

Chemical Looping: Reactor Experiments, Modeling and Simulation

Justin Weber, Doug Straub, Arne Scholtissek, Tom O'Brien, Carsten Olm, Yong Liu, Arthur Konan, <u>E. David Huckaby</u>

Outline Solid Separation Overview FR Simulation Selected Results Solid Separation Particle Modeling Fuel Reactor Simulation **Particle Modeling Future Work & Experimental Facilities** 25 kW CL Reactor

Overview

Objectives

- accelerate commercial deployment of Chemical Looping Technology (if determined to be viable)
- Natural Gas and Coal
- Power (Electricity) as well as other applications

Approach

 Integrated Program of Experiments, Modeling and Simulation

Chemical Looping

Air reactor

- carrier is oxidized by air
- heat is released

Cyclone

- hot oxidized carrier separated from vitiated air
- hot vitiated air is used for power generation

Fuel reactor

- carrier oxidizes fuel
- form CO_2 and H_2O (usually $\Delta H_r < 0$)
- carrier returned to the air reactor

Chemical Looping Combustion (with *in situ* gasefication of solid fuel)

Challenges

Carrier selection

 balance carrier performance (reactivity, capacity), cost and availability

Fuel utilization

- bypass of fuel in the bed
- gas residence time
- gasification of coal is rate limiting

Solids Handling

- carrier, coal, ash separation
- circulation rate & inventory control

Heat integration

fuel reactor is endothermic

Solid separation fluid bed

Dalton, Weber, Straub, and Mei, 2011, Clearwater Coal Conference

Several Different Materials

Separation Results

Elutriation Increases with:

- decreased particle size
- decreased bed height
- increased gas flow

Simulations

- 43k cells
- Wen-Yu drag
 - Model overpredicts entrainment

Solid Separation with ECVT

Reaction Models for Metal Oxide Reduction

Differential Models & Parameter Estimation

- Homogenous
- Three Front Shrinking Core
- Implemented using python/scipy/Cantera

Reaction Model Identification Tool

- Least squares fit of reduction curves vs. analytical models of reduction
 - Homogenous, Shrinking Core (1D,2D,3D), Avrami-Erofeev
- Implemented as an Excel Workbook

Arne Scholtissek, 2011, Thesis – TU Bergakademie Freiberg
TU-Freiberg-WVU-NETL Exchange Program

Iron Reduction

- Several Iron Oxide Phases
- Multistep reduction

Pineau, Kanari, Gaballah [2007]

Homogenous Reaction Model

Random uniformly distributed reaction surfaces (?)

$$Fe_2O_3$$

$$Fe_3O_4$$

$$\frac{dc_h}{dt} = -k_h c_h,$$

$$\frac{dc_m}{dt} = u k_h c_h - k_m c_m ,$$

$$\frac{dc_w}{dt} = v k_m c_m - k_w c_w,$$

$$\frac{dc_{iron}}{dt} = w k_w c_w$$

- isothermal
- chemical reaction controlled
 - neglect film diffusion and internal diffusion
- uniform solid composition

$$k_t = A_t \exp\left(-\frac{E_t}{RT}\right) f(c_{i,gas})$$

Chowdury and Roy [2008]

3-Front Shrinking Core

- reversible, first order reactions at each front
- film diffusion
- gas diffusion (Fickian) through porous layers
- isothermal
- constant external gas composition and temperature
- quasi-steady state gas composition

3-Front Shrinking Core

- Differential Algebraic System
- Mass balance at the reaction surface
 - (Flux of Fuel to Surface Flux of Fuel from Surface) =Consumption at the Surface
- Reaction surfaces from solid mass (volume) balance
 - porosity changes in the layer to account for material density differences

Results

 Optimize rate coefficients by with experimental reduction curves

- Fit could be better need to revise model
 - Distinct reaction fronts at the particle radius scale ?

time [s]

Reaction Model Identification Tool

Fuel Reactor Simulations

- Batch Fuel Reactor
 - NiO & CH₄
 - Jung & Gamwo [2008], Shuai et al. [2010]
- Parameter Sensitivity of a Continuous Fuel Reactor
 - CuO & CO/H₂
 - CBIC Zaragoza Forero et al. [2009]
- MFIX Euler-Euler

*Carsten Olm, 2011, Thesis – TU Bergakademie Freiberg*TU-Freiberg-WVU-NETL Exchange Program

