Experiments and Model Development for Polydisperse, Gas-fluidized Systems

Jia-Wei Chew
R. Brent Rice
Christine M. Hrenya

S. Tenneti
R. Garg
Shankar Subramaniam

Vicente Garzó

NETL 2010 Workshop on Multiphase Flow Science
4 May 2010
Pittsburgh, PA
Project Scope: Work Breakdown Structure

Development, Verification, and Validation of Multiphase Models for Polydisperse Flows

Theory Development

1. Solid-Phase Continuum Theory
 - 1.1 Kinetic Theory
 - 1.2 DQMOM
 - 1.3 Incorporation of KT and DQMOM into MFIX
 - 1.4 KT extension to multiphase

2. Gas-Solid Drag
 - 2.1 LBM/DTIBM: zero-mean vel.
 - 2.2 LBM/DTIBM: non-zero rel. vel.
 - 2.3 LBM/DTIBM: freely evolving

3. Gas-Phase Turbulence
 - 3.1 Polydisperse DNS
 - 3.2 Multiphase Turb. Model

Data Collection

Simulations
 - 4.1 DEM (solids)
 - 4.2 Eulerian-DEM (gas-solid)

Experiments
 - 4.3 Low-velocity fluidized bed
 - 4.4 Cluster Probe Development
 - 4.5 High-velocity fluidized bed (PSRI)
 - 4.6.2 Liaison to NETL riser data

Model Validation

- 4.6.1 Compare with DEM data (4.1) and low-velocity bed (4.3)
- 4.6.3 Compare with high-velocity data from Eulerian-DEM (4.2), PSRI (4.5), and NETL (4.6.2)

Program Management

- 5.1 Develop Management Plan
 - Approach
 - Scope
 - Cost Estimates
 - Schedule
 - Risk
 - Constraints
 - Assumptions
 - Communication

Deliverables

- Monthly email updates
- Quarterly reports
- Annual reports
- Final report
- New theory into MFIX
Univ. Colorado Tasks for Year 3

Validation data
1) Bubbling-bed experiments (Colorado)
2) DEM simulations of simple shear (Colorado)
3) Riser experiments (Colorado & PSRI)
 Ray Cocco (PSRI) – Thursday

Theory
4) Application of polydisperse kinetic theory to clustering
 (Princeton & NETL & Colorado)
 Bill Holloway (Princeton) - Tuesday

5) Kinetic Theory Extension to Gas-Solid Flows (Colorado & Iowa State)
Univ. Colorado Tasks for Year 3

Validation data
1) Bubbling-bed experiments (Colorado)
2) DEM simulations of simple shear (Colorado)
3) Riser experiments (Colorado & PSRI)
 Ray Cocco (PSRI) – Thursday

Theory
4) Application of polydisperse kinetic theory to clustering
 (Princeton & NETL & Colorado)
 Bill Holloway (Princeton) - Tuesday
5) Kinetic Theory Extension to Gas-Solid Flows (Colorado & Iowa State)
Overview: Bubbling Bed Experiments

Objective

To characterize segregation and bubbling behavior of bubbling beds with continuous size distributions

• Do continuous PSD’s behave like binary mixtures?
• Is there a direct link between the segregation and bubbling levels?

System
Measurements: Segregation and Bubbling

Segregation: sieving of thin vertical sections
1. High velocity \((3 \ U_{cf}) \) to mix bed
2. Low velocity \((1.2 \ U_{cf}) \) for segregation
3. Shut down, vacuum sections, sieve

Bubbling: fiber optic probe
1. 7 axial x 9 radial positions
2. Bubble frequency, velocity & size
Continuous PSD’s Investigated

Width of distribution: σ/d_{ave} (%)

Material: sand
Results: Segregation

\[S_{\text{cont}} = \frac{S - 1}{S_{\text{max}} - 1} \]

\[S = \frac{< h_{\text{small}} >}{< h_{\text{large}} >} \quad S_{\text{max}} = \frac{2x_{\text{large}} + x_{\text{small}}}{x_{\text{large}}} \]

\[s_{\text{cont}} = 0 \rightarrow \text{perfect mixing} \]
\[s_{\text{cont}} = 1 \rightarrow \text{perfect segregation} \]

Gaussian: as PSD width increases \(\uparrow \), segregation \(\uparrow \)

lognormal: non-monotonic variation of segregation with PSD width

Results: Bubbling

Gaussian: as PSD width increases ↑, all bubble parameters ↑ (some not shown)
lognormal: same as Gaussian (*monotonic* variation)

