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Principal Investigator:
• Prof. Sankaran Sundaresan (Princeton University) - Simulation
Co-principal Investigators:
• Prof. Gabriel I. Tardos (The City College of the City University of 
New York) - Experiments
• Prof. Shankar Subramaniam (Iowa State University) - Simulation

Goal for Experimentation: Provide precise and detailed experimental 

results in simple enough geometries to validate simulations.
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1. Take into account Industrial (DoE) needs
• Design and operate powder processes using scientific approaches

• Avoid endless scale-up and substitute by computations 

2. Study industrially (DoE) relevant powders

3. Measure and Predict flow-fields, stresses and forces on objects 
in flowing powders in industrially important geometries.

1. Measure appropriate powder properties that characterize flows

2. Identify and test instrumentation to measure these 
characteristics

3. Find and test numerical schemes that can bring Powder 
Mechanics in line with Computational Fluid Mechanics (CFM)

Goals

Problems to overcome



The Intermediate Regime of Flow
• Coexistence of collisions & enduring contacts in Dense Flows
• Characteristic of industrial processes
• Power-law dependency of shear stress to shear rate: nγτ ∝ (n < 2)

Static Regime
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Measure Powder Characteristics in Annular Couette

Continuous Axial-Flow Couette Device
• Rotating rough cylinder
• Powder sheared in narrow annulus
• Vertical flow superimposed on radial shearing
• Normal stresses and solid fraction recorded
• Torque measured
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Couette Device with Normal Sensors

Stationary Wall

Rotating Wall

Side view with wall 
normal stress sensor

Sensor

Remote normal stress sensors
on inner rotating cylinder



0.2

0.4

0.6

0.8

1

1.2

1.4

0.1 1 10 100

Experiment

Fitted Data

0.1 mm Glass

Friction Coefficient from Experiment in Couette Device

Constitutive equation
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Modeling Couette flow with FE Methods
Finite Element Method:
• FleatFlow, collaboration with Professor S. Turek, Univ. of Dortmund, Germany
• Navier-Stokes type approach using Constitutive equation
• Use of a stabilizing parameter to avoid ill-posedness.
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Crushed Glass-Experiment
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1 mm spherical and crushed glass
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Couette with Static “obstacle”

Modeling Couette flow with FE Methods

Cylindrical
obstacle

Cylindrical
obstacle

Numerical solution of the generalized Navier-Stokes equations 
for a powder in the intermediate regime. Concentric Couette with 
a cylindrical obstacle in the middle of the sharing gap. 



Modeling Couette flow with “Order Parameter” (OP) Model

Dimensionless Shear Rate
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Continuous Model:
• Collaboration with Professor S. Subramaniam of Iowa State University
• Combination of Rapid Granular Flow model with Quasi-Static Flow Theory



The “fast” Shearing Jenike cell 
Comparison of Experiment and Simulations

• Up to 500 times the Shear Rate in the Jenike cell
• Multiple sensors at different locations

Loaded Jenike Cell

Load
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DEM Model:
• Collaboration with Professor S. Sundaresan of Princeton University



Experiments with a flat-bottom silo
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Flat-bottom silo
Comparison of experiment and theory

DEM Simulation

Experiments

DEM Simulation:
• Collaboration with Professor S. Subramaniam of Iowa State University
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Centripetal Flow in a Spheronizer

• Spheronizer: a fixed cylinder and a rapidly rotated 
bottom surface

• Inertial effects become important as the centripetal 
force on a grain becomes comparable to the 
gravitational (hydrostatic) force

• Change in topology is observed at high rotation 
rates: formation and deepening of empty volume in 
the center of the rotating disc

Stationary
Vertical wall

Rotating Rough Disk

Bed of
Particles



Solid Body Rotation to Rope-like Motion by increasing Ω
3 mm Glass beads in Spheronizer, Increasing             Ω



• Axis-symmetric problem: 
• Difficulties in computation: 

• Non-zero velocities in r, z and θ directions
• Non-linearity of inertial terms in momentum equations
• Presence of free surface: solving equations for 2 phases 

• Continuity Eq.:

• General Navier Stokes Eq. 

• Conservation of momentum in azimuthal (swirl) direction:

0=∂
∂

θ

A CFD Approach for Particulate Flows with Free Surface

dr
dv

r
v

r
θθ

θγ −=
dz
dv

z
θ

θγ −=gaPP
Dt

uD
ij

n
ij

ij

ργγφ
γ

φρ
++∇+−∇= )))cot(.(()sin()(

2 


r
vv

r
v

r
Pr

rrz
vPr

zr
vvr

rr
vvr

zr
v

t
r

IIIIrr
θθθ

θθθ
ργηγηρρρ −





∂
∂

∂
∂

+





∂
∂

∂
∂

=
∂
∂

+
∂
∂

+
∂
∂ )(),(1),(1)(1)(1)( 3

2


0)()( =•∇+
∂
∂ →

V
t

υρυρ fraction  volume:υ

• Collaboration with Dr. Mehrdad Shahnam of DoE



FLUENT: Capable of solving non linear inertial terms in momentum equation

• Eulerian method to solve for 2 phase flow (phase I: air, Phase II: granular)
• Allows for the modeling of multiple separate, yet interacting phases

• Momentum and continuity equations are solved for each phase

• Select 2-D axis-symmetric option

• Insert material properties like size (3 mm) and internal angle of friction (300)

• Use constitutive equation obtained in Couette geometry (rheological 
parameters a=0.44, n=0.75)

• Defining the shear-stress-shear-rate ratio obtained in Couette experiment by 
writing UDF (User Defined Functions) 

• Compare results of simulation to experiment:
• Height of materials and Shape of the free surface as a function of Ω

• Normal stresses in radial and swirling directions

• Solid volume fraction at different positions

A CFD Approach for Particulate Flows with Free Surface



Preliminary Results from Experiments and Simulation

Simulation by
Dr. Shahnam



Solid Fraction Measurements using a Capacitance Probe

b. Outside the active zone
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Width of Shear-Band in Axially Flowing 
Couette using Solid Fraction

Schematic of shearing zone

Solid fraction at different distances from 
rotating wall (0.6 mm crushed glass)
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Width of Shear-Band in Batch Couette using 
Positron Emission Particle Tracking [PEPT]

Experiment:
• Collaboration with J.P.K. Seville 
and A. Ingram, Univ. of Birmingham, UK 

Couette with
tagged particle



Conclusions

 Ratio of Shear Stress to Shear rate is constant at low and 
increases at higher shear rates – experimental 
correlation can be used as “constitutive equation”.

 Solid Fraction measurements showed that the bed has to 
increase its porosity for the transition to the intermediate 
regime

 Simulation from, FEM, OP, DEM and FLUENT favorably 
compare to results from Couette,  “Fast” Jenike cell and 
Spheronizer geometries.
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