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Chemical Looping Systems

 There are Many Different Types of Chemical Looping 

Systems That are Being Developed or Proposed

 All Involve Substantial Flows of Solids Around the 

System
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Chemical Looping Systems

 Typically, the Temperatures Involved in Chemical 

Looping Systems are too High to Easily Use 

Mechanical Valves for Control

 Therefore, Nonmechanical Means are Being Employed 

to Control the Solids Flow Rates Around the Systems
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Chemical Looping Systems

 How Are the Solids Being Controlled in These 

Systems Using Nonmechanical Means?

 This Depends on the Type of Flow System Used as 

Well as the Particle Size Used in the System
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Chemical Looping Systems

 To Evaluate the Different Nonmechanical Techniques 

it is Necessary to Understand the Principles Behind 

Nonmechanical Systems – but Often There is a Lack 

of Understanding About How They Operate

 Therefore, Several Basic Principles of Nonmechanical 

Systems will be Reviewed Before Evaluating Several 

Different Flow Systems 
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 Nonmechanical Solids Flow Devices Fall 

Into Two Categories:

1. Solids Flow Control Devices (Valves)

Example:  L-Valve

2. Solids Flow-Through Devices Which 

DO NOT CONTROL Solids Flow (They 

Automatically Pass Solids Through 

Them)

Examples:  Loop Seal

Automatic “L-Valve”

Nonmechanical Solids Flow Devices



Proprietary and Confidential

7

10 20 50 100 200 500 1,000 2,000
100

200

300

500

1,000

2,000

3,000

5,000

10,000

d  , Microns

, 
K

g
/m

GELDART'S POWDER CLASSIFICATION

A

B

C

D

A: Aeratable   ( U     > U     )

B: Bubbles Above  U     ( U     = U      )

C: Cohesive

D: Spoutable

mb       mf

        mb       mf




3

p

p
g

-

Material Has a Significant Deaeration Time

Applies at Ambient Conditions

(Geldart, D. Powder Technology, 1, 285, 1973)

(FCC Catalyst)

(500-micron Sand)

(Flour, Fly Ash)

(Wheat, 2000-micron Polyethylene Pellets)

mf



Proprietary and Confidential

8

Nonmechanical Solids Flow Devices

 Nonmechanical Valves Used for Control Require 

Particle Sizes Greater Than About 100 Microns (Group 

B or D Materials)

 Nonmechanical Devices in Automatic (Non-Control) 

Operation Can be Used With Group A as Well as With 

Groups B and D 



Proprietary and Confidential

9

Nonmechanical Solids Flow Devices

 Why do Nonmechanical Valves Not Work Well With 

Group A Materials?

 This is Because Group A Materials Do Not Defluidize 

Instantaneously When Gas is Shut Off to a Fluidized 

Bed, and They Retain Their Fluidity for a Few Seconds

 Thus, When Group A Solids are Poured Into a 

Nonmechanical Valve, the Solids Retain Their Fluidity 

and Flow Through the Valve Like Water (Uncontrollably)
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NONMECHANICAL VALVES USED FOR 

SOLIDS FLOW CONTROL

 Nonmechanical Valves are Devices That Use Only 
Aeration Gas in Conjunction With Their Geometrical 
Shape to Control the Flow Rate of Solids Through 
Them

1. Have no Moving Parts (Other than the Solids)

2. Are Very Inexpensive

3. Can Feed Solids Into a Dense-Phase or Dilute-Phase 
Environment
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NONMECHANICAL VALVE OPERATION

 The Most Common Nonmechanical Valve 

Used to Control Solids Flow is the L-Valve
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The Most Common Nonmechanical Valves

L-Valve J-Valve Approximated 
J-Valve
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NONMECHANICAL VALVE OPERATION

 Solids Flow Rate Through a Nonmechanical 

Valve is Controlled By the Amount of 

Aeration Gas That is Added to It
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Solids Flow Through Nonmechanical Valves

Because Gas Drags the Solids Around the

Constricting Bend

V
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 When Aeration Gas is Added to a Nonmechanical 
Valve, Solids Do Not Begin to Flow Immediately.

There is a Certain Threshold Amount of Aeration 
Which Must Be Added Before Solids Begin to 
Flow.