Configuration - Batch CH₄-NiO Reactor

- Bubbling Fluidized Bed Reactor
- 2 baseline simulations
 - Jung & Gamwo (no turb)
 - Shaui et al. (turb)
- 1 modified simulation
 - Increase domain height (100 cm)
 - Refine mesh (24K to 32K) cells
 - Modify gas viscosity
- 3 more
 - fine grid, upwind, lower particle diameter (80 um)

Batch Reactor – Oxygen Carrier Kinetics

- Shrinking core model (SCM)
 - Ryu et al. [2001]

$$CH_4(g) + 4 \cdot NiO(s) \rightarrow CO_2(g) + 2 \cdot H_2O(g) + 4 \cdot Ni(s) \quad (\Delta H_c^0 = +156.5 \ kJ/mol)$$

$$-r = k \cdot S_0 \cdot \varepsilon_g \cdot \frac{\rho_g \cdot w_{CH_4}}{M_{CH_4}} \quad \left[\frac{mol}{cm^3 \cdot s}\right]$$

Results - Batch CH₄-NiO Reactor

Note: Large domain w/ 120 um particles is similar to center

Continuous Syngas Reactor

Forero et al., Fuel Processing Technology 90 (2009), p. 1473

• 2.4 K active cells

- Cut-cell
- Non-uniform

18 operating conditions

- Fuel flow rate
- Fuel composition
- Circulation Rate

Reaction Model

$$H_2(g) + CuO(s) \to H_2O(g) + Cu(s)$$
 $(\Delta H_c^0 = -85.8 \ kJ/mol)$
 $CO(g) + CuO(s) \to CO_2(g) + Cu(s)$ $(\Delta H_c^0 = -126.9 \ kJ/mol)$

Assume

- reactions are additive
- Plate-like shrinking core -> homogenous model at low CuO mass fractions

$$-r_i = \varepsilon_s \cdot \frac{dC_{CuO}}{dt} = -\varepsilon_s \cdot \frac{C_{CuO,0}}{\tau_i} \quad \left[\frac{mol}{cm^3 \cdot s} \right]$$

$$k = k_0 \cdot e^{\left(-\frac{E_A}{R \cdot T_s}\right)} \quad \left[\frac{mol^{(1-n)} \cdot cm^{(3n-2)}}{s}\right] \qquad X_s = \frac{t}{\tau_i}, \quad \tau_i = \frac{\rho_{m,CuO} \cdot L}{b_i \cdot k_i \cdot C_{g,i}^n}$$

Abad et. al [2007]

Continuous Reactor – Results

Combustion Efficiency

- Simulations are less sensitive to operating conditions than the experiment
 - CO reaction rate is too fast & H2 cooperative effect
 - More analysis on decrease

Pressure Drop

- Pressure drop (solid inventory) is under-predicted
 - 9-10 resolution ?
 - 10-11 3D effects

Future Plans

- Pair experiments with simulations
 - 25kW Reactor
 - Non-reacting ("clear") & reacting
 - Solid-separation (ECVT)
 - Attrition tests
 - Single Fluid Bed Reactor
- Use TGA and Fixed Bed Experiments to develop carrier specific reaction models
- Continued validation with external data

25kW CL Reactor

Objectives

- eval. integrated CLC performance
- eval. control, solids handling, and sensor performance
- provide validation data

Status

- Procurement
- Installation Jan 2012

Design conditions

- Self-sustaining operation at ~ 25kW_{th}
 - (3 lb/hr CH₄)
- Independent control of preheat temperature for air and fuel reactors
- Back-pressure control valves provide additional pressure balance capability
- Iron & copper carriers
- Fluidized Beds and Riser

Attrition and TGA

Attrition Tests

- Evaluate statistical models to predict attrition rates
 - ASTM 5757
 - ASTM 4058
- Provide input for systems analyses and technology evaluations

TGA Lab Studies

- Review published kinetics data
- Evaluate alternative oxygen carriers
- Provide kinetic rate data for simulations of CL systems

Fluid Bed and Cold Flow

Single Fluid Bed Reactor

- Quantify reaction rates at FB conditions
- Calibrate reacting CFD simulations in single fluid bed reactor
- Provide exposed samples for attrition testing and evaluate carriers in FB environment

Cold Flow with ECVT

- Evaluate solids handling and controls for integrated system
- Non-reacting conditions
- Provide hydrodynamic benchmark data for simulations
- Provide control data for reacting unit

