# Continuum and parcel-based approaches to dense granular rheology: model development and applications

Sebastian Chialvo, Jin Sun, Stefan Radl, and Sankaran Sundaresan Princeton University



Tuesday, August 16, 2011



#### Discrete element method



- Simulate particle dynamics of homogeneous assemblies under simple shear using discrete element method (DEM).
  - Linear spring-dashpot with frictional slider.
  - 3D periodic domain without gravity
  - Lees-Edwards boundary conditions
- Extract stress and structural information by averaging.



### Flow map





- Flow curve at a critical volume fraction  $\phi_c$  ,  $pd/k = \alpha \dot{\gamma}^m$  distinguishes flow regimes: quasi-static, inertial, and intermediate.
- Quasi-static and inertial bands merge smoothly towards the critical scaling at high shear rates.

#### Effect of $\mu$ on rate dependence of pressure





#### Effect of $\mu$ on rate dependence of shear stress













$$p^* = \hat{p}/|\phi - \phi_c|^{a_1}$$
$$\dot{\gamma}_n^* = \dot{\hat{\gamma}}/|\phi - \phi_c|^{b_1}$$

$$\tau^* = \hat{\tau}/|\phi - \phi_c|^{a_2}$$
$$\dot{\gamma}_{\tau}^* = \hat{\dot{\gamma}}/|\phi - \phi_c|^{b_2}$$

Quasi-static regime data

 $a_1 = a_2 = 1$ 

• Inertial regime data

$$\Rightarrow b_1 = 1.5$$

$$b_2 = 1.4$$

## Proposed model: regime asymptotes



 Stresses in each regime asymptote can be written as a power-law functions of shear rate:

$$\frac{p_i}{|\phi - \phi_c|} = \alpha_i \left(\frac{\dot{\gamma}}{|\phi - \phi_c|^{1.5}}\right)^m$$

$$\frac{\tau_i}{|\phi - \phi_c|} = \beta_i \left(\frac{\dot{\gamma}}{|\phi - \phi_c|^{1.4}}\right)^n$$

• Quasi-static: 
$$m = n = 0$$

• Inertial: 
$$m=n=2$$

• Intermediate: 
$$m=2/3$$
  $n=5/7$ 

## Proposed model: blending



 Transitions between regimes can be captured using a blending function of the form:

$$B(y_1, y_2) = (y_1^w + y_2^w)^{1/w}$$

- w = +1 for top curve
- w = -1 for bottom curve







Blended model provides fairly good agreement with DEM data.

## Proposed model: blending



 Transitions between regimes can be captured using a blending function of the form:

$$B(y_1, y_2) = (y_1^w + y_2^w)^{1/w}$$

- w = +1 for top curve
- w = -1 for bottom curve



Blended model provides fairly good agreement with DEM data.

#### Model summary



$$p = \begin{cases} p_{QS} + p_{Int} & \text{for } \phi \ge \phi_c \\ \left(p_{Inert}^{-1} + p_{Int}^{-1}\right)^{-1} & \text{for } \phi < \phi_c \end{cases}$$
$$\tau = \begin{cases} \tau_{QS} + \tau_{Int} & \text{for } \phi \le \phi_c \\ \left(\tau_{Inert}^{-1} + \tau_{Int}^{-1}\right)^{-1} & \text{for } \phi \le \phi_c \end{cases}$$

#### Model features:

- Captures behavior in all three flow regimes and the transitions them.
- Continuous in shear rate no arbitrary cutoffs.
- Piecewise in volume fraction
- $\alpha_{Inert}, \beta_{Inert} \sim (\phi/\phi_c)$  to ensure zero stresses in dilute limit.