 Solids Flow Through a Nonmechanical Valve 
Because of Drag Forces on the Particles 
Produced By the Aerating Gas.
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NONMECHANICAL VALVE OPERATION

 Where Should Aeration be Added to an 

L-Valve?
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AERATION TAP LOCATION

 Add Aeration to a Nonmechanical Valve as Low in the 

Standpipe as Possible, But Above the Bend

1. Will Give Maximum Standpipe Length 

2. Minimum Nonmechanical Valve DP

 Both Factors Result in Increasing the Maximum Solids 

Flow Rate Through the Valve

 If Aeration is Added at too Low a Point, However, 

(especially in an L-valve) Gas Bypassing Results and 

Solids Flow Control is Not Effective
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 Understanding the Operation of Nonmechanical

Valves Depends Primarily on Two Things:

1. The Pressure Balance in the System

2. Understanding Packed-Bed Standpipe 

Operation

Nonmechanical Solids Flow Devices
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 A Standpipe is a Length of Pipe Through Which 

Solids Flow by Gravity

 The Primary Purpose of a Standpipe is to Transfer 

Solids From a Low Pressure Region to a Higher 

Pressure Region

Standpipes
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 Solids Can Be Transferred From Low to High Pressure in a 
Standpipe if Gas Flows Upward Relative To The Solids 
Thus Generating The Required Sealing DP

Relative Velocity  = Vr = Vs - Vg

where: Vs & Vg are the Interstitial solids and gas velocities, respectively 

Ws & Wg are the mass flows of solids and gas, respectively 

p and g are the particle and gas densities, respectively 

e is the solids voidage, and A is the pipe area

 Gas Flowing Upward Relative To The Solids Causes A 
Frictional DP To Be Generated
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 The Relationship Between DP/L And Vr is Determined 

By the Fluidization Curve

 This Curve is Usually Generated In A Fluidization 

Column, But It Also Applies In Standpipes

Standpipes
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OVERFLOW UNDERFLOW

Underflow and Overflow Standpipes
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 Many Standpipes are Fluidized Overflow Standpipes

 Operation of These Standpipes is Easy to Understand, 

and Non-Control Nonmechanical Devices (Loop Seals, 

Seal Pots, etc.) Operate with This Type of Standpipe 

Above Them

Standpipes
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 However, Nonmechanical Valves (Used to Control  the 

Solids Flow Rate) MUST Operate With a Packed Bed 

Underflow Standpipe Above Them

 How Does This Type of Standpipe Operate?

Standpipes
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 Gas Can Flow Either Upward or Downward (Relative 

to the Pipe Wall) in the Packed Flow Standpipe Above 

the L-Valve

 The Direction of This Flow Depends on Particle Size 

and the DP/L in the Standpipe Above the Valve

Nonmechanical Valves for

Solids Flow Control
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 Nonmechanical Valve Operation Also Depends on the 

Pressure Balance Around the System

 Not Designing the Pressure Balance Correctly can 

Limit Nonmechanical Valve Operation by Affecting the 

Solids Flow Rate

Nonmechanical Valves for

Solids Flow Control
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 There is a Maximum DP/L That the Packed-Bed 

Standpipe Can Develop -- (DP/L)mf

 If Increase Solids Flow Rate, L-Valve ΔP 

Increases and Standpipe ΔP Increases Until 

DP/L Reaches (DP/L)mf
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 A Short Standpipe Will Reach Its Maximum DP/L At a 

Lower Solids Flow Rate Than a Longer Standpipe

 Therefore, the Maximum Solids Flow Rate Through an 

L-Valve Depends on the Length of the Standpipe 

Above it
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After is Reached, More

Aeration Produces Bubbles in the

Standpipe, Which Hinder Solids Flow
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 Pressure Balance is Critical in Designing a 

System Containing a Nonmechanical Valve:

1. If the Pressure Balance is Not Correct, the 

Valve Will Not Operate Correctly

2. Example on Next Slide Shows Actual Case of 

Someone Designing an L-Valve That Could 

Have, But Did Not Work

Pressure Balance is Critical



Proprietary and Confidential

40

DPfb + DPsp = DPL-valve + DPriser

If DPfb < DPL-valve + DPriser

Then Relative Velocity as in 1

Occurs

If DPfb > DPL-valve + DPriser

Then Relative Velocity as in 2

Occurs
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The L-Valve Can be Designed to Prevent

