

Simulation of Coal Gasification Using Large Eddy Simulation & Direct Quadrature Method of Moments

Charles M. Reid, Jeremy N. Thornock, Philip J. Smith

Institute for Clean and Secure Energy Chemical Engineering Department, University of Utah

Motivation

2009 U.S. Electricity Generation by Source

Motivation

• U.S. has biggest coal reserves in the world

• 28% of the world's coal!

Energy has big implications

- Environmental
- Economic
- Geopolitical
- Social & Health

Motivation

Simulation

 Simulation - has potential to join experiments and theory as a research methodology

Large-scale simulation tools can tackle difficult multi-physics problems with wide range of length and time scales

Outline/Overview

- Large eddy simulation (LES)
- Solid-Phase Models
 - Direct quadrature method of moments (DQMOM)
- Application to coal gasification
- Results & Discussion
- Conclusions

Low-pass filtering: spatial averaging

(a) **Direct Numerical Simulation (DNS)**

Large Eddy Simulation (LES) (b) Nyquist Limit

Wavenumber, k = 1/L

Reynolds-Averaged Navier Stokes (RANS) (c)

Wavenumber, k = 1/L

Scalar/Particle Energy Spectrum

$$Da = \frac{\tau_{mixing}}{\tau_{reaction}}$$

$$St = rac{ au_{particle}}{ au_{fluid}}$$

Scalar/Particle Energy Spectrum

Scalar/Particle Energy Spectrum

Damköhler Nyquist Limit:

$$\Delta \lesssim Da^{-\frac{1}{2}}Sc^{-\frac{3}{4}}\eta$$

Stokes Nyquist Limit:

$$\begin{cases} \text{if } \tau_{\text{eddy crossover}} < \tau_{\text{eddy lifetime}} \end{cases}$$

$$\Delta \lesssim \left(\frac{\tau_p \nu}{St}\right)^{1/2}$$

$$\Delta \lesssim rac{ au_p^2 g}{St}$$

Solid Phase Models

- Characterization of particles:
- Internal coordinates = particle independent variables

(Denoted ξ)

- Lagrangian models
- Eulerian models

Solid Phase Models

• Lagrangian: ODEs

$$\frac{d\mathbf{x}}{dt} = S_{\mathbf{x}} \qquad \frac{d\mathbf{\xi}}{dt} = S_{\mathbf{\xi}}$$

Eulerian: NDF transport equation

$$\frac{\partial f\left(\boldsymbol{\xi};\boldsymbol{x},t\right)}{\partial t} + \frac{\partial}{\partial x_{i}}\left(\langle u_{i}|\boldsymbol{\xi}\rangle f\left(\boldsymbol{\xi};\boldsymbol{x},t\right)\right) + \sum_{j=1}^{N_{\boldsymbol{\xi}}} \frac{\partial}{\partial \xi_{j}}\left(\langle G_{j}|\boldsymbol{\xi}\rangle f\left(\boldsymbol{\xi};\boldsymbol{x},t\right)\right) = h\left(\boldsymbol{\xi};\boldsymbol{x},t\right)$$

$$u_i = \frac{ax_i}{dt}$$

$$G_j = \frac{d\xi_j}{dt}$$

Solid Phase Models

Lagrangian: ODEs

$$\frac{d\boldsymbol{x}}{dt} = S_{\boldsymbol{x}} \qquad \frac{d\boldsymbol{\xi}}{dt} = S_{\boldsymbol{\xi}}$$

$$\frac{d\boldsymbol{\xi}}{dt} = S_{\boldsymbol{\xi}}$$

Eulerian: MDF transport equation

$$\frac{\partial f(\boldsymbol{\xi}; \boldsymbol{x}, t)}{\partial t} + \frac{\partial}{\partial x_i} \left(\langle u_i | \boldsymbol{\xi} \rangle f(\boldsymbol{\xi}; \boldsymbol{x}, t) \right) + \sum_{j=1}^{N_{\boldsymbol{\xi}}} \frac{\partial}{\partial \xi_j} \left(\langle G_j | \boldsymbol{\xi} \rangle f(\boldsymbol{\xi}; \boldsymbol{x}, t) \right) = h(\boldsymbol{\xi}; \boldsymbol{x}, t)$$

$$u_i = \frac{dx_i}{dt}$$

$$G_j = \frac{d\xi_j}{dt}$$

Moment Methods

• Moment definition: $m_k = \int_{-\infty}^{+\infty} \xi^k f(\xi) d\xi$

- Multi-fluid method
 - Solids = "fluid" phase
 - Zeroth, first moments
 - What about adding another "fluid" phase?
- Multi-environment models

Direct Quadrature Method of Moments (DQMOM)

the particles have)

OF UTAH

Direct Quadrature Method of Moments (DQMOM)

Weight/weighted abscissa transport equations

$$\frac{\partial w_{\alpha}}{\partial t} + \frac{\partial}{\partial x_{i}} \left(\langle u_{i} | \boldsymbol{\xi} \rangle w_{\alpha} \right) = a_{\alpha}$$

$$\frac{\partial s_{j,\alpha}}{\partial t} + \frac{\partial}{\partial x_{i}} \left(\langle u_{i} | \boldsymbol{\xi} \rangle s_{j,\alpha} \right) = b_{j,\alpha}$$

Source terms come from solution to linear system

$$Ax=B$$

 Linear system comes from moment transform of NDF transport equation

DQMOM Implementation

- Numerical issues solving Ax=B
 - Abscissas overlapping
 - Linearly dependent moments
 - Small weights
- Large values of $G_j = \frac{d\xi_j}{dt}$ For > 2 environments, A always ill-conditioned (condition number $\sim 10^{16}$)
- Contamination of one cell means contamination of all cells
- LU solvers, QR solvers, SVD solvers, Lapack solvers, Numerical Recipes solvers.....

