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Discrete element method

• Simulate particle dynamics of homogeneous  assemblies 
under simple shear using discrete element method (DEM).

‣ Linear spring-dashpot with
frictional slider.

‣ 3D periodic domain 
without gravity

‣ Lees-Edwards boundary 
conditions

• Extract stress and structural
information by averaging.

2LAMMPS code. http://lammps.sandia.gov S. J. Plimpton. J Comp Phys, 117, 1-19 (1995)

http://lammps.sandia.gov
http://lammps.sandia.gov
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=
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=

φc• Flow curve at a critical volume fraction      ,              
distinguishes flow regimes: quasi-static, inertial, and intermediate.

• Quasi-static and inertial bands merge smoothly towards the 
critical scaling at high shear rates.

pd/k = αˆ̇γm

Quasi-static

Inertial

Intermediate
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Effect of    on rate dependence of pressure
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Effect of    on rate dependence of shear stressµ
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Stress scalings for frictional particles
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γ̇∗
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• Quasi-static regime data a1 = a2 = 1=⇒
b1 = 1.5
b2 = 1.4• Inertial regime data =⇒
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Proposed model:  regime asymptotes

• Stresses in each regime asymptote can be written as 
a power-law functions of shear rate:

7

pi
|φ− φc|

= αi

�
γ̇

|φ− φc|1.5

�m

τi
|φ− φc|

= βi

�
γ̇

|φ− φc|1.4

�n

• Quasi-static:

• Inertial:

• Intermediate:

m = n = 0

m = n = 2

m = 2/3

n = 5/7
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Proposed model:  blending

8

• Transitions between regimes can be captured using a blending 
function of the form:

w = −1

•                for top curve

•                for bottom curve
B(y1, y2) = (yw1 + yw2 )

1/w
w = +1

• Blended model provides fairly good agreement with DEM data.
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Proposed model:  blending
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function of the form:
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•                for top curve
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Model summary

9

p =

�
pQS + pInt for φ ≥ φc�
p−1
Inert + p−1

Int

�−1
for φ < φc

τ =

�
τQS + τInt for φ ≥ φc�
τ−1
Inert + τ−1

Int

�−1
for φ < φc

pQS = αQS |φ− φc|
τQS = βQS |φ− φc|

τInt = βInt
ˆ̇γ5/7

pInt = αInt
ˆ̇γ2/3

τInert =
βInert

ˆ̇γ2

|φ− φc|9/5

pInert =
αInert

ˆ̇γ2

|φ− φc|2‣ Captures behavior in all three flow 
regimes and the transitions them.

‣ Continuous in shear rate – no 
arbitrary cutoffs.

‣ Piecewise in volume fraction

‣                                      to ensure 
zero stresses in dilute limit.
αInert, βInert ∼ (φ/φc)

• Model features:
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|φ− φc|2‣  

‣                  depend on 

‣                        depend on    via 
effective restitution coefficient

‣                  independent of 

φc = φc(µ)

αInt, βInt µ

αInert, βInert

αQS , βQS

µ

µ

• Model features:
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Continuum model application

• Stress model was implemented in MFIX

• Chute flow simulations were performed for 
comparison with existing experimental and 
computational data✝.

10
✝ P. Jop, Y. Forterre, and O. Pouliquen, Nature 441, 727 (2006).

V/
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gd

z/d

y/d

©!2006!Nature Publishing Group!

!

directions is present and where a full three-dimensional rheology is
needed.
We therefore propose the following 3D generalization of the friction

law for a granularmaterial. The basic assumption consists in neglecting
the small variation of the volume fraction observed in the dense
regime. The granular material is then described as an incompressible
fluid with the internal stress tensor given by the following relations:

