Rheological behavior of dense assemblies of granular materials: Experiments and Simulations

Co-Principal Investigator: Gabriel I. Tardos Research Assistant: Mehrdad Kheiripour Langroudi

DoE Workshop on Granular Matter

Pittsburgh, May 6, 2010

Collaborators

Principal Investigator:

Prof. Sankaran Sundaresan (Princeton University) - Simulation

Co-principal Investigators:

- Prof. Gabriel I. Tardos (The City College of the City University of New York) - Experiments
- Prof. Shankar Subramaniam (Iowa State University) Simulation

<u>Goal for Experimentation:</u> Provide precise and detailed experimental results in simple enough geometries to validate simulations.

Papers

- 1. M. Kheiripour Langroudi, S. Turek, A. Ouazzi and G. I. Tardos, "An investigation of frictional and collisional powder flows using a unified constitutive equation", Powder Technology, Vol. 119, August, (2009).
- 2. M. Kheripour-Langrudi, J. Sun, S. Sundaresan and G. I. Tardos, "Transmission of stresses in static and sheared granular beds: the influence of particle size, shearing rate, layer thickness and sensor size", in press, NETL Special Issue Journal (2010).

Goals

- 1. Take into account Industrial (DoE) needs
 - Design and operate powder processes using scientific approaches
 - Avoid endless scale-up and substitute by computations
- 2. Study industrially (DoE) relevant powders
- 3. Measure and Predict flow-fields, stresses and forces on objects in flowing powders in industrially important geometries.

Problems to overcome

- **1.** Measure appropriate powder properties that characterize flows
- 2. Identify and test instrumentation to measure these characteristics
- 3. Find and test numerical schemes that can bring Powder Mechanics in line with Computational Fluid Mechanics (CFM)

The Intermediate Regime of Flow

- Coexistence of <u>collisions</u> & <u>enduring</u> contacts in Dense Flows •
- Characteristic of industrial processes ٠
- Power-law dependency of shear stress to shear rate: $\tau \propto \dot{\gamma}^n$ (n < 2) ٠

Measure Powder Characteristics in Annular Couette

Continuous Axial-Flow Couette Device

- Rotating rough cylinder
- Powder sheared in narrow annulus
- Vertical flow superimposed on radial shearing
- Normal stresses and solid fraction recorded
- Torque measured

Couette Device with Normal Sensors

Side view with wall normal stress sensor

Remote normal stress sensors on inner rotating cylinder

Friction Coefficient from Experiment in Couette Device

Modeling Couette flow with FE Methods

Finite Element Method:

- FleatFlow, collaboration with Professor S. Turek, Univ. of Dortmund, Germany
- Navier-Stokes type approach using Constitutive equation
- Use of a stabilizing parameter to avoid ill-posedness.

Modeling Couette flow with FE Methods

Numerical solution of the generalized Navier-Stokes equations for a powder in the intermediate regime. Concentric Couette with a cylindrical obstacle in the middle of the sharing gap.

Modeling Couette flow with "Order Parameter" (OP) Model

Continuous Model:

- Collaboration with Professor S. Subramaniam of Iowa State University
- Combination of Rapid Granular Flow model with Quasi-Static Flow Theory

The "fast" Shearing Jenike cell Comparison of Experiment and Simulations

• Up to 500 times the Shear Rate in the Jenike cell

Multiple sensors at different locations

Comparison of Experiment and Simulations

DEM Model:

• Collaboration with Professor S. Sundaresan of Princeton University

Experiments with a flat-bottom silo

•Bottom Plate: view from above

Flat-bottom silo Comparison of experiment and theory

DEM Simulation:

Collaboration with Professor S. Subramaniam of Iowa State University

Centripetal Flow in a Spheronizer

- Spheronizer: a fixed cylinder and a rapidly rotated bottom surface
- Inertial effects become important as the centripetal force on a grain becomes comparable to the gravitational (hydrostatic) force
- Change in topology is observed at high rotation rates: formation and deepening of empty volume in the center of the rotating disc

Solid Body Rotation to Rope-like Motion by increasing Ω

3 mm Glass beads in Spheronizer, Increasing $\longrightarrow \Omega$

- Ω_0 : Start of the rope-like motion-Empty hole forming in the middle
- $\Omega > \Omega^*$: Shape of free surface and height of material on the outer wall do not change