Optimized Moments Approach

- Professor Rodney Fox, "Optimal Moment Sets for Multivariate DQMOM", Ind. Chem. Eng. 2009.
- Replace abscissas in moment transform terms with optimal abscissas (star script)
- Because moment transform is linear,
 linear transform matrix (M*) can be factored out
 on bot
 Ax = B

$$\mathbf{A} (\mathbf{A}^{\star})^{-1} \mathbf{A}^{\star} \mathbf{x} = \mathbf{B}$$

$$\mathbf{M}^{\star} \mathbf{A}^{\star} \mathbf{x} = \mathbf{M}^{\star} \mathbf{B}^{\star}$$

$$\mathbf{A}^{\star} \mathbf{x} = \mathbf{B}^{\star}.$$

Implementation of DQMOM in Large Eddy Simulation

Arches LES Code

- Finite volume
- 2nd Order Runge-Kutta, Strong Stability-Preserving
- Dynamic local similarity SGS model
- DOM Radiation calculation
- Object-Oriented C++

 Part of the Uintah Computationa Framework (UCF)

Uintah Framework

- Component-based
- Structured grid
- Load balancing
- Taskgraph to schedule tasks and manage resources/data
- Provides parallelization to thousands of processors

Uintah Framework

Coal Models

- Equilibrium chemistry
- Kobayashi 2-step devolatilization

```
\begin{array}{ll} \text{(raw coal)} & \xrightarrow{k_1} & Y_1 \text{ (volatiles)} + (1 - Y_1) \text{ (char)} \\ \text{(raw coal)} & \xrightarrow{k_2} & Y_2 \text{ (volatiles)} + (1 - Y_2) \text{ (char)} \\ & A_1 &= 3.7 \times 10^5 \, s^{-1} \\ & A_2 &= 1.46 \times 10^{13} \, s^{-1} \\ & E_1 &= -17,600 \, \frac{kcal}{kmol} & \text{Ubhayakar (1976)} \\ & E_2 &= -60,000 \, \frac{kcal}{kmol} \end{array}
```

- Particle heat transfer: radiation, convection
 - DOM, 2 ordinates
 - Nusselt # convection model

Coal Models

 Fast equilibrium Eulerian particle velocity model (Balachandar 2008)

$$\frac{(u_{particle} - u_{gas})}{u_k} \approx (1 - \beta) \left(\frac{\tau_{particle}}{\tau_k}\right)^{1/2}$$

$$eta = rac{3}{2
ho_p} + 1$$

 $\beta = 3$ Buoyant particles (bubbles)

$$\beta = 0$$
 Heavy particles

Soelburg et al. 1984, "Entrained Flow Gasification of Coal 1: Evaluation of Mixing and Reaction Processes"

Simulation: No walls

• Domain: 0.7m x 0.2m x 0.2m

• 350 x 100 x 100 (resolution of 2 mm)

DQMOM + LES Coal Gasification Results

Volume-Rendering: CO Concentration

UNIVERSITY
OF UTAH

Volume-Rendering: Mean Particle Size

Summary of Results

- Not focusing on how well the simulation reproduced the data
- Demonstrating a procedure for implementation of DQMOM in a massively parallel large-eddy simulation code
- What we've implemented, and why we're excited about it
- Gasification physics lots of experience, existing numerical techniques
- 1DCOG, PCGC2/PCGC3, Glacier, Banff

Where To Go From Here?

- Improving coal gasification physics
- Improving particle physics
- Increase number of internal coordinates
- Begin formal validation procedure

Professor Philip Smith, University of Utah

Professor Jeremy Thornock, University of Utah

> Professor Rodney Fox, Iowa State University

This material is based upon work supported by the Department of Energy under Award Number FC26-08NT0005015 ___

Questions?

Validation Roadmap:

Matrix Expressions

$$\mathbf{A_1} = \left(1 - \sum_{m=1}^{N_\xi} k_m\right) \prod_{n=1}^{N_\xi} \langle \xi_n \rangle_{\alpha}^{k_n}$$

$$\mathbf{A_{j+1}} = (k_j) \left(\langle \xi_j \rangle_{\alpha}^{k_j - 1} \right) \left(\prod_{n \neq j, n = 1}^{N_{\xi}} \langle \xi_n \rangle_{\alpha}^{k_n} \right)$$

$$\mathbf{S} = -\sum_{n=1}^{N_{\xi}} \left[\sum_{\alpha=1}^{N} w_{\alpha} \left(-k_{n} \langle \xi_{n} \rangle_{\alpha}^{k_{n}-1} \right) \left(\prod_{m \neq n, m=1}^{N_{\xi}} \langle \xi_{m} \rangle_{\alpha}^{k_{m}} \right) \left(G_{n} \left(\langle \xi_{n} \rangle_{\alpha} \right) \right) \right]$$

Moment Definitions

$$m_k \approx \frac{\displaystyle\sum_{\alpha=1}^N w_\alpha \left\langle \xi \right\rangle_\alpha^k}{\displaystyle\sum_{\alpha=1}^N w_\alpha}$$

$$m_{\boldsymbol{k}} \bowtie \frac{\sum_{\alpha=1}^{N} \left\{ w_{\alpha} \left(\prod_{j=1}^{N_{\xi}} \left\langle \xi_{j} \right\rangle_{\alpha}^{k_{j}} \right) \right\}}{\sum_{\alpha=1}^{N} w_{\alpha}}$$