jij ¼2 Pdij þ tij and tij ¼ hðj_gj;PÞ_gij

with hðj_gj;PÞ ¼mðIÞP=j_gj and I ¼ j_gjd=ðP=rsÞ0:5
ð3Þ

where _gij ¼ ›ui=›xj þ ›uj=›xi is the strain rate tensor and j_gj¼
ð0:5_gij _gijÞ0:5 is the second invariant of _gij: In this rheology, P
represents an isotropic pressure, and hðj_gj;PÞ is an effective viscosity,
which definition is related to the friction coefficient m(I) (equation
(2)). An important property of the proposed constitutive law is that
the effective viscosity diverges to infinity when the shear rate goes to
zero. This divergence ensures that a yield criterion exists. Looking at
equation (3) in the limit of j_gj going to zero, we can show that the
material flows only if the following condition is satisfied:

jtj. msP where jtj¼ ð0:5tijtijÞ0:5 ð4Þ
The yield criterion then takes the form of a Drucker–Prager-like
criterion24. Below the threshold, the medium behaves locally as a
rigid body. It is interesting to note that within this framework, the
granular media can be viewed as a visco-plastic fluid25. The specificity
compared to classical Bingham or Herschel–Bulkley fluids is that the
effective viscosity depends both on the shear rate and on the local
pressure. This property is linked to the frictional nature of stresses in
granular media.
To test this rheology we performed experiments of granular flows

on a heap as sketched in Fig. 2. This set-up is similar to our previous
study19 except that here sidewalls are made rough by gluing one layer
of beads on them. This imposes a well-defined no-slip boundary
condition at the walls. This configuration represents a severe test for
the model, since it gathers in a single configuration several specifi-
cities of granular flows. First, when grains are released from the
hopper, a steady regime is reached with a strongly sheared layer
flowing on top of a static zone. The slope and the thickness of the
flowing layer are selected by the system. Second, owing to the rough
sidewalls used here, a significant shear exists also in the transverse
direction, the flow pattern being thus fully three-dimensional. The
experiments are carried out using glass beads 0.53mm in diameter

and the two control parameters are the width W of the channel and
the flow rate per unit of width Q. The present study focuses on the
steady and uniform regime characterized by a constant slope and a
velocity aligned along the x direction and invariant along the flow
(a tiny y component can be observed close to the wall, which remains
20 times smaller than the stream-wise velocity). We performed
systematic measurements of the free-surface inclination v, of the
free-surface-velocity profile V surf(y) using particle-imaging veloci-
metry, and we get estimates of the thickness of the flowing layer h(y)
using an erosion method19.
To compare the experimental results with the predictions of the

local rheology, we perform numerical simulations of a granular fluid
described by the constitutive law equation (3) and flowing in an
inclined U-shaped channel with a no-slip boundary condition at the
three walls. The velocity u(y,z) is assumed to be aligned with x and to
depend only on y and z. To get the 3D steady velocity profile, we solve
the incompressible Navier–Stockes equations with the internal stress
being given by equation (3) using a finite difference scheme. For the
rheological parameters m s, m2 and I0 coming into play in equation
(2), we choose the values given by the experimental data of flows on
the inclined planes18 where the same particles were used (see ref. 19
for how to compute these parameters): ms ¼ tanð20:9Þ, m2 ¼
tanð32:76Þ and I0 ¼ 0.279. This choice means that no fitting par-
ameter will exist when we compare results from the simulations to
the experimental data. A typical velocity profile obtained by the
model is shown in Fig. 3. We first observe that a static zone develops
at the base of the channel. The limit of the static zone varies across the
channel, the flowing layer being larger in the centre than close to the
walls. The second observation is that the velocity profile is truly 3D
and sheared in both y and z directions.
We then tried to quantitatively compare the velocity profiles

predicted by the simulations with the ones measured experimentally.
In the simulation we impose the inclination and compute the flow

Figure 3 | Typical 3D velocity profile predicted by the rheology (W 5 142d,
v 5 22.68, Q/d3/2g 1/2 5 15.2). For clarity only one quarter of the lines of
the 71 £ 80 computational grid is plotted.

