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Oxy-Fuel Combustion

• One of the more promising options for carbon capture and 
sequestration (CCS) when using coal for power production:

• 30 MW demonstration project operational in 
Germany; others planned/under construction 
in Australia, U.S., Spain, Scotland

• Integration of membrane oxygen production 
and reduction of flue gas recycle promise 
efficiency improvements

Air
Separation

Unit
air O2 Oxy-Fuel Boiler 90-95% CO2

CO2

fuel

recycle

• can be retrofitted to 
existing boilers

• modest modification of 
existing technology

• concurrent emissions 
reductions

Schwarze Pumpe pilot plant
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Oxy-Fuel Combustion:  What’s Different?

• Elimination of nitrogen diluent and its partial replacement with 
recycled CO2 results in
 lower gas velocity
more concentrated product gases in the boiler
 significant differences in gas transport properties
 radiantly active gas medium (IR absorption and emission)

• Improved control over flame temperature, flame stabilization, 
and carbon burnout, by controlling O2 level in different flow 
streams
 primary, secondary and tertiary air streams replaced with different 

mixtures of O2/recycled flue gas
 concentrated O2 lances can be used to promote flame stabilization
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Motivation for Bench-Scale Studies
of Oxy-Fuel Combustion

• Better control of important variables:
temperature
velocity
local gas mixture ( [O2], [CO2], [H2O] )
particle size
particle loading
coal vs. char
residence time
etc.

– allowing clear identification of governing phenomena

• Ability to apply advanced diagnostics

• Ability to quantify rate parameters for use in CFD models



Sandia National Laboratories

Experimental Setup: Combustion-
Driven Optical Entrained Flow Reactor

• 1 atm
• compact, diffusion-

flamelet burner
• coal or char particles 

introduced along 
centerline

• quartz chimney
• coded-aperture, 2-

color pyrometry 
diagnostic for char 
size, T, and velocity

• laser-triggered 
CCD/ICCD for particle 
imaging
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Particle-Sizing Pyrometry in the 
Laminar Entrained Flow Reactor

Particle image

trigger slit

wide slit

narrow slit

schematic of coded aperture
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Previous Oxy-Combustion Studies in 
SNL LEFR

• Ignition of isolated particles 
– Pittsburgh hvb coal and Black Thunder subbit coal (75-106 µm) 
– 12 – 36% O2 in N2 and in CO2 at 1250 K and 1700 K 
– measured time to ignition and duration of devolatilisation
– soot and char particle temperatures measured

• Combustion of isolated coal char particles
– full spectrum of coals, ranging from Beulah lignite 

through Black Thunder subbit coal to Pittsburgh hvb 
coal and anthracite

– 75-106 µm particles burning in 12 – 36% O2 in N2 and in CO2
at 1250 K and 1700 K 

– measured char particle temperatures and sizes

Thermal image of soot 
layer surrounding 

devolatilising 
Pittsburgh coal 

particle



Sandia National Laboratories

Conclusions from Study of Isolated 
Particle Ignition

• ignition time and devolatilisation rate are 
sensitive to local oxygen concentration

• CO2 retards particle ignition (slightly) and 
decreases devolatilisation rate (slightly)

• results consistent with theories of adiabatic 
thermal explosion and droplet combustion 

(CO2 cv and Dfuel effects)

Measured Pittsburgh coal 
particle ignition times (top) and 
duration of devolatilisation (btm)
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Conclusions from Studies of Isolated 
Char Particle Combustion

• CO2 reduces char particle combustion temperature, in amount 
consistent with reduction in O2 diffusion through boundary layer

• apparent single-film char kinetic 
rates unaffected by CO2

Arrhenius plot of measured 
Pittsburgh coal char particle 

surface specific burning rates in 
N2 and CO2 atmospheres
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Current Oxy-Combustion Studies at SNL

• Ignition of high concentration of pc particles

• Evaluation of influence of boundary layer chemistry and CO2
char gasification reaction on pc char combustion



Sandia National Laboratories

Motivation for Coal Stream Ignition Study

• Several studies have shown poorer ignition quality in oxy-fuel 
flames (depending on O2 level, type of coal, type of burner, etc.)

• Gas stream momentum differences and inherent ignitability 
differences (relative to air-fired) complicate understanding of 
flame-holding in oxy-fuel combustion

• Very limited data available (even for conventional conditions) 
on coal stream ignition in laminar flow, 
for development/validation of CFD models

– Ruiz, Annamalai, and Dahdah, HTD 1990
– hv bit coal (Pee Wee), 53-75 µm
– 9 vol-% O2

– ignition point via thermal image on 
camera
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Influence of Particle Loading on 
Ignition of Pulverized Coal Particles

• Limited experimental and modeling studies of 
effect of particle loading on pc ignition

• Characterize particle loading with Group number

G ~ np *dp *rcloud

• Competing effects as particle loading increases
– presence of merged volatiles clouds promotes 

mixing of volatiles with hot ambient (decreasing 
ignition delay)

– at high particle loading, sheltered inner region of 
particles absorbs heat without yielding 
substantial volatiles (increasing ignition delay)

– minimum in ignition delay as function of Group 
number

radiation

convection

devolatilization

hot oxidant cool, fuel-
laden gas
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Coal Ignition Study
• Enabled by installation of new coal particle feeder that produces 

steady coal flow rates up to 4 g/min through small diameter steel 
tubing

– design is modified version of concept 
developed in Prof. Sarofim’s lab at MIT

–feed rate determined by rate of 
displacement of coal-containing test tube

– similar feeders in use at Univ. of Utah 
and U.S. EPA

Coal feed 
calibration plot

Photograph of pulverized 
coal feeder
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Gas Temperature Profile
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Optical Setup
• Collect 

time-lapse visible light emission
2-color pyrometry of individual particles
CH* emission
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Photographs of Coal Flow Ignition
12 vol-% O2 in N2 bulk gas

flow

burner 
surface

Pittsburgh coal Black Thunder coal
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feedrate (x 0.06 g/min)

1    2    3    4    5    6    8   10

feedrate (x 0.06 g/min)
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Photographs of Coal Flow Ignition
Black Thunder coal, N2 bulk gas

flow

burner 
surface

12 vol-% O2

1    2    3    4    5    6    8   10

feedrate (x 0.06 g/min)

1    2    3    4    5    6    8   10

feedrate (x 0.06 g/min)

20 vol-% O2
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Ignition Height Profiles
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Influence of Boundary Layer 
Conversion of CO during Oxy-Fuel pc 

Char Combustion

O2 N2 or CO2

CO

char

CO
CO2O2

CO2

• Analyze with SKIPPY code, written by Prof. 
Brian Haynes (Univ. Sydney) 

• SKIPPY = Surface Kinetics in Porous Particles
• GRI-MECH 3.0 gas-phase kinetics; 

CHEMKIN II surface kinetic approach
• Our simulations:

‒ simple adsorption/desorption char oxidation model

‒ typical char properties, experimental conditions  

A (g/cm2-s) E (kcal/mol-s)
C_s + O2 => CO + O_s 3.30E+15 40.0
O_s + 2C(b) => CO + C_s 1.00E+08        0.
C_s + O2 => O2_s + C(b) 9.50E+13        34.0
O2_s + 2C(b) =>C_s  + CO2 1.00E+08        0.
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SKIPPY Results: Effect of Boundary Layer 
Reactions as Function of O2

• Boundary layer conversion becomes increasingly important for 
combustion in higher O2 levels (greater boundary layer T)

• Some effect seen even for combustion in 12 vol-% O2

• Calls into question general applicability of single-film model (in 
CFD codes and in deriving char kinetic rates)
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SKIPPY Results: Particle Size Effect of 
Boundary Layer Reactions 

full chemistry (solid lines); single-film model (dashed lines)

• Assumed gas composition 
36% O2
14% H2O
50% CO2

• CO2 is produced in boundary 
layer

• Single film model 
(heterogeneous chemistry only) 
under-predicts particle 
temperatures for sizes larger 
than 60 μm

• Particles larger than 100 μm are 
burning near the diffusion limit
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SKIPPY Results: Particle Size Effect of 
Boundary Layer Reactions 

full chemistry (solid lines); single-film model (dashed lines)

• Particle reaction rate peaks for 
size range around 70-80 µm 

– Diffusion time scales for CO and 
O2

– convective, radiative heat transfer
– effect of particle temperature on 

boundary layer conversion rates

• Single-film burnout rate 
underpredicts actual rate
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Influence of CO2 Gasification Reaction 
during Oxy-Fuel Combustion

• Widely varying conjecture over possible contribution of CO2
gasification of coal char during oxy-combustion

– many: reaction rate is too small to be important
– some: CO2 gasification leads to improved burnout
– effect of this endothermic reaction on overall conversion rates is 

unclear when coupled with oxidation

• Actual kinetic rate of this reaction under combustion temperatures 
(1600-2000 K) is somewhat uncertain

• Approach:
– SKIPPY simulations, based on literature review of best avail. rates 
–experimental measurements (burnout and particle T) in LEFR in 

nearly pure CO2
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SKIPPY Simulation Results for CO2
Gasification Reaction, 12 vol-% O2
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SKIPPY Simulation Results for CO2
Gasification Reaction, 36 vol-% O2
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SKIPPY Simulation Results for CO2
Gasification Reaction, Overall Burnout Rate
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Conclusions

• In moderate temperature environment (1150 K), oxygen 
concentration and presence of CO2 both influence ignition of 
dense stream of pc particles

• Oxygen effects on ignition are stronger than CO2 effects

• SKIPPY simulations show boundary layer conversion of CO is 
significant for char particles larger than 60 µm, leading to 
uncertainty in applicability of single-film analysis

• SKIPPY simulations show CO2 gasification likely fast enough 
to decrease char combustion temperature during oxy-fuel 
combustion, increasing char conversion in low O2
environments and decreasing char conversion in high O2
environments 
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End of Presentation

Questions?
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Conceptual Model of Single-Particle 
Ignition and Devolatilization

initial heating initial devolatilization
volatile-fed diffusion flame
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