$$p_{QS} = \alpha_{QS} |\phi - \phi_c|$$

$$\tau_{QS} = \beta_{QS} |\phi - \phi_c|$$

$$p_{Int} = \alpha_{Int} \hat{\gamma}^{2/3}$$

$$\tau_{Int} = \beta_{Int} \hat{\gamma}^{5/7}$$

$$p_{Inert} = \frac{\alpha_{Inert} \hat{\gamma}^2}{|\phi - \phi_c|^2}$$

$$\tau_{Inert} = \frac{\beta_{Inert} \hat{\gamma}^2}{|\phi - \phi_c|^{9/5}}$$

#### Model summary



$$p = \begin{cases} p_{QS} + p_{Int} & \text{for } \phi \ge \phi_c \\ \left(p_{Inert}^{-1} + p_{Int}^{-1}\right)^{-1} & \text{for } \phi < \phi_c \end{cases}$$
$$\tau = \begin{cases} \tau_{QS} + \tau_{Int} & \text{for } \phi \le \phi_c \\ \left(\tau_{Inert}^{-1} + \tau_{Int}^{-1}\right)^{-1} & \text{for } \phi \le \phi_c \end{cases}$$

#### Model features:

- lacktriangledown  $lpha_{QS}, eta_{QS}$  depend on  $\mu$
- $\alpha_{Inert}, \beta_{Inert}$  depend on  $\mu$  via effective restitution coefficient
- lacktriangledown  $lpha_{Int}, eta_{Int}$  independent of  $\mu$

$$p_{QS} = \alpha_{QS} |\phi - \phi_c|$$

$$\tau_{QS} = \beta_{QS} |\phi - \phi_c|$$

$$p_{Int} = \alpha_{Int} \hat{\gamma}^{2/3}$$

$$\tau_{Int} = \beta_{Int} \hat{\gamma}^{5/7}$$

$$p_{Inert} = \frac{\alpha_{Inert} \hat{\gamma}^2}{|\phi - \phi_c|^2}$$

$$\tau_{Inert} = \frac{\beta_{Inert} \hat{\gamma}^2}{|\phi - \phi_c|^{9/5}}$$



- Stress model was implemented in MFIX
- Chute flow simulations were performed for comparison with existing experimental and computational data<sup>†</sup>.



<sup>†</sup> P. Jop, Y. Forterre, and O. Pouliquen, Nature 441, 727 (2006).



 Thickness of flowing and stagnant layers depends on particle stiffness k





• Slight volume fraction variations around  $\phi_c$  dictate regime of flow





- Unresolved issues:
  - Flow profile depends on grid size
  - Flow profile is sensitive to initial volume fraction profile





#### Parcel Based Methods



- Groups of particles
- Requires virtual contact forces to prevent overpacking

## MP-PIC Effective particle phase pressure (Snider1)



## **DPM Parcel collisions**(Patankar and Joseph<sup>2</sup>)



#### Questions on DEM to DPM



#### I. Quasi-static flow regime

How should the particle interaction parameters in DEM be scaled for the DPM?

#### 2. Inertial flow regime

- Is the scaling identified in quasi-static flow sufficient?
- If not, what additional model is needed?

## Quasi-Static Regime Scaling



 Dimensional analysis of a linear springdashpot model requires:<sup>3</sup>

$$\Pi_{1} = k_{n} / (R_{i} \cdot \rho_{p} \cdot v_{0}^{2})$$

$$\Pi_{2} = c_{n} / (R_{i}^{2} \cdot \rho_{p} \cdot v_{0})$$

$$= const$$

 $c_n$ ...damping coefficient  $k_n$ ...spring stiffness  $R_i$ ...radius of parcel i  $v_o$ ...char. impact velocity  $\omega$ ...rotation rate  $\Pi$ ...dimensionless parameters  $\rho_p$ ...parcel density

#### Simple shear in quasi-static regime



- Spring stiffness and damping coefficient are adjusted as stipulated by dimensional analysis.
- Stresses in the quasi-static regime  $(\Phi_p = 0.62)$  are nearly constant.