Figure 4 | Comparison of 3D simulations (lines) and experimental results
(symbols) for different flow rates (Q* 5 Q/d3/2g 1/2). a, b, c, Free-surface
velocity profiles for channel width W ¼ 16.5d (a), W ¼ 140d (b) and
W ¼ 546d (c). d, Depths of the flowing layer across the channel for
W ¼ 140d. The experimental and computational flow rates are equal within
2.5%. The error bars represent the dispersion of the measurements for
different experiments.

LETTERS NATURE|Vol 441|8 June 2006

728
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Jop 2006
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Continuum model application

• Thickness of flowing and stagnant layers 
depends on particle stiffness k 

11
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Continuum model application

• Slight volume fraction variations around 
dictate regime of flow

12
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φc
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φ φ

φ ≈ φc
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Continuum model application

• Unresolved issues:

‣ Flow profile depends on grid size

‣ Flow profile is sensitive to initial volume fraction 
profile

13
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• Groups of particles

• Requires virtual contact forces to prevent overpacking

MP-PIC
Effective particle phase pressure

(Snider1)

 DPM
Parcel collisions

(Patankar and Joseph2)

1Snider,	
  JCP	
  170	
  (2001),	
  6014-­‐6028.	
  	
  	
  2Patankar	
  and	
  Joseph,	
  IJMF	
  27	
  (2001),	
  1659-­‐1684.

Parcel Based Methods

“
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Questions on DEM to DPM

1. Quasi-static flow regime

‣ How should the particle interaction 
parameters in DEM be scaled  for the 
DPM?

2. Inertial flow regime 

‣ Is the scaling identified in quasi-static 
flow sufficient?

‣ If not, what additional model is needed?
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Quasi-Static Regime Scaling

• Dimensional analysis of a linear spring-
dashpot model requires:3 cn…damping	
  coefficient

kn…spring	
  sEffness

Ri…radius	
  of	
  parcel	
  i

v0…char.	
  impact	
  velocity

ω…rotaEon	
  rate
Π...dimensionless	
  

parameters
ρp…parcel	
  density

	
  	
  	
  	
  	
  	
  3Bierwisch,	
  PhD	
  Thesis	
  (2009),	
  University	
  of	
  Freiburg.
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Simple shear in quasi-static regime

• Spring stiffness and damping 
coefficient are adjusted as 
stipulated by dimensional analysis.

• Stresses in the quasi-static regime 
(Φp = 0.62) are nearly constant. 

Pressure

y

z

x
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Inertial flow regime scaling

• Spring stiffness and damping coefficient are adjusted as stipulated by 
dimensional analysis

• Model unresolved collisions with BGK-like relaxation4

‣ Try to achieve consistency with DEM by taking parcel-to-particle 
diameter ratio α into account.

18

α…raEo	
  of	
  parcel	
  and	
  
primary	
  parEcle	
  diameter

τcoll…collision	
  Eme

τrelax…relaxaEon	
  Eme

collision	
  Eme
from	
  kineEc	
  theory

factor	
  to	
  guarantee	
  
consistency	
  with	
  

DEM

4O‘Rourke	
  and	
  Snider,	
  CES	
  65	
  (2010),	
  6014-­‐6028
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Pressure

Simple shear in inertial regime

• Massive increase in stress in the 
inertial regime (Φp = 0.55).  Similar 
observations for Tgran.5

y

z

x

5Benyahia	
  and	
  Galvin,	
  Ind	
  Eng	
  Chem	
  Res	
  49	
  (2010),	
  10588-­‐10605
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Pressure

Simple shear in inertial regime

• Massive increase in stress in the 
inertial regime (Φp = 0.55).  Similar 
observations for Tgran.5

y

z

x

• In DPM with parcel collision tracking, 
gross overprediction of stresses 
cannot be avoided, even if we 
implement BGK-like damping.

5Benyahia	
  and	
  Galvin,	
  Ind	
  Eng	
  Chem	
  Res	
  49	
  (2010),	
  10588-­‐10605
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Granular	
  Jet
• Comparison of sca$ering	
  pa$ern of particles with experiments.5

Results

5Cheng	
  et	
  al.,	
  PRL	
  99	
  (2007),	
  188001-­‐188004.

