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Particles (100 to 500 micron) 

can be larger than the 

Kolmogorov scale of 

turbulence

Large solid particles in a gas: 

high Stokes number O(100)

Fixed particle assemblies are 

a reasonable approximation 

(verified by simulation)

High solid volume fraction: 

not dilute

Non-zero mean slip

Regime Characterization

Significantly different from the 

well-documented dilute regime 

of small “sub-Kolmogorov size”

particles of O(1) Stokes number 

in homogeneous, isotropic 

turbulence



Flow past fixed particle assemblies

Tenneti, S. Garg, R., Subramaniam, S., “Quantification of gas-phase velocity fluctuations in 

statistically homogeneous gas-solid flow using particle-resolved direct numerical simulation”, 

(in review)



Steady State TKE

Gas-phase velocity fluctuations show significant increase with 

volume fraction: implies transport of RS will be important



Freely evolving suspensions

Freely moving particles undergoing collisions (elastic and inelastic)

Gas-phase fluctuations in freely evolving suspensions are similar in 

magnitude to that in fixed particle assemblies because of low 

collisional dissipation



Anisotropy in gas-phase fluctuations

Decomposing Reynolds 

stress into isotropic and 

deviatoric part

Velocity fluctuation 

components: parallel and 

perpendicular to mean flow

Parallel direction Perpendicular plane



Anisotropy trends: length scale analysis

Integral length scale of gas-phase 

fluctuations

Measure of inter-particle spacing: 

weighted average of neighbor 

particle distances



Multiphase Turbulence Model: Scaling Analysis

Fluid phase TKE equation (homogeneous case) 

Interphase TKE 

transfer
Dissipation

Scaling of TKE implies a scaling for dissipation: can 

verify existing models that use Kolmogorov scaling

Source

Steady state



Multiphase Turbulence Dissipation Models

Kolmogorov 

scaling

Taylor 

microscale

Dissipation is assumed to take place on a length scale 

corresponding to ldiss



Implied Length Scales

Taylor microscale scaling is appropriate for gas-solid 

flows with finite sized particles

lT: Taylor microscale

lK: Kolmogorov scale



Summary

1. Presence of finite sized particles with mean slip velocity 

generate high level of non-turbulent gas-phase velocity 

fluctuations

2. Developed a correlation for kinetic energy for monodisperse 

suspensions

3. Strong anisotropy: depends on Re & volume fraction

4. From scaling analysis it is found that Taylor microscale type 

scaling for the dissipation of TKE is appropriate for gas-solid 

flows with finite sized particles

5. Correlation and the turbulence model extend to bidisperse

suspensions in terms of SMD (not shown)
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Existence of different regimes using DEM

Even in a simple problem such a discharge from a silo, different 

regimes coexist  

3D DEM simulation of flat bottomed silo

Regime classification: Red = Inertial 

regime; Blue = Quasi-static regime

Regime map is established from DEM data 

of homogeneously sheared granular flow

shear rate: 

xv z



Challenges for continuum models 

Vidyapati and Subramaniam, S.,“Granular flow in Silo discharge: DEM simulations and model assessment”, (in prep) 

Error in stress prediction: 

Schaeffer model

Spatial extent of different 

regimes in a silo 
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None of these models captures the correct scaling of shear 

stress with shear rate in the intermediate regime 

Model assessment in intermediate regime  

 ROP-KT: ROP model coupled 

with kinetic theory of granular 

flows (KTGF)

 Losert (2000): Model 

proposed  in Losert et al., PRL, 

85(7), 2000

 Jop-KT (2006): Isotropic 

pressure computed using 

kinetic theory

 Jop-DEM (2006): Isotropic 

pressure specified using data 

from DEM simulation

 ROP-DEM: ROP model 

coupled with DEM for fluidlike

• The different constitutive 

models evaluated are, 



Granular phase transition: Order Parameter 

Different regimes in granular 

shear cell (GSC) experiment1

U

U
More fluidlike behavior

Solidlike behavior

More fluidlike behavior

0.60, 0.5p w    

Flat frictional wall

DEM Simulations2

1McCarthy et al., Powder Technology, vol. 203, 70-77 (2010)
2Vidyapati and Subramaniam, S., “Granular rheology and phase transition: DEM simulations and order-parameter 

based constitutive model”,  (preprint)

Order Parameter is indeed capable of capturing granular „phase‟ 
transition from solidlike to fluidlike behavior

OP
sZ

Z


Number of solid contacts

Total number of contacts



Aranson’s free energy density function
It was postulated1 that free energy density function has two local 

minima at       (completely solidlike) and        (completely 

fluidlike)
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1Aranson et al., Phys. Rev. E, vol. 65, 061303 (2001)
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OP dynamics from DEM simulations
OP extracted from DEM simulations using two different contact 

models 

 Hookean contact model

 Hertzian contact model 
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Hookean contact model: 