Chew & Hrenya, *I&ECR* (submitted)
Reconciliation: Segregation and Bubbling Measurements

Explanation

- presence of *bubble-less layer* in some systems
- size of bubble-less layer correlates with degree of segregation

Gaussian

![Gaussian graph]

lognormal

![lognormal graph]

S_{cont} vs \(\sigma/d_{ave} \)

![S_cont vs \(\sigma/d_{ave} \) graph]
Univ. Colorado Tasks for Year 3

Validation data

1) Bubbling-bed experiments (Colorado)

2) DEM simulations of simple shear (Colorado)

3) Riser experiments (Colorado & PSRI)

 Ray Cocco (PSRI) – Thursday

Theory

4) Application of polydisperse kinetic theory to clustering

 (Princeton & NETL & Colorado)

 Bill Holloway (Princeton) - Tuesday

5) Kinetic Theory Extension to Gas-Solid Flows (Colorado & Iowa State)
Objective

Assess the impact of *polydispersity* on *clustering* in *granular* flows

- How does polydispersity affect the prominence of clusters?
- Does species segregation occur in a *transient* cluster?

System: Simple Shear Flow

Approach: MD simulations
MD Simulations

Simulation Description

- 2D, event-driven
- Inelastic, frictionless, hard disks
- Size distributions: binary, Gaussian, lognormal

Concentration mapping

Resulting Quantities: \(\nu_{clus} \), \(\nu_{dil} \), \(T_{clus} \), \(T_{dil} \), \(\nu_{L,clus} \), \(\nu_{L,dil} \), \(T_{L,clus} \), \(T_{L,dil} \)

\(\nu_{avg} = 0.2 \)

Cluster Region: \(\nu > \nu_{avg} \)
Dilute Region: \(\nu > \nu_{avg} \)
Results: Cluster Prominence

Cluster prominence greater for systems with more than one species

Tendency increases with deviation from monodisperse limit

Increased Prominence
Greater Conc. Difference

Lesser Conc. Difference
Decreased Prominence
Results: Cluster Prominence

Cluster prominence greater for systems with more than one species

Tendency increases with deviation from monodisperse limit

Results: Species Segregation

Large Particles segregate preferentially toward the clustered regions.

Tendency increases with increasing size disparity.
Results: Species Segregation

Large Particles segregate preferentially toward the clustered regions. Tendency increases with increasing size disparity.

Univ. Colorado Tasks for Year 3

Validation data
1) Bubbling-bed experiments (Colorado)
2) DEM simulations of simple shear (Colorado)
3) Riser experiments (Colorado & PSRI)
 Ray Cocco (PSRI) – Thursday

Theory
4) Application of polydisperse kinetic theory to clustering
 (Princeton & NETL & Colorado)
 Bill Holloway (Princeton) - Tuesday

5) Kinetic Theory Extension to Gas-Solid Flows (Colorado & Iowa State)
Modeling of Gas-solid Flows

Continuum (“Two-fluid”) Description

- Gas phase: Navier-Stokes + turbulence + drag force
- Solids phase: Kinetic-theory-based models + fluid-phase interactions

Current Objective: Incorporation of gas-phase (drag) effects into kinetic-theory-based models for solid phase
Physical Picture

Recall fluid-solid interaction force (drag force)

\[
F_{\text{fluid}} = F_n + F_t = \int_0^{2\pi} \int_0^{2\pi} \left(-p \bigg|_{r=R} \right) R^2 \sin \theta \, d\theta \, d\phi \\
+ \int_0^{2\pi} \int_0^{2\pi} \left(\tau_{r\theta} \bigg|_{r=R} \right) R^2 \sin \theta \, d\theta \, d\phi
\]

Mean fluid force on single particle

\[
F_{\text{fluid}} = f \left(U_g - U \right)
\]

Velocity & pressure fields (& thus fluid force) change with:

- Fluctuations in particle velocity
- Fluctuations in gas velocity

Mean vs. Instantaneous Fluid Force
Incorporation of Instantaneous Fluid Force

Alternative 1: DEM (solids) / DNS (fluid) – resolve flow field around particles

+ fluid force is “output”
- too computationally expensive
 (no-slip BC at each moving particle surface)

Alternative 2: Two-fluid model – “averaged” flow field over several particles

+ computationally feasible (single equation of motion for each phase)
- fluid effects are “input” – model is needed to subsume *instantaneous* effects

Q1: Impact on governing equations (additional terms)?
Q2: Impact on constitutive relations for solid phase \((P, q, \zeta)\)?