Rsample

yjet

y
x

particle 
reservoir
(dp, φp)

Dtar

Figure:	
  Setup	
  used	
  for	
  the	
  granular	
  jet	
  
computa=ons.

(b) original system
dprim = dp = 100 µm

(a) unscaled system 
dprim = 100 µm, dp = 630 µm

 θ 

djet Rsample 

origin 

Figure:	
  	
  Par=cle	
  veloci=es	
  near	
  the	
  impact	
  region	
  of	
  a	
  
granular	
  jet.	
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Granular Jet

Sca@ering	
  half	
  angle	
  θhalf

P(θ)...Number	
  density	
  distribuEon	
  of	
  the	
  sca[ering	
  angle	
  θ



/2221

Granular Jet

• Cheng’s prediction:

Sca@ering	
  half	
  angle	
  θhalf

P(θ)...Number	
  density	
  distribuEon	
  of	
  the	
  sca[ering	
  angle	
  θ
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Granular Jet

• Cheng’s prediction:

Sca@ering	
  half	
  angle	
  θhalf

P(θ)...Number	
  density	
  distribuEon	
  of	
  the	
  sca[ering	
  angle	
  θ

• Unscaled system behaves 
like a system with larger 
primary particles.
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Granular Jet

• Cheng’s prediction:

Sca@ering	
  half	
  angle	
  θhalf

P(θ)...Number	
  density	
  distribuEon	
  of	
  the	
  sca[ering	
  angle	
  θ

• Unscaled system behaves 
like a system with larger 
primary particles.

• Scaled system also 
overpredicts scattering angle. 
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Granular Jet

• Cheng’s prediction:

Sca@ering	
  half	
  angle	
  θhalf

P(θ)...Number	
  density	
  distribuEon	
  of	
  the	
  sca[ering	
  angle	
  θ

• Unscaled system behaves 
like a system with larger 
primary particles.

• Scaled system also 
overpredicts scattering angle. 

• Improved agreement when 
BGK-like relaxation is 
employed.
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Summary

• Continuum model 

‣ We have formulated a continuum rheological model that spans all 
three regimes of flow and implemented in MFIX. 

‣ Preliminary results on chute flow have been obtained, but a 
systematic parametric study remains incomplete.

• Parcel-based simulation with collisions between parcels

‣ Scaling DEM parameters for DPM in quasi-static flow regime 
readily follows from dimensional analysis.

‣ Even with the addition of BGK-like relaxation, DPM cannot be 
made to yield the same stress as DEM in the inertial regime. 

‣ Particle jet data could be captured by DPM if BGK-like relaxation 
is included.
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Pressure

Simple shear in inertial regime

• Massive increase in stress in the 
inertial regime (Φp = 0.55).

y

z

x
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Pressure

Simple shear in inertial regime

• Massive increase in stress in the 
inertial regime (Φp = 0.55).

y

z

x

• In DPM with parcel collision tracking, 
gross overprediction of stresses 
cannot be avoided, even if we 
implement BGK-like damping.
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Pressure

Simple shear in inertial regime

• Massive increase in stress in the 
inertial regime (Φp = 0.55).

y

z

x

• In DPM with parcel collision tracking, 
gross overprediction of stresses 
cannot be avoided, even if we 
implement BGK-like damping.
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Work in progress

• Connect rheological behavior to changing 
microstructure.

• Refine the model for flows near bounding walls.