System Gas from Exiting the Reactor

V Vg s
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It is also Possible to Prevent Aeration Gas

from Entering the Reactor

V Vg s
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NON-CONTROL (AUTOMATIC) 

NONMECHANICAL SOLIDS FLOW 

DEVICES

 Provide a Pressure Seal (In Conjunction 

With a Standpipe)

 Operate With an Overflow Fluidized Bed 

Standpipe Above Them
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AUTOMATIC NONMECHANICAL SOLIDS

FLOW DEVICES

 Do Not Control Solids Flow

 Automatically Adjust to Changes in the 

Solids Flow Rate
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 One of the Most Frequent Applications of 

Automatic Nonmechanical Devices is in CFB 

Systems Where a Loop Seal is Used to Recycle 

Collected Solids from the Cyclone Back to the CFB
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Chemical Looping Systems

 In the Following Slides, Several Different Types of 

Proposed Solids Flow Systems for Chemical Looping 

are Shown

 The Techniques Used to Control the Solids Flow Rate 

Around Each of the Systems Are Different
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CONTROL OF NONMECHANICAL 

SYSTEMS

 There are Four Ways to Control the Solids Flow Rate 

in Nonmechanical Systems:

1. Using a Nonmechanical L-Valve Below a Packed 

Bed Standpipe

2. Operating the Riser at the Choking Velocity to 

Control the Solids Flow Rate

3. Using Inventory Control to Change the Level in an 

Overflow Fluidized Bed Standpipe

4. A Combination of Methods 2 and 3
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AerationAeration
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Riser 2 GasRiser 1 Gas
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Loop 

SealFluid Bed 1

Cyclone
Cyclone

L-Valve

Control

System

Yazdanpanah et. al., CFB-10

Proc., May 2-5, 2011

dp = 320 microns

Advantage(s):

1. Good Solids Flow

Control

2. Do Not Need to

Change Inventory

for Control   

Disadvantage(s):

1. Works With B/D

Geldart Groups

Only

Conclusion:

Good, Solid Design
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Inventory

Control

System

Shimizu et. al., CFB-10

Proc., May 2-5, 2011

dp = 150 microns

DPsealpot + DPriser + DPcy = DPSP = HSP*SP

If the Solids Flow Rate Increases, the

Pressure Drop Across the Riser Will   

Increase (if the Gas Velocity in

the riser is constant).  Therefore,

the Solids Level in the Standpipe

Must Increase.

But, It Cannot Increase for a Constant

Inventory in the System.  Therefore, 

Solids MUST be added to the System 

to Allow the Increased Solids Flow 

Rate. 
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Inventory

Control

System

Shimizu et. al., CFB-10

Proc., May 2-5, 2011

dp = 150 microns

Advantage(s):

1. Can be Used With

Group A Particles

Disadvantage(s):

1. At High P Will be

Hard to Add and

Remove Solids

2. Solids Flow Rate

Change Not

“Immediate”

Conclusion:

More Complex and

Less Responsive

System
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Inventory +

Riser Control

System

Guio-Perez et. al., CFB-10

Proc., May 2-5, 2011
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dp = 161 microns

Advantage(s):

1. Can be Used With

Group A Particles

Disadvantage(s):

1. At High P Will be

Hard to Add and

Remove Solids

2. Solids Flow Rate

Change Not

“Immediate”

Conclusion:

More Complex and

Less Responsive

System
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L-Valve

Control

The Ohio State University,

L.S. Fan and Colleagues

Advantage(s):

1. Good Solids Flow

Control

2. Do Not Need to

Change Inventory

for Control   

Disadvantage(s):

1. Cannot be Used 

With Group A

Solids

Conclusion:

Good, Solid Design

Large Group B and

Group D Particles
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Riser

Control

Chalmers Univ. of Tech.,

A. Lyngfeldt, 1st Intl Conf

on Chem Looping, Lyon

March 17-19, 2010

Advantage(s):

1. Can be Used With

Group A Particles

Disadvantage(s):

1. At High P Will be

Hard to Add and

Remove Solids

2. Solids Flow Rate

Change Not

“Immediate”

Conclusion:

Less Responsive

System

Varied
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Thank You!

Questions?


