Experiments and Model Development for Polydisperse, Gas-fluidized Systems

Jia-Wei Chew R. Brent Rice Christine M. Hrenya

Vicente Garzó

S. Tenneti R. Garg Shankar Subramaniam

NETL 2010 Workshop on Multiphase Flow Science 4 May 2010 Pittsburgh, PA

Project Scope: Work Breakdown Structure

Validation data

- 1) Bubbling-bed experiments (Colorado)
- 2) DEM simulations of simple shear (Colorado)
- 3) Riser experiments (Colorado & PSRI) Ray Cocco (PSRI) – Thursday

Theory

- 4) Application of polydisperse kinetic theory to clustering (Princeton & NETL & Colorado) Bill Holloway (Princeton) - Tuesday
- 5) Kinetic Theory Extension to Gas-Solid Flows (Colorado & Iowa State)

Validation data

1) Bubbling-bed experiments (Colorado)

- 2) DEM simulations of simple shear (Colorado)
- **3) Riser experiments (Colorado & PSRI)** *Ray Cocco (PSRI) – Thursday*

Theory

- 4) Application of polydisperse kinetic theory to clustering (Princeton & NETL & Colorado) Bill Holloway (Princeton) - Tuesday
- 5) Kinetic Theory Extension to Gas-Solid Flows (Colorado & Iowa State)

Overview: Bubbling Bed Experiments

Objective

To characterize segregation and bubbling behavior of bubbling beds with continuous size distributions

- Do continuous PSD's behave like binary mixtures?
- Is there a direct link between the segregation and bubbling levels?

Measurements: Segregation and Bubbling

Width of distribution: σ/d_{ave} (%)

Material: sand

Results: Segregation

Gaussian: as PSD width increases \uparrow , segregation \uparrow **lognormal**: *non-monotonic* variation of segregation with PSD width

Chew, Wolz & Hrenya, AIChE J (in press)

Gaussian: as PSD width increases \uparrow , all bubble parameters \uparrow (some not shown) **lognormal**: same as Gaussian (*monotonic* variation)

Chew & Hrenya, *I&ECR* (submitted)

Reconciliation: Segregation and Bubbling Measurements

Explanation

- presence of *bubble-less layer* in some systems
- size of bubble-less layer correlates with degree of segregation

Validation data

1) Bubbling-bed experiments (Colorado)

2) DEM simulations of simple shear (Colorado)

3) Riser experiments (Colorado & PSRI) *Ray Cocco (PSRI) – Thursday*

Theory

- 4) Application of polydisperse kinetic theory to clustering (Princeton & NETL & Colorado) Bill Holloway (Princeton) - Tuesday
- 5) Kinetic Theory Extension to Gas-Solid Flows (Colorado & Iowa State)

Objective

Assess the impact of *polydispersity* on *clustering* in *granular* flows

- How does polydispersity affect the prominence of clusters?
- Does species segregation occur in a *transient* cluster?

System: Simple Shear Flow

Approach: MD simulations

MD Simulations

Simulation Description

- 2D, event-driven
- Inelastic, frictionless, hard disks
- Size distributions: *binary*, *Gaussian*, *lognormal*

Concentration mapping

0.5 0.45 0.3 0.3 0.25 0.2 0.15 0.1 0.05

 $v_{avg} = 0.2$

Cluster Region: $v > v_{avg}$ Dilute Region: $v > v_{avg}$

Resulting Quantities: v_{clus} v_{dil} T_{clus} T_{dil} $v_{L,clus}$ $v_{L,dil}$ $T_{L,clus}$ $T_{L,dil}$

Results: Cluster Prominence

Decreased Prominence

Cluster prominence greater for systems with more than one species

Tendency increases with deviation from monodisperse limit

Results: Cluster Prominence

Cluster prominence greater for systems with more than one species

Tendency increases with deviation from monodisperse limit

Rice & Hrenya Phys. Rev. E (2010)

Results: Species Segregation

Large Particles segregate preferentially toward the clustered regions

Tendency increases with increasing size disparity

Rice & Hrenya Phys. Rev. E (2010)

Results: Species Segregation

Large Particles segregate preferentially toward the clustered regions

Tendency increases with increasing size disparity

Rice & Hrenya Phys. Rev. E (2010)

Validation data

- 1) Bubbling-bed experiments (Colorado)
- 2) DEM simulations of simple shear (Colorado)
- **3) Riser experiments (Colorado & PSRI)** Ray Cocco (PSRI) – Thursday

Theory

- 4) Application of polydisperse kinetic theory to clustering (Princeton & NETL & Colorado) Bill Holloway (Princeton) - Tuesday
- 5) Kinetic Theory Extension to Gas-Solid Flows (Colorado & Iowa State)

Continuum ("Two-fluid") Description

- Gas phase: Navier-Stokes + turbulence + drag force
- Solids phase: Kinetic-theory-based models + fluid-phase interactions

modifications to kinetic-theory closures new terms

Current Objective: *Incorporation of gas-phase (drag) effects into kinetic-theory-based models for solid phase*