Hertzian contact model: 

( / ) 1ijf d 

( / ) /ij ijf d d 

Discovered existence of a third stable granular phase which is 
neither completely solidlike nor completely fluidlike



New formulation of free energy density function 

* *
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Quantification of third phase

Pair correlation function and 
internal structure of solidlike 

contacts (in Inset) at third stable 
granular phase 

Completely 
solidlike phase

Completely 
fluidlike phase

The third stable granular phase is 

quantified using structural 

quantity such as pair correlation 

function 



Quantification of third phase

Average coordination number is more sensitive to 
the phase change as indicated by stable OP values, 
than the fabric tensor



Stress tensor in granular media

Streaming stress Contact (virial) stress
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DEM reveals that streaming 

part of the total stress is 

negligible (<3%) in the 

intermediate and dense 

regimes

Accurate modeling of contact 

(virial) stress is critical in the 

intermediate regime

streaming stress << contact stress

Developed the Relative 

Acceleration model: a 

statistical model based on 

evolution of the pair-correlation



• The term                  can be computed using the idea of 

relative acceleration

Relative acceleration concept
( )( ) ( )( )i j i jr A 
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Representative volume  V

represents average 
number of contacts or number 

of red dots in volume V 

i

j

cN

Location of contacting neighbor 
defined by g(r) at contact 

• The conditional relative 

acceleration can be 

decomposed as 

| , | |    A r w A r A w

• In LD (Langevin 

dynamics), the term             

can be modeled in 

terms of inelasticity and 

damping

|A w



Relative acceleration model

• RA model for normal component of contact stress
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Model Inputs:

1. Average coordination number 

2. Fabric tensor

3. Pair Correlation (r<rc) or Force PDF



Preliminary model prediction using DEM data

Preliminary results confirm the correct scaling of stress-strain 

scaling in intermediate regime

• Model inputs                          directly taken from data of DEM   
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Conclusion

Particle-resolved Direct Numerical 

Simulation for gas-solid flows, and 

Discrete Element Simulations for 

granular flows, are useful approaches 

for understanding multiphase flow 

physics and for model development



Contour plot of equivalent          generating the same energy in velocity 

fluctuations as the non-turbulent fluctuations arising from the presence 

of particles in gas-solid flow

Turbulent and non-turbulent fluctuations



Convergence of kf at Rem = 

20

Squares : Dm = 10 

Triangles : Dm = 20

Diamonds : Dm = 30, 

Volume fraction: 0.3 Volume fraction: 0.4



Convergence of kf at Rem = 

20

Volume fraction: 0.3



Freely evolving suspensions

Freely moving particles with inelastic collisions

Similarity  of 

k(f) among 

fixed and 

moving 

particles

Small compared to others

Evolution equation the same as fixed beds



Reynolds stress model

Cross correlations are almost zero

Anisotropy is along mean flow direction

The normal correlations in 

perpendicular plane are similar

Reynolds stress is axi-symmetric along 

the mean flow



Gas-phase Velocity Fluctuations: Bidisperse

Strength of gas-phase velocity fluctuations depend strongly on 

only the total solid volume fraction and the Reynolds 

number based on Sauter mean diameter



Multiphase Flow Turbulence Model

Mean momentum equation: fluid phase

Drag law

Turbulence model

Existing multiphase turbulence models are extensions 

of single-phase turbulence models



Back-Up



Granular phase transition: Order parameter
• Characterizes the phase or “state” of the granular material 

OP 0 Pure fluid OP 1 Pure solid

1Volfson et al., Phys. Rev. E, vol. 68, 021301 (2003)

• Order parameter is defined by1

OP
sZ

Z


Number of solid contacts

Total number of contacts

t t nF F

* 1.1 bct t

eliminates long lasting 
sliding contacts

excludes short 
term collisions

Solidlike 

contacts1
• Solidlike stress

 stress from solidlike contacts

• Fluidlike stress
 stress from fluidlike contacts 

+ streaming stress

Total granular stress

Solidlike stress + Fluidlike stress



OP from DEM

* 510k 

0.804,  b=0.678, A=0.5547, B=6.769, C=0.6847a 

A fit for steady values of OP       

with solid volume fraction 

and friction coefficient is 

proposed based on the data 

obtained from DEM 

simulations
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Assessment of proposed hypothesis



Quantification of third phase

Co-ordination number (NCN): average number of contacts par 

particle
number of contacts for ith particle

total number of particles
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Fabric tensor    : describes the anisotropy of the contact 

distribution in granular media 
ijR

1
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Pair correlation function (g(r)): probability of finding a particle at 

a distance r away from given reference particle
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Regime map
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Regime classified based on relationship between stress-strain 

Inertial regime
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Intermediate regime

,0 2n n   

Quasi-static regime
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