Coloradc

University of Colorado at Boulder

Meso-scale structures 1n bidisperse fluidized
suspensions

William Holloway, Sofiane Benyahia, Christine Hrenya, and Sankaran
Sundaresan

NETL Workshop on Multiphase Flow Science
Pittsburgh, PA, 2010



Outline

® Project objective

® Current status of GHD theory in MFIX

e Connection to Roadmap

® Model framework

® Test cases

e Model predictions

® (Grid resolution effects

e Range of validity of kinetic theory formulation
® Summary

2 /20



Project objective

Goal:
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e GHD theory has been successfully incorporated within
the MFIX framework and has been tested extensively.

e The GHD theory implementation has operated robustly
for both homogeneous and inhomogeneous gas-solid
flows with binary particle size distributions (PSD).

® Currently GHD theory implementation 1s only
compatible with binary mixtures.

* Only two drag relations have been implemented with
GHD theory at this point (namely, HYS and Wen-Yu).
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Connection to Roadmap

Princeton Tasks

Task 4.6:

The MFIX framework, modified to
account for the new physical models
will be developed as part of this work
and compared to experimental data
obtained from high-velocity systems.
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Connection to Roadmap

. e
Princeton Tasks ] Roadmap
Task 4.6 Near Term:
The MFIX framework, modified to e Perform high-fidelity, transient 3-D
account for the new physical models multiphase flow computations with
will be developed as part of this work PSD (particle size distribution).
and compared to experimental data e Identify deficiencies of current models

obtained from high-velocity systems. developed for gas-solid flows.
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Continuum models for polydisperse flows

Continuity

FV - (n; V)= ——V Jo.

8t (n ) m; JO;
Momentum
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Continuum models for polydisperse flows

Continuity
8t m; !

Momentum

.V S
| V-VV) :—V-US—I—ZniFi
1=1

S

N mymn;
= — Z p] 2 D;;Vin(n;) — pD; Vin(T) — Z D{.F;

Fluctuating energy

3n oT SnCT 1 JO
. T —— . —_— S: —_
2<at+vv> V-q—o0s:VV Z VJO-I—; -

i=1 j=1
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External forces 1n polydisperse systems
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External forces 1n polydisperse systems
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External forces 1n polydisperse systems

S

. ;M5 i
jo=—Y pf L D;;Vin(n;) — pDI VIn(T) = >~ D;F;
j=1

Fj = m;g + VJVPg + FDj
Fluid-particle drag model (HY'S):2-34

Fpj = —% (Vj = Vg) ’ ’

2Holloway, Yin, and Sundaresan, AIChE J., 2010 ’ i
3Yin and Sundaresan, AIChE J., 2009

4Yin and Sundaresan, Ind. Eng. Chem. Res., 2008 7120
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External forces 1n polydisperse systems

S

joo = — > I DUNIn(ng) — pDIVIn(T) = Y DEF;
j=1

0
Fi=m;g+ V;VFP; + Fp;

Fluid-particle drag model (HY'S):2-34

j=1

o —~ ;i
Fpj = _# (Vi — Vg)— E nj. (Vi— Vj)
g i#j 7

Off-diagonal friction
coefficient
2Holloway, Yin, and Sundaresan, AIChE J., 2010

3Yin and Sundaresan, AIChE J., 2009
4Yin and Sundaresan, Ind. Eng. Chem. Res., 2008 7120
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Model predictions

Broad PSD (e = 0.99)
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Model prediction: Volume fraction ratios

Broad PSD

e =0.99

P1/¢
1

MFIX simulations:

e GHD theory

® HYS drag model

® d;=212.5 um, d>=127.5 um
()= 0.125, {¢2)= 0.025

® Doubly periodic

® |6 cm x 64 cm

Broad PSD maintains a very tight
distribution of volume fraction
ratio throughout the flow domain
for both coefficients of
restitution.

11/20



Model predictions

Bimodal PSD (¢ = 0.95)
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Model predictions

Bimodal PSD (¢ = 0.95)
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Model predictions

Bimodal PSD (¢ = 0.95)
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Model predictions
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Model prediction: Volume fraction ratios

Bimodal PSD
e =0.99 1/ P
! MFIX simulations:
e GHD theory
08 ® HYS drag model

® d;=650 um, d>=170 um
* (¢)=0.075,{¢p2)=0.075
06 ® Doubly periodic

| ® |6 cmx 64 cm

|0 4 Bimodal PSD has a much
broader distribution of particle

volume fraction ratio than the
0.2 Broad PSD case.
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Grid resolution effects

Broad PSD (¢ =0.99)

I cm grids 0.5 cm grids 0.25 cm grids ¢ MFIX simulations:
R/

e GHD theory
0.6 e HYS drag model

® d;=212.5 um, d>=127.5 um
0.5 *{(¢)=0.125,{g2)=0.025

® Doubly periodic
04 ®l6cmx64cm

10.3
As grid resolution 1s

09 Increased, finer structures
begin to appear 1n the
01 flow domain.
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Grid resolution effects

Bimodal PSD (¢ = 0.99)
1 cm grids 0.5 cm grids 0.25 cm grids ¢ MFIX simulations:

: * GHD theory
5 0.6 e HYS drag model
® d;=650 um, d>=170 um
0.5 *{(¢:)=0.075,{p2)=0.075
® Doubly periodic
04 ®l6cmx64cm

\d

‘J

10.3  The emergence of fine
structure with grid
10.2  resolution indicates that
equations used to model
0.1 binary gas-solid flows
must be coarse grained.
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Bimodal PSD (e = 0.95)

Assumption: 0.8
Kn<<1
[, I
Kn= -2/ 0.6
lgrad
6v/2¢
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lgrad — VX 02
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Range of validity of kinetic theory formulation. ®.
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Bimodal PSD (e = 0.95)

0.05
Assumption: 0.04
Kn <<1
Kn = mf - 10.03
lgrad
L d
o lx
grad = gy 0.01
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Summary

e HYS drag model has been implemented within new CVS version of
MFIX.

¢ GHD theory has been implemented within MFIX and operates robustly,
even 1n very inhomogeneous gas-solid flows.

e Binary fluidized gas-solid suspensions manifest inhomogeneous structures
similar to monodisperse systems.

e Volume averaged slip velocities in both monodisperse and bidisperse gas-
solid flows are qualitatively similar when both PSDs have the same Sauter
mean diameter.

e The scale of structures in binary gas-solid flows depends on grid
resolution, similar to monodisperse suspensions.

¢ Knudsen number was found to be O(1) or less throughout simulation

domain.
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