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Comparison Among Gaseous Chemical Looping, Direct Coal Chemical Looping and 
Traditional Coal to Hydrogen/Electricity Processes

Assumptions used are similar to those adopted by the USDOE baseline studies. 



Base
Plant

MEA
Plant

CDCL
Plant

Coal Feed, kg/h (lb/h)
198,391

(437,378)
278,956

(614,994)
210,118

(463,231)

CO2 Emissions, kg/MWhnet (lb/MWhnet)
856

(1,888)
121

(266)
~0

(~0)

CO2 Capture Efficiency, % 0 90 ~100

Solid Waste,a kg/MWhnet (lb/MWhnet)
35

(77)
49

(108)
39

(87)

Net Power Output, MWe 550 550 550

Net Plant HHV Heat Rate, kJ/kWh 
(Btu/kWh)

9,788
(9,277)

13,764
(13,046)

10,357
(9,817)

Net Plant HHV Efficiency, % 36.8 26.2 34.8

Energy Penalty,b % - 29 5

Aspen Plus® Modeling Results

aExcludes gypsum from wet FGD.  bRelative to Base Plant; includes energy for CO2 compression.



Topics

• Two Types of Chemical Looping Systems

• Particle Synthesis and Ionic Diffusion 
Mechanism

• Modes of Reactor Operation

• Stability of Solids Flow

• Chemical Looping System Efficiency 

• Commercialization Potential 
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Chemical Looping for Fossil Fuel Conversions

Two typical types of looping reaction systems

Oxygen Carrier (Type I)

Me/MeO, MeS/MeSO4

CO2 Carrier (Type II)

MeO/MeCO3

“1st Meeting of High Temperature Solids Looping Cycle 

Network”, Oviedo, Spain, September 15-17 (2009). 

“1st International Conference on Chemical 

Looping”, Lyon, France, March 17-19 (2010).



Macroscopic Properties of Calcium Oxide
Sintered_CaO

Hydrated_CaO

- Hydrated_CaO has smaller particles size 
- Hydration caused cracks on the surface  
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Calcium Looping Sub-pilot Unit for Hydrogen production
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CLP Process Flow Diagram
Coal-to-Hydrogen Plant

Syngas

from 

Radiant 

Cooler

Coal

Solids Purge

Limestone

Expander C
a

rb
o

n
a

to
r

Cyclone
Firetube 

Boiler

Condensing

Heat 

Exchanger

Condenser

H2 to 

PSA

PSA 

TailgasC
a

lc
in

e
rVent Gas

Air
ASU

H
y

d
ra

to
r

H2O

CO2 to 

Compression

CO2 Recycle

Cyclone

Fabric 

Filter

Condenser

CaCO3

CaO

Ca(OH)2

O2

HRSG

Lockhopper

Lockhopper

Ash

Indicates heat is 

recovered for steam cycle

650°C

23 bar

Ca/C = 1.3 mol/mol

875°C

1 bar

677°C

56 bar

464,968 kg/h
Lockhopper

Cyclone

Exhaust 

Gas



Coal-to-Hydrogen Case SMR Case

Base
Plant

CLP
Plant

Base
Plant

CLP
Plant

First-Year Capital ($/kg) $2.26 $2.58 $0.62 $0.96

Fixed O&M ($/kg) $0.43 $0.57 $0.16 $0.26

Fuel ($/kg) $0.36 $0.55 $1.22 $1.40

Electric Powera ($/kg) -$0.03 -$1.13 $0.14 -$0.70

CO2 Emissions ($/kg) $0.06 $0.00 $0.03 $0.00

Other Variable O&M ($/kg) $0.04 $0.14 $0.02 $0.05

TOTAL FIRST-YEAR COH ($/kg) $3.12 $2.72 $2.19 $1.98

TOTAL FIRST-YEAR COE ($/MWh) $105.00 $91.61 $105.00 $94.91

∆ = -13%

Economic Analysis Results
Coal-to-Hydrogen and SMR Cases

aComputed using electricity price equal to the total COE value shown in the table.

∆ = -10%
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I. Contional Process 

Exergetic Efficiency 

322.9/407.7 = 79.2%

II. Chemcial Looping Process

Exergetic Efficiency

396.9/(407.7 + 12.41)=94.5%

Exergy Analysis on Hydrogen Production



14

Historical Development of Chemical Looping Technologies
for Fossil Energy Conversions

Technologies
Lane Process and 

Messerschmitt Process

Lewis and 

Gilliland Process
IGT HYGAS Process

CO2 Acceptor 

Process 

Time Early Twentieth Century 1950s 1970s 1970s

Looping Media Fe/FeO/Fe3O4 Cu2O/CuO FeO/Fe3O4 CaO/CaCO3

Reactor Design Fixed bed Fluidized bed Staged fluidized bed Fluidized bed

Lane Process

Lewis and Gilliland Process

IGT Process

CO2 Acceptor Process
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IGT Steam Iron HYGAS Process

MO=> M M=> MO

Gas Conversion (%) 65 45

Solid inlet 80% Fe3O4- 20% FeO 95% FeO- 5% Fe

Temperature (oC) 900 900

Reactor Fluid Bed Fluid Bed

– Poor solid phase conversions: Used only about 25% oxygen 

capacity of the particles.

