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Introduction

Recent advances in Euler-Euler multiphase flow modelling

Quadrature-based moment methods (QBMM)
Solution of the Boltzmann-Enskog kinetic equation with QBMM

QBMM overcome limitations of hydrodynamic (two-fluid) models and:
Are valid for arbitrary Knudsnen numbers (Kn � 1)
Properly describe both collision dominated and collisionless flows
Predicting particle trajectory crossing
Are not affected by unphysical delta-shocks (unphysical mass accumulation)
as the two-fluid model (Desjardin et al., 2008)
Rely on a well-posed, hyperbolic, set of equations

Particle trajectory crossing: Two-fluid (left), Lagrangian and QBMM (right)
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Introduction

Recent advances in Euler-Euler multiphase flow modelling

QBMM capabilities
QMOM (Quadrature method of moments)

Solves the Boltzmann-Enskog kinetic equation
Calculates the moments of the velocity distribution function
The particle velocity is directly calculated from the moments
Some difficulty with strongly non-equilibrium flows and low restitution
coefficients

CQMOM (Conditional QMOM)
Solution of the generalized kinetic equation
Calculates

Particle velocity
Particle size distribution

Robust with arbitrary values of the restitution coefficient
Adaptive quadrature:

Balances cost and accuracy
Manages the case of zero granular temperature
Deals with equal abscissas automatically
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Introduction

Recent advances in Euler-Euler multiphase flow modelling

QBMM in the dense limit
QBMM tend to the hydrodynamic limit for Kn→ 0

The equation of state of the granular phase becomes, in such a limit,
identical to the equation of state derived from the kinetic theory of
granular flow

ps = ρsαsΘs + 2ρsα
2
s g0Θs (1 + es)

Dependency on the radial distribution function g0: numerical instabilities
in the closely packed regions

Observation
The numerical procedure to deal with the dense limit can be developed
considering the standard multi-fluid equations, and then extended to QBMM
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Introduction

Motivation

Requirements
Robust numerical procedure in the limit of closely packed particle phase

Implicit treatment of the particle pressure

Some considerations on QBMM numerics
QBMM use the flux-splitting technique to define kinetic fluxes: easy
implementation in the co-located grid arrangement

For consistency, a co-located grid should be used also in the
hydrodynamic limit to implement an hybrid QBMM for the whole range
of particle concentrations

Objectives
Develop an iterative procedure for the solution of multi-fluid equations
on co-located grids

Implement the procedure in a general-purpose code: OpenFOAM R©
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Introduction

Motivation

Why OpenFOAM?
Free and open-source software (GPL 3
license) developed and supported by
OpenCFD R©Ltd (SGI)

High level syntax through C++ object
orientation
Variety of mesh formats (hex, tet,
polyhedral)

Arbitrary geometries
Automatic hex-dominant meshing
Real life applications

Automatic parallelization

Not a black-box

A. Passalacqua, R. O. Fox (Iowa State University) Multi-fluid models in OpenFOAM NETL 2011 Multiphase Flow 8 / 55



Introduction The fundamental set of multi-fluid equations

The multi-fluid equations

Assumptions
Phases are incompressible: constant phase material density

The multi-phase system is isothermal

Fundamental set of incompressible multi-fluid models
Continuity equation

∂αi

∂t
+∇ · (αiUi) = 0

Momentum equation

∂

∂t
(αiUi) +∇ · (αiUi ⊗ Ui) =

1
ρi
∇ · τ i −

αi

ρi
∇p− γi

ρi
