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Collaborators

Principal Investigator:
» Prof. Sankaran Sundaresan (Princeton University) - Simulation

Co-principal Investigators:
« Prof. Gabriel I. Tardos (The City College of the City University of

New York) - Experiments
 Prof. Shankar Subramaniam (lowa State University) -

Goal for Experimentation: Provide precise and detailed experimental

results in simple enough geometries to validate simulations.
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Goals

1. Take into account Industrial (DoE) needs

« Design and operate powder processes using scientific approaches

« Avoid endless scale-up and substitute by computations
2. Study industrially (DoE) relevant powders

3. Measure and Predict flow-fields, stresses and forces on objects
in flowing powders in industrially important geometries.

Problems to overcome

1. Measure appropriate powder properties that characterize flows

2. ldentify and test instrumentation to measure these
characteristics

3. Find and test numerical schemes that can bring Powder
Mechanics in line with Computational Fluid Mechanics (CFM)



The Intermediate Regime of Flow

- Coexistence of collisions & enduring contacts in Dense Flows
Characteristic of industrial processes
Power-law dependency of shear stress to shear rate: 7 oc 7}” (n<2)
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Measure Powder Characteristics in Annular Couette
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Continuous Axial-Flow Couette Device

* Rotating rough cylinder

* Powder sheared in narrow annulus

* Vertical flow superimposed on radial shearing
* Normal stresses and solid fraction recorded

» Torque measured



Couette Device with Normal Sensors

Side view with wall
normal stress sensor

Remote normal stress sensors
on inner rotating cylinder



Friction Coefficient from Experiment in Couette Device
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Modeling Couette flow with FE Methods

Finite Element Method:

» FleatFlow, collaboration with Professor S. Turek, Univ. of Dortmund, Germany

» Navier-Stokes type approach using Constitutive equation
» Use of a stabilizing parameter to avoid ill-posedness.
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Modeling Couette flow with FE Methods

sircam B len

Couette with Static “obstacle”

)

Cylindrical
obstacle

Numerical solution of the generalized Navier-Stokes equations
for a powder in the intermediate regime. Concentric Couette with
a cylindrical obstacle in the middle of the sharing gap.



Modeling Couette flow with “Order Parameter” (OP) Model

Continuous Model:
 Collaboration with Professor S. Subramaniam of lowa State University
« Combination of Rapid Granular Flow model with Quasi-Static Flow Theory
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The “fast” Shearing Jenike cell
Comparison of Experiment and Simulations

...
SR

Loaded Jenike Cell

Ring Cell Stress Sensor

* Up to 500 times the Shear Rate in the Jenike cell
* Multiple sensors at different locations



Comparison of Experiment and Simulations

DEM Model:

 Collaboration with Professor S. Sundaresan of Princeton University

Experiment

/‘)1

( Cycle #2

100

105

No Loa

110 115

120

125
Time (s)

130

135

140

145

150

Load

L

-
‘i

v
Normal Stress Sensor
?_
. Simulation S ystamm
6r 'll == y=—25mm
“
= 5 "y |‘;
7] ' [ I
L= o # r
) n
gar 1L E
E L 1 - |'-.
E l . [ L 1 '
— 3t I ' fF _ :"| 1 '
[4y) 1 - 1 ' s 1 1 ¥
E | i : . : o oo :J : : .
S . -y Sl ot i
S N R T AR T
- I T T ) I L Y L S
! i."'i_'"l " '_‘[ L !L‘:‘lﬁ"" | e i- '
ik o 3 :il w0 ;rléf v ! !“h-'ﬂ_.jhi I':!. m—ia
EERNTIRY - R T S ST I S
F B P LI U "'-"!-_‘4'!'- Y ey
N Rt T I R I TP I e L b
o 1 2 3 4 5 6 7
Time (s)




EXperiments with a flat-nettom silo

Porosity .~ . % Stress Sensors

Sensor




O (KPa)

Flat-bottom silo

Comparisen ofiexperiment and theory.