– Low gas phase conversions:  

– Used iron ore: Low reaction rates

– Only about 40% efficient

– The process not geared towards making pure CO2

Poor Thermo



Recyclability of Commercial Fe2O3
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Performance of Composite Fe2O3
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Oxygen Carrier Selection

Primary Metal Fe Ni Cu Mn Co

Potential Supports Al2O3, TiO2, MgO, Bentonite, SiO2, etc

Cost + – – ~ –

Oxygen Capacity1(wt %) 30 21 20 253 21

Thermodynamics for 

CLC

+ ~ + + +

Kinetics/Reactivity2 – + + + –

Melting Points + ~ – + +

Strength + – ~ ~ ~

Environmental& Health ~ – – ~ –

Hydrogen Production + – – – –

1. Maximum theoretical oxygen carrying capacity; 2. Reactivity with CH4; 3. Mn3O4 is the highest oxidation state based on 
thermodynamics, although not thermodynamically favorable, Mn is assumed to be the lowest oxidation state 



Structures of Iron Oxide

NaCl Type

oxygen close-packed 

cubic pattern

iron occupy all 

octahedral interstices

inverse Spinel Type

FeO Fe3O4

octahedral interstices

1/2 occupation rate  

tetrahedral interstices

1/8 occupation rate 
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Pellet Reaction Mechanism – Ionic 

Diffusion for Unsupported Iron
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Partially oxidized Fe with support Pt mapping 

Pt Epoxy Resin PtPellet bulk phase

Pellet Reaction Mechanism – Ionic 

Diffusion for Supported Iron



Role of Support – Oxidation of Fe and Fe/TiO2
Simulation

Energy barrier for O2- can be reduced after support addition

Oxygen anion transfer in Wüstite and Ilemnite



Modes of CFB Chemical Looping Reactor Systems
Mode 1- reducer: fluidized bed or co-current  
gas-solid  (OC) flows

Mode 2 - reducer: gas-solid (OC) counter-
current dense phase/moving bed flows

Zone 2

Enhancing 
Gas

Fe

Coal/
biomass

Fe2O3CO2/H2O

Zone 1 Zone 1

Zone 2

Zone 3

Zone 4

Coal/
biomass

Thomas, T., L.-S. Fan, P. Gupta, and L. G. Velazquez-Vargas, “Combustion Looping Using 
Composite Oxygen Carriers” U.S. Patent No. 7,767,191 (2010, priority  date 2003)

Chalmers University 10-kWth CLC System

Fluidized Bed  
Reducer

Contercurrent 
Gas-Solid(OC) 

Reducer

fuel/reducing gas

air

Reducer

fuel reaction products

combustor gas

OC

OC

combustor gas

OC

Riser 
combustor

combustor gas

fuel reaction products

fuel/reducing gas

Reducer

air

OC

combustor gas

OC

OC

Riser 
combustor



Design Variation from Mode 1 to Mode 2

Original VUT 120-kWth CLC System 
(2007)

Modified VUT 120-kWth CLC System 
(2010)
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Chemical Looping Reactor Design
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Particle Type Ni Cu Fe

Type of Data

Lab 

Scale

CFB 120 

kW 

Lab 

Scale CFB 10kW Lab Scale

CFB 

300W

Moving Bed -H2

25 kW

Particle Type

NiO/ 

MgAl2O4

NiO/ 

MgAl2O4

CuO/ 

Al2O3 CuO/Al2O3

Fe2O3/ 

MgAl2O4

Fe2O3/ 

Al2O3 Composite Fe2O3

Air Flow Rate @1000 MWth and 10% Excess (mol/s) 11784 1309

Volumetric Air Flow Rate at 1 atm and 900 ºC (m3/s) 1134 126

Particle Circulation Rate @ 1000 MWth (kg/s) 4000 10000 3000 6000 8000 10000 800

Reducer Solids Inventory (tonne) 230 160 70
total

2100

500 1200
1500 Total

Oxidizer Solids Inventory (tonne) 390 80 390 n/a 350

Medium Particle Size (μm) 153 120 300 200 153 151 2000

Particle Density (g/cm3) 1.9 5 2.5 2.5 4.1 2.15 2.5

Ut (m/s) 2 0.8 2 1.2 1.1 0.6 11

Uc (m/s) 4 4.8 4.9 4.2 4.8 3.6 4

Use (m/s) 6 6.7 7.5 6.1 6.9 4.9 9.7

Typical Riser Superficial Gas Velocity (m/s) 7.00 12

Bed Area Turbulent Section (if Required) at 1 atm (m2) 231.47 25.18

Bed Area Required for Riser Section at 1 atm (m2) 162.03 10.49

Corresponding Riser Diameter (m) 14.37 3.66

Solids Flux at 1 atm (kg/m2s) 24.69 61.72 18.52 37.03 49.37 61.72 76.23

Number of Beds Needed given 8 m ID Riser 3.23 <1

Number of Beds Needed given 1.5 m ID Riser 91.73 5.94

Ug for a Single 1.5 m ID Riser at 1 atm (m/s) 642.14 71.29

Ug for a Single 8 m ID riser at 1 atm (m/s) 22.58 2.5 (Ug < Ut; N/A)