## Inertial flow regime scaling



- Spring stiffness and damping coefficient are adjusted as stipulated by dimensional analysis
- Model unresolved collisions with BGK-like relaxation<sup>4</sup>
  - Try to achieve consistency with DEM by taking parcel-to-particle diameter ratio α into account.

$$1/\tau_{\text{relax}} = 1/\tau_{\text{coll}} \quad (1-1/\alpha)$$

 $\alpha$ ...ratio of parcel and primary particle diameter  $\tau_{coll} ... collision time$   $\tau_{relax} ... relaxation time$ 

collision time from kinetic theory

factor to guarantee consistency with DEM



 Massive increase in stress in the inertial regime (Φp = 0.55). Similar observations for Tgran.<sup>5</sup>







 Massive increase in stress in the inertial regime (Φp = 0.55). Similar observations for Tgran.<sup>5</sup>



 In DPM with parcel collision tracking, gross overprediction of stresses cannot be avoided, even if we implement BGK-like damping.



#### Results



#### **Granular Jet**

Comparison of scattering pattern of particles with experiments.<sup>5</sup>



Figure: Setup used for the granular jet computations.



Figure: Particle velocities near the impact region of a granular jet.



#### Scattering half angle $\theta_{\textit{half}}$

$$\int_0^{\theta_{half}} P(\theta) d\theta = 0.5$$





#### Scattering half angle $\theta_{half}$

$$\int_0^{\theta_{half}} P(\theta) d\theta = 0.5$$



#### • Cheng's prediction:

$$\tan\left(\theta_{half}\right) = 2.1 \times d_p / d_{jet}$$



#### Scattering half angle $\theta_{\textit{half}}$





Cheng's prediction:

$$\tan \left(\theta_{half}\right) = 2.1 \times d_p / d_{jet}$$

 Unscaled system behaves like a system with larger primary particles.



#### Scattering half angle $\theta_{\textit{half}}$





Cheng's prediction:

$$\tan \left(\theta_{half}\right) = 2.1 \times d_p / d_{jet}$$

- Unscaled system behaves like a system with larger primary particles.
- Scaled system also overpredicts scattering angle.



#### Scattering half angle $\theta_{\textit{half}}$

$$\int_0^{\theta_{half}} P(\theta) d\theta = 0.5$$



Cheng's prediction:

$$\tan \left(\theta_{half}\right) = 2.1 \times d_p / d_{jet}$$

- Unscaled system behaves like a system with larger primary particles.
- Scaled system also overpredicts scattering angle.
- Improved agreement when BGK-like relaxation is employed.

### Summary



#### Continuum model

- We have formulated a continuum rheological model that spans all three regimes of flow and implemented in MFIX.
- Preliminary results on chute flow have been obtained, but a systematic parametric study remains incomplete.
- Parcel-based simulation with collisions between parcels
  - Scaling DEM parameters for DPM in quasi-static flow regime readily follows from dimensional analysis.
  - Even with the addition of BGK-like relaxation, DPM cannot be made to yield the same stress as DEM in the inertial regime.
  - Particle jet data could be captured by DPM if BGK-like relaxation is included.



• Massive increase in stress in the inertial regime ( $\Phi_p = 0.55$ ).







• Massive increase in stress in the inertial regime ( $\Phi_p = 0.55$ ).



 In DPM with parcel collision tracking, gross overprediction of stresses cannot be avoided, even if we implement BGK-like damping.





• Massive increase in stress in the inertial regime ( $\Phi_p = 0.55$ ).



In DPM with parcel collision tracking, gross overprediction of stresses cannot be avoided, even if we implement BGK-like damping.



