Wyodak Coal**



Raw coal (77 mm particles)





90 ms





208 ms

# Wyodak Pyrolysis at ~1700 K



Pressure (atm)

## Total Volatile Yield Increases with Increasing Heating Rate



Argonne Premium coals heated to 700 °C in helium with 30 s hold (Gibbins and Kandiyoti, Energy & Fuels, 1989)

## Reaction Temperature Increases with Increasing Heating Rate



Pittsburgh No. 8 hv bituminous coal in Helium (Gibbins and Kandiyoti, E&F, 1989). Lines are CPD model predictions (Fletcher, et al., E&F 1992)