• Apply the model to 

‣ hopper and bin flows

‣ shear bands

24
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• From inertial regime data:

τ
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slope = 0.2
slope = -1.6

Stress scalings for frictional particles

b1 = 1.5

b2 = 1.4
=⇒

• From inertial regime data:

τ

p
∼ |φ− φc|0.2 ∼ |φ− φc|a2−2b2

|φ− φc|a1−2b1

τ2

pγ̇2
∼ |φ− φc|−1.6 ∼

�
|φ− φc|a2−2b2

�2

|φ− φc|a1−2b1
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Discrete element method

26LAMMPS code. http://lammps.sandia.gov S. J. Plimpton. J Comp Phys, 117, 1-19 (1995)

http://lammps.sandia.gov
http://lammps.sandia.gov


/22
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• Numerically integrate equations of motion for every particle
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Discrete element method

• Numerically integrate equations of motion for every particle

• Short range (rc=d) repulsive force based on spring-dashpot model

26
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LAMMPS code. http://lammps.sandia.gov S. J. Plimpton. J Comp Phys, 117, 1-19 (1995)
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Discrete element method

• Numerically integrate equations of motion for every particle

• Short range (rc=d) repulsive force based on spring-dashpot model
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LAMMPS code. http://lammps.sandia.gov S. J. Plimpton. J Comp Phys, 117, 1-19 (1995)

i

j
δijnij

ri
rj

Ri

Rj
Fnij = knδijnij − γnm∗vnij

Ftij = −ktutij − γtm∗vtij

Linear (Hookean) model:

http://lammps.sandia.gov
http://lammps.sandia.gov
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• Numerically integrate equations of motion for every particle

• Short range (rc=d) repulsive force based on spring-dashpot model

26

spring

dashpot

spring

Normal
dashpot

Normal

Tangential

Tangential
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j

vi
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i

LAMMPS code. http://lammps.sandia.gov S. J. Plimpton. J Comp Phys, 117, 1-19 (1995)

i

j
δijnij

ri
rj

Ri

Rj
Fnij = knδijnij − γnm∗vnij

Ftij = −ktutij − γtm∗vtij

Linear (Hookean) model:

FijHZ =
�

δijR∗FijHK

Non-linear (Hertzian) model:
R∗ =

RiRj

Ri + Rj

http://lammps.sandia.gov
http://lammps.sandia.gov
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Stress and microstructure

27
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Exclude particles with zero or one contactZ2 =
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p=1
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Coordination number: average number of contacting neighbors
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Stress and microstructure

27

Exclude particles with zero or one contactZ2 =
�N

p=1

�cp≥2
c=1 1

N2

Coordination number: average number of contacting neighbors

A =
1

Nc

Nc�

α=1

nαnα − 1
3

I nNc: number of contacts

u = γ̇zx̂
x

z

Fabric tensor: average of dyadic product of unit contact normals

Axz magnitude indicates the microstructure anisotropy 
strength for simple shear flows; sign indicates the 
anisotropy direction for simple shear flows.

  Stress σ =
1
V

N�

i




�

j,j �=i

1
2
rijFij + miCiCi


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Bridging the regimes
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Bridging the regimes

• Regime transitions can be modeled using a simple function to 
“blend” the asymptotes:  f = (f1

m + f2
m)1/m, m = 1 or -1 for quasi-

static and inertial to intermediate transitions, respectively.
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 = 0.560
 = 0.570
 = 0.578
 = 0.584
 = 0.588
 = 0.594
 = 0.600
 = 0.610
 = 0.618

Bridging the regimes

• Regime transitions can be modeled using a simple function to 
“blend” the asymptotes:  f = (f1

m + f2
m)1/m, m = 1 or -1 for quasi-

static and inertial to intermediate transitions, respectively.

• Agree reasonably well with DEM data
28
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Flow regime map

29
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Flow regime map

• Estimate the volume fractions and shear rates at boundaries 
between regimes using the asymptotic flow curves
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• Estimate the volume fractions and shear rates at boundaries 
between regimes using the asymptotic flow curves

• Obtain regime map in (volume fraction)-(shear rate) space
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Regime maps

30

QS

Inert.

Int.φc

ˆ̇γ

φ

p =

�
B(pQS , pInt) for φ ≥ φc

B(pInert, pInt) for φ < φc

τ =

�
B(τQS , τInt) for φ ≥ φc

B(τInert, τInt) for φ < φc
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Outline

• Introduction

• Models for different flow regimes

• Bridging across flow regimes

• Summary and future work
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