Physical Picture

Recall fluid-solid interaction force (drag force)

$$F_{fluid} = F_n + F_t = \int_{0}^{2\pi} \int_{0}^{\pi} \left(\left(-p \right|_{r=R} \cos \theta \right) R^2 \sin \theta \, d\theta d\phi$$
$$+ \int_{0}^{2\pi} \int_{0}^{\pi} \left(\left(\tau_{r\theta} \right|_{r=R} \sin \theta \right) R^2 \sin \theta \, d\theta d\phi$$
$$\longrightarrow = f \text{ (velocity \& pressure)}$$

Mean fluid force on *single* particle

$$F_{fluid} = f\left(U_g - U\right)$$

Velocity & pressure fields (& thus fluid force) change with:

- Fluctuations in particle velocity
- Fluctuations in gas velocity •

➡ Mean vs. Instantaneous Fluid Force

nnogguno field

Incorporation of Instantaneous Fluid Force

Alternative 1: DEM (solids) /DNS (fluid) – resolve flow field around particles

- + fluid force is "output"
- too computationally expensive (no-slip BC at each moving particle surface)

Alternative 2: Two-fluid model – "averaged" flow field over several particles

- + computationally feasible (single equation of motion for each phase)
- fluid effects are "input" model is needed to subsume *instantaneous* effects
 - Q1: Impact on governing equations (additional terms)?
 - Q2: Impact on constitutive relations for solid phase (**P**, **q**, ζ)?

Current Approach

- (i) use DEM/DNS simulations to develop model for instantaneous force -
- (ii) incorporate this force model into starting kinetic equation & derive
 hydrodynamic description

Basic Idea: Incorporation of fluid force into Enskog kinetic equation

DEM/DNS technique for closure: IBM (Immersed Boundary Method) based model of $F_{fluid,i}$ as function of:

- Hydrodynamic variables: ϕ , U_i , T, U_{gi}
- Physical parameters: $m, d, \alpha, \mu_g, \rho_g$

IBM-based model for acceleration

Use IBM simulations to find β^* , γ_{ii}^* , and B_{ii}^* as functions of

- solids volume fraction
- ρ_s/ρ_f

density ratio

• $Re_m = \frac{(1-\phi)\rho_g d |\mathbf{U} - \mathbf{U}_g|}{\text{particle } Re \text{ based on mean flow}}$ • $Re_{T} = \frac{\rho_{g}d}{\mu_{g}}\sqrt{\frac{T}{m}}$

particle *Re* based on particle velocity fluctuations

Resulting Hydrodynamic Description

Balance Equations (Solid-Phase Momentum & Granular Energy)

$$D_{t}\mathbf{U} + \frac{1}{mn}\nabla\mathbf{P} = \begin{bmatrix} -\frac{\beta_{IBM}}{m} (\mathbf{U} - \mathbf{U}_{g}) \\ mean \, drag \end{bmatrix}$$
$$D_{t}T + \frac{2}{3n} (\nabla \cdot \mathbf{q} + P_{ij}\nabla_{j}U_{i}) = -\zeta T \begin{bmatrix} -\frac{2}{3\rho}\gamma_{ij}P_{ij}^{k} \\ +\frac{\rho}{3n}B_{ij}B_{ij} \end{bmatrix}$$
$$sink \, due \, to \qquad source \, due \, to \qquad source \, due \, to \qquad source \, due \, to \qquad fluid-particle \qquad fluctuations$$

Explicit Constitutive relations obtained for ζ , P, and q:

- Cooling rate
- Cooling rate TC
- Shear viscosity
- Bulk viscosity
- Conductivity
- Dufour coefficient

$$\begin{split} \zeta^{(0)} &= \zeta^{(0)} \left(B_{ij} \right) \\ \zeta_U &= \zeta_U \left(\gamma_{ij}, B_{ij} \right) \\ \eta &= \eta \left(\gamma_{ij}, B_{ij} \right) \\ \lambda &= \lambda \left(B_{ij} \right) \\ \kappa &= \kappa \left(\gamma_{ij}, B_{ij} \right) \\ \mu &= \mu \left(\gamma_{ij}, B_{ij} \right) \end{split}$$

Typical Ranges in CFB (Circulating Fluidized Bed) riser

• ϕ 0.01 – 0.5

•
$$\rho_s / \rho_f$$
 800 - 250 \longrightarrow high St

•
$$Re_m = 0.1 - 50 \longrightarrow low - moderate Re \longrightarrow only low $Re_m = 0.1 - 1$$$

•
$$Re_T = 0.5 - 5$$

Summary of Results

- *Negligible* gas-phase influence
 - Cooling rate $(\zeta_{(0)}, \zeta_{U})$
 - Bulk viscosity (λ)
 - Conductivity (κ)
- *Non-negligible* gas-phase influence
 - Shear viscosity (η)
 - Dufour coefficient (μ)

Shear Viscosity

Dufour Coefficient

IBM-based model for instantaneous fluid acceleration has been incorporated into Enskog equation, and corresponding hydrodynamic description derived

- Additional source/sink in momentum and granular energy balances
- Modification of constitutive closures
 - <u>For limiting case of $Re_m << 1$ and St >> 1: non-negligible gasphase influence on shear viscosity and Dufour coefficient</u>
- Framework extendible to non-limiting cases once IBM coefficients are extracted (coming soon...)