 - Average value of azimuthal velocity (v_e) and convective velocity ($\sqrt{v_r^2 + v_z^2}$) remain constant

A CFD Approach for Particulate Flows with Free Surface

Collaboration with Dr. Mehrdad Shahnam of DoE

• Axis-symmetric problem:

$$\partial / \partial \theta = 0$$

- Difficulties in computation:
 - Non-zero velocities in r, z and θ directions
 - Non-linearity of inertial terms in momentum equations
 - Presence of free surface: solving equations for 2 phases
- Continuity Eq.:

$$\frac{\partial}{\partial t}(\upsilon\rho) + \nabla \bullet (\upsilon\rho\vec{V}) = 0 \qquad \qquad \upsilon : \text{volume fraction}$$

• General Navier Stokes Eq.

$$\frac{D(\rho u)}{Dt} = -\nabla P + \sqrt{2} \sin(\phi) \nabla .((\frac{P}{|\dot{\gamma}_{ij}|} + a \cot(\phi) |\dot{\gamma}_{ij}|^n) \dot{\gamma}_{ij}) + \rho g \qquad \dot{\gamma}_{\theta r} = \frac{v_{\theta}}{r} - \frac{dv_{\theta}}{dr} \quad \dot{\gamma}_{\theta z} = -\frac{dv_{\theta}}{dz}$$
• Conservation of momentum in azimuthal (swirl) direction:

$$\frac{\partial}{\partial t}(\rho v_{\theta}) + \frac{1}{r}\frac{\partial}{\partial z}(r\rho v_{r}v_{\theta}) + \frac{1}{r}\frac{\partial}{\partial r}(r\rho v_{r}v_{\theta}) = \frac{1}{r}\frac{\partial}{\partial z}\left[r\eta(\dot{\gamma}_{II}, P)\frac{\partial v_{\theta}}{\partial z}\right] + \frac{1}{r^{2}}\frac{\partial}{\partial r}\left[r^{3}\eta(\dot{\gamma}_{II}, P)\frac{\partial}{\partial r}(\frac{v_{\theta}}{r})\right] - \frac{\rho v_{r}v_{\theta}}{r}$$

A CFD Approach for Particulate Flows with Free Surface

NNSYS

FLUENT* Capable of solving non linear inertial terms in momentum equation

- Eulerian method to solve for 2 phase flow (phase I: air, Phase II: granular)
 - Allows for the modeling of multiple separate, yet interacting phases
 - Momentum and continuity equations are solved for each phase
- Select 2-D axis-symmetric option
- Insert material properties like size (3 mm) and internal angle of friction (30⁰)

 Use constitutive equation obtained in Couette geometry (rheological parameters a=0.44, n=0.75)

• Defining the shear-stress-shear-rate ratio obtained in Couette experiment by writing UDF (User Defined Functions)

- Compare results of simulation to experiment:
 - -Height of materials and Shape of the free surface as a function of $\boldsymbol{\Omega}$
 - Normal stresses in radial and swirling directions
 - Solid volume fraction at different positions

Preliminary Results from Experiments and Simulation

Ω= 25 rad/s

Experiment & simulations matches:

- Normal stresses in θ and r directions
- Height of material on the stationary wall
- Shape of free surface & size of empty hole
- · Solid volume fraction on the stationary wall

Solid Fraction Measurements using a Capacitance Probe

Width of Shear-Band in <u>Axially Flowing</u> <u>Couette</u> using Solid Fraction

Width of Shear-Band in <u>Batch Couette</u> using Positron Emission Particle Tracking [PEPT]

Experiment:

• Collaboration with J.P.K. Seville

and A. Ingram, Univ. of Birmingham, UK

Conclusions

- Ratio of Shear Stress to Shear rate is constant at low and increases at higher shear rates – experimental correlation can be used as "constitutive equation".
- Solid Fraction measurements showed that the bed has to increase its porosity for the transition to the intermediate regime
- Simulation from, FEM, OP, DEM and FLUENT favorably compare to results from Couette, "Fast" Jenike cell and Spheronizer geometries.