## Work in progress



- Connect rheological behavior to changing microstructure.
- Refine the model for flows near bounding walls.
- Apply the model to
  - hopper and bin flows
  - shear bands















$$\phi = 0.5$$

$$\phi = 0.52$$

$$\phi = 0.54$$

$$\phi = 0.55$$

$$\phi = 0.56$$

$$\phi = 0.57$$

From inertial regime data:

$$\frac{\tau}{p} \sim |\phi - \phi_c|^{0.2} \sim \frac{|\phi - \phi_c|^{a_2 - 2b_2}}{|\phi - \phi_c|^{a_1 - 2b_1}}$$

$$\frac{\tau^2}{p\dot{\gamma}^2} \sim |\phi - \phi_c|^{-1.6} \sim \frac{(|\phi - \phi_c|^{a_2 - 2b_2})^2}{|\phi - \phi_c|^{a_1 - 2b_1}}$$



 $\phi = 0.5$ 

 $\phi = 0.52$ 

 $\phi = 0.54$ 

 $\phi = 0.55$ 

 $\phi = 0.56$ 

 $\phi = 0.57$ 





From inertial regime data:

$$\frac{\tau}{p} \sim |\phi - \phi_c|^{0.2} \sim \frac{|\phi - \phi_c|^{a_2 - 2b_2}}{|\phi - \phi_c|^{a_1 - 2b_1}}$$

$$\frac{\tau^2}{p\dot{\gamma}^2} \sim |\phi - \phi_c|^{-1.6} \sim \frac{(|\phi - \phi_c|^{a_2 - 2b_2})^2}{|\phi - \phi_c|^{a_1 - 2b_1}}$$



$$b_1 = 1.5$$

$$b_2 = 1.4$$





Numerically integrate equations of motion for every particle



- Numerically integrate equations of motion for every particle
- Short range  $(r_c=d)$  repulsive force based on spring-dashpot model





- Numerically integrate equations of motion for every particle
- Short range  $(r_c=d)$  repulsive force based on spring-dashpot model



#### Linear (Hookean) model:

 $\mathbf{F}_{\mathbf{n}_{ij}} = k_{\mathbf{n}} \delta_{ij} \mathbf{n}_{ij} - \gamma_{\mathbf{n}} m^* \mathbf{v}_{\mathbf{n}_{ij}}$   $\mathbf{F}_{\mathbf{t}_{ij}} = -k_{\mathbf{t}} \mathbf{u}_{\mathbf{t}_{ij}} - \gamma_{\mathbf{t}} m^* \mathbf{v}_{\mathbf{t}_{ij}}$ 





- Numerically integrate equations of motion for every particle
- Short range  $(r_c=d)$  repulsive force based on spring-dashpot model



#### Linear (Hookean) model:

$$\mathbf{F}_{\mathbf{n}_{ij}} = k_{\mathbf{n}} \delta_{ij} \mathbf{n}_{ij} - \gamma_{\mathbf{n}} m^* \mathbf{v}_{\mathbf{n}_{ij}}$$

$$\mathbf{F}_{\mathbf{t}_{ij}} = -k_{\mathbf{t}} \mathbf{u}_{\mathbf{t}_{ij}} - \gamma_{\mathbf{t}} m^* \mathbf{v}_{\mathbf{t}_{ij}}$$



$$\mathbf{F}_{ijHZ} = \sqrt{\delta_{ij}R^*}\mathbf{F}_{ijHK} R^* = \frac{R_iR_j}{R_i + R_j}$$

#### Stress and microstructure



$$m{\Theta}$$
 Stress  $m{\sigma} = rac{1}{V} \sum_{i}^{N} \left[ \sum_{j,j 
eq i} rac{1}{2} \mathbf{r}_{ij} \mathbf{F}_{ij} + m_i \mathbf{C}_i \mathbf{C}_i 
ight]$ 

#### Stress and microstructure



$$m{\Theta}$$
 Stress  $m{\sigma} = rac{1}{V} \sum_{i}^{N} \left[ \sum_{j,j 
eq i} rac{1}{2} \mathbf{r}_{ij} \mathbf{F}_{ij} + m_i \mathbf{C}_i \mathbf{C}_i 
ight]$ 