Current Approach

(i) use DEM/DNS simulations to develop model for instantaneous force
(ii) incorporate this force model into starting kinetic equation & derive hydrodynamic description
Basic Idea: Incorporation of fluid force into Enskog kinetic equation

\[
\frac{\partial}{\partial t} f + \nu_i \frac{\partial f}{\partial x_i} + \frac{\partial}{\partial v_i} \left(\frac{F_{\text{fluid},i}}{m} \right) + g_i \frac{\partial}{\partial v_i} f = J
\]

instantaneous fluid force on single particle

DEM/DNS technique for closure: IBM (Immersed Boundary Method) based model of \(F_{\text{fluid},i}\) as function of:

- Hydrodynamic variables: \(\phi, U_i, T, U_{gi}\)
- Physical parameters: \(m, d, \alpha, \mu_g, \rho_g\)
Use IBM simulations to find β^*, γ_{ij}^*, and B_{ij}^* as functions of

- ϕ solids volume fraction
- ρ_s/ρ_f density ratio
- $Re_m = \frac{(1 - \phi) \rho_d d |U - U_g|}{\mu_g}$ particle Re based on mean flow
- $Re_T = \frac{\rho_g d}{\mu_g} \sqrt{\frac{T}{m}}$ particle Re based on particle velocity fluctuations
Resulting Hydrodynamic Description

Balance Equations (Solid-Phase Momentum & Granular Energy)

\[
D_t U + \frac{1}{mn} \nabla P = -\frac{\beta_{IBM}}{m} \left(U - U_g \right) + g
\]

(mean drag)

\[
D_t T + \frac{2}{3n} \left(\nabla \cdot q + P_{ij} \nabla_j U_i \right) = -\zeta T \left(2 \frac{\gamma_{ij} P_{ij}^k}{3\rho} + \frac{\rho}{3n} B_{ij} B_{ij} \right)
\]

(sink due to viscous drag
source due to fluid-particle fluctuations)

Explicit Constitutive relations obtained for \(\zeta, P, \) and \(q \):

- Cooling rate \(\zeta^{(0)} = \zeta^{(0)} \left(B_{ij} \right) \)
- Cooling rate TC \(\zeta_U = \zeta_U \left(\gamma_{ij}, B_{ij} \right) \)
- Shear viscosity \(\eta = \eta \left(\gamma_{ij}, B_{ij} \right) \)
- Bulk viscosity \(\lambda = \lambda \left(B_{ij} \right) \)
- Conductivity \(\kappa = \kappa \left(\gamma_{ij}, B_{ij} \right) \)
- Dufour coefficient \(\mu = \mu \left(\gamma_{ij}, B_{ij} \right) \)
Base Case: Massive Particles ($St >> 1$) and Stokes flow ($Re_m << 1$)

Typical Ranges in CFB (Circulating Fluidized Bed) riser

- ϕ $0.01 – 0.5$
- ρ_s/ρ_f $800 – 250$ \rightarrow high St
- Re_m $0.1 – 50$ \rightarrow low – moderate Re
- Re_T $0.5 – 5$

Summary of Results

- **Negligible** gas-phase influence
 - Cooling rate ($\zeta(0)$, ζ_U)
 - Bulk viscosity (λ)
 - Conductivity (κ)
- **Non-negligible** gas-phase influence
 - Shear viscosity (η)
 - Dufour coefficient (μ)

only low $Re_m = 0.1 – 1$ considered here
Shear Viscosity

\[\frac{\eta}{\eta_{dry}} \]

- \(\text{Re}_M = 0.1 \)
- \(\text{Re}_T = 0.5 \)
- \(\phi = 0.2 \)
- \(\frac{\rho_s}{\rho_f} = 1000 \)
Dufour Coefficient

\[\frac{\mu}{\mu_{\text{dry}}} \]

\(\text{Re}_M = 0.1 \)
\(\text{Re}_T = 0.5 \)
\(\frac{\rho_s}{\rho_f} = 1000 \)

\(\alpha \)

\(\mu / \mu_{\text{dry}} \)

\(\phi = 0.2 \)

\(\rho_s / \rho_f \)
Summary

IBM-based model for instantaneous fluid acceleration has been incorporated into Enskog equation, and corresponding hydrodynamic description derived

• Additional source/sink in momentum and granular energy balances

• Modification of constitutive closures
 - *For limiting case of $Re_m << 1$ and $St > 1$*: non-negligible gas-phase influence on shear viscosity and Dufour coefficient

• Framework extendible to non-limiting cases once IBM coefficients are extracted (coming soon...)