Required Pressure for a Single 1.5m ID Riser (atm) 91.73 10.00

Solids Flux for a Single 1.5 m ID Riser (kg/m2s) 2264.69 5661.71 1699 3397.03 4529.37 5661.71 452.88

Required Pressure for a Single 8 m ID Riser (atm) 3.23
Ug < Ut; N/A

Solids Flux for a Single 8 m ID Riser (kg/m2s) 79.62 199.04 59.71 119.43 159.24 199.04

4000 – 10000 kg/s or 14,000 – 36,000 ton/hour

< 3,000 ton/hour
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Single Loop High Density CFB System 
(Kirbas et al., 2007) 

Two Loop High Density CFB System (Kulah et 
al., 2008) 

Kirbas G, Kim SW, Bi X, Lim J, Grace JR. Radial Distribution of Local Concentration Weighted Particle Velocities in High Density Circulating Fluidized Beds. Paper 
presented at: The 12th International Conference on Fluidization - New Horizons in Fluidization Engineering; May 13-17, 2007; Vancouver, Canada.

Kulah G, Song X, Bi HT, Lim CJ, Grace JR. A NOVEL SYSTEM FOR MEASURING SOLIDS DISPERSION IN CIRCULATING FLUIDIZED BEDS. Paper presented at: 9th 
International Conference on Circulating Fluidized Beds; May, 13 – 16, 2008; Hamburg, Germany.

Circulating Fluidized Bed Systems



Particle Fixed Bed Tests
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Consolidation and Yield of Bulk Solids
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Stress of Bulk Solids in Vertical Reactor
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Stress Distribution in Flowing Solids
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Stress Distribution in Arched Solids
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Reactor Size Criteria for Arching

• No External Stress on Top
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Influence of Some Critical Parameters

1. Gas Flow 

Counter-Current Interstitial gas flow causes reduction of gravity, and thus needs a larger 
reactor size
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2. Particle Size

Smaller particles need 
larger reactor size

unconfined yield strength of some alumina-powders (*)

*: Kohler, T. and H. Schubert, Influence of the Particle-Size Distribution on the Flow Behavior of Fine Powders. Particle & Particle Systems Characterization, 1991. 8(2): p. 101-104 
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3. Mixing with Fine Powders

The flowability governed by flow properties of the fine 
powders as shearing takes place across the fines.

4. Layer of Fine Powders
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European Chemical Looping 
Reforming/Gasification Application - I

Reducer:
MeO + CH4 Me + CO + 2H2

Oxidizer:
Me + O2 MeO

Overall Reaction:
CH4 + 1/2O2 CO + 2H2

Juan adanez, International Journal of Hydrogen energy, 2011



European Chemical Reforming/Gasification 
Application - II

Ryden, M., and A. Lyngfelt, International Journal of Hydrogen energy, 2006
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OSU Chemical Looping Integrated with Fuel Cell Application – 3 

2H2 + O2 2H2O + Electricity

C + H2O/O2 H2 + CO2/Heat
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Organization/Location Process Size Features

HUNOSA, Spain CaCO3 – CaO (CaOling)  

looping for post combustion

CO2 capture

2 MWth CO2 is from the flue gas 

generated from 50 MWe coal 

power plant .

Technical University of 

Darmstadt, Germany

CaCO3 – CaO (LISA) 

looping for post combustion

CO2 capture

1 MWth Capture plant is an extension to 

a 1052 MWe hard coal-fired 

power plant; carbonator and 

calciner both are CFBs.

Technical University of 

Darmstadt, Germany

ECLAIR – ilmenite

Redox  with coal for looping 

combustion application

1 MWth Solid fuel conversion uses a 

fluidized bed  reducer operated 

in a CFB looping system

Alstom, U.S. CaCO3 – CaO looping for 

CO2 capture

/CaSO4 –CaS redox with 

coal for looping combustion 

application

3 MWth Process uses two calcium –

based  loops in a chemical 

looping system

OSU, U.S. Iron based oxygen carrier 

redox with gaseous fuels for 

H2 production in a Syngas 

Chemical Looping (SCL) 

gasification process

250 kWth High pressure SCL enables 

high purity H2 generation and 

high purity CO2 generation  

using a countercurrent moving 

bed reactor 

Upcoming large-scale demonstrations of chemical looping technology



Concluding Remarks

• Chemical Looping embodies all elements of 
particle science and technology - particle 
synthesis, flow and contact mechanics, gas-
solid reaction engineering…

• Success achieved in the operation of sub-pilot 
units reflect the likelihood of 
commercialization of this technology in the 
near future