Coordination number: average number of contacting neighbors

$$Z_2 = rac{\sum_{p=1}^{N} \sum_{c=1}^{c_p \geq 2} 1}{N_2}$$
 Exclude particles with zero or one contact

#### Stress and microstructure



$$m{\Theta}$$
 Stress  $m{\sigma} = rac{1}{V} \sum_{i}^{N} \left[ \sum_{j,j 
eq i} rac{1}{2} \mathbf{r}_{ij} \mathbf{F}_{ij} + m_i \mathbf{C}_i \mathbf{C}_i 
ight]$ 

Coordination number: average number of contacting neighbors

$$Z_2 = rac{\sum_{p=1}^{N} \sum_{c=1}^{c_p \geq 2} 1}{N_2}$$
 Exclude particles with zero or one contact

Fabric tensor: average of dyadic product of unit contact normals

$$\mathsf{A} = rac{1}{N_{\mathrm{c}}} \sum_{\alpha=1}^{N_c} \mathbf{n}^{\alpha} \mathbf{n}^{\alpha} - rac{1}{3} \mathsf{I}$$
  $N_{\mathrm{c}}$ : number of contacts

 $A_{xz}$  magnitude indicates the microstructure anisotropy strength for simple shear flows; sign indicates the anisotropy direction for simple shear flows.











Regime transitions can be modeled using a simple function to "blend" the asymptotes:  $f = (f_1^m + f_2^m)^{1/m}$ , m = 1 or -1 for quasistatic and inertial to intermediate transitions, respectively.





Regime transitions can be modeled using a simple function to "blend" the asymptotes:  $f = (f_1^m + f_2^m)^{1/m}$ , m = 1 or -1 for quasistatic and inertial to intermediate transitions, respectively.





Regime transitions can be modeled using a simple function to "blend" the asymptotes:  $f = (f_1^m + f_2^m)^{1/m}$ , m = 1 or -1 for quasistatic and inertial to intermediate transitions, respectively.





- Regime transitions can be modeled using a simple function to "blend" the asymptotes:  $f = (f_1^m + f_2^m)^{1/m}$ , m = 1 or -1 for quasistatic and inertial to intermediate transitions, respectively.
- Agree reasonably well with DEM data









 Estimate the volume fractions and shear rates at boundaries between regimes using the asymptotic flow curves





- Estimate the volume fractions and shear rates at boundaries between regimes using the asymptotic flow curves
- Obtain regime map in (volume fraction)-(shear rate) space





- Estimate the volume fractions and shear rates at boundaries between regimes using the asymptotic flow curves
- Obtain regime map in (volume fraction)-(shear rate) space





- Estimate the volume fractions and shear rates at boundaries between regimes using the asymptotic flow curves
- Obtain regime map in (volume fraction)-(shear rate) space





- Estimate the volume fractions and shear rates at boundaries between regimes using the asymptotic flow curves
- Obtain regime map in (volume fraction)-(shear rate) space





- Estimate the volume fractions and shear rates at boundaries between regimes using the asymptotic flow curves
- Obtain regime map in (volume fraction)-(shear rate) space

<sup>[1]</sup> C. S. Campbell. Journal of Fluid Mechanics, 465:261–291, 2002.

### Regime maps







$$p = \begin{cases} B(p_{QS}, p_{Int}) & \text{for } \phi \ge \phi_c \\ B(p_{Inert}, p_{Int}) & \text{for } \phi < \phi_c \end{cases}$$
$$\tau = \begin{cases} B(\tau_{QS}, \tau_{Int}) & \text{for } \phi \ge \phi_c \\ B(\tau_{Inert}, \tau_{Int}) & \text{for } \phi \ge \phi_c \end{cases}$$

#### Outline



- Introduction
- Models for different flow regimes
- Bridging across flow regimes
- Summary and future work