DEM Simulation:

 Collaboration with Professor S. Subramaniam of lowa State University
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Centripetal Flow in a Spheronizer

Stationary
Vertical wall

« Spheronizer: a fixed cylinder and a rapidly rotated
bottom surface

* Inertial effects become important as the centripetal
force on a grain becomes comparable to the
gravitational (hydrostatic) force

« Change in topology is observed at high rotation
rates: formation and deepening of empty volume in
the center of the rotating disc
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Solid Body Rotation to Rope-like Motion by increasing Q

3 mm Glass beads in Spheronizer, Increasing _— Q

« Q. Start of the rope-like motion-Empty hole forming in the middle

» Q= (- Shape of free surface and height of material on the outer wall do not change

* G, Ogg, aNd v {solid fraction) remain constant (Experiments)
+ Average value of azimuthal velocity (v,) and convective velocity {JVE +V3} remain constant

E. Corwir, Physical Resiew E 77, 031302 (2005)



A CFD Approach for Particulate Flows with Free Surface

e Collaboration with Dr. Mehrdad Shahnam of DoE

e AXis-symmetric problem: %9 =0
 Difficulties in computation:

 Non-zero velocities in r, z and 6 directions

* Non-linearity of inertial terms in momentum equations

* Presence of free surface: solving equations for 2 phases
e Continuity Eq.:

9 (LP)+V e (LPV) =0 v : volume fraction
ot

 General Navier Stokes Eqg.

CN - : v, dv , dv
‘+aCOt(¢)‘7/ij‘ )7/ij)+,09 Ypo="b——"=2 y, =—"2
J

D) _ _gp iy sm(¢)V(( o dr dz

Dt ‘ Vi
Y

e Conservation of momentum in azimuthal (swirl) direction:

a(,ovg)+?5(rpvrvg)+?5(I’,0Vrve)Z——[m(?/lwp) P }“__{ 1 )_( )}

r oz r< or or r



A CFD Approach for Particulate Flows with Free Surface

ANSYS|

FLUENT Capable of solving non linear inertial terms in momentum equation

- Eulerian method to solve for 2 phase flow (phase I: air, Phase Il. granular)
- Allows for the modeling of multiple separate, yet interacting phases
« Momentum and continuity equations are solved for each phase

« Select 2-D axis-symmetric option

- Insert material properties like size (3 mm) and internal angle of friction (309)

- Use constitutive equation obtained in Couette geometry (rheological
parameters a=0.44, n=0.75)

- Defining the shear-stress-shear-rate ratio obtained in Couette experiment by
writing UDF (User Defined Functions)

-Compare results of simulation to experiment:
- Height of materials and Shape of the free surface as a function of Q
 Normal stresses in radial and swirling directions

» Solid volume fraction at different positions



Ol kPa)

Preliminary Results from Experiments and Simulation

Axis of symmetry

12

160

Experiment & simulations matches:

« Mormal stresses in 8 and r directions
+ Height of matenal on the stationary wall
« Shape of free surface & size of empty hole

= Solid volume fraction on the stationary wall
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Solid Fraction Measurements using a Capacitance Probe
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Width of Shear-Band in Axially Flowing

| Couette using Solid Fraction
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Solid fraction at different distances from
rotating wall (0.6 mm crushed glass)
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Z Positlon (mm)

Width of Shear-Band in Batch Couette using

Positron Emission Particle Tracking [PEPT]
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Conclusions

» Ratio of Shear Stress to Shear rate is constant at low and
Increases at higher shear rates — experimental
correlation can be used as “constitutive equation”.

» Solid Fraction measurements showed that the bed has to
Increase its porosity for the transition to the intermediate
regime

» Simulation from, FEM, OP, DEM and FLUENT favorably

compare to results from Couette, “Fast” Jenike cell and
Spheronizer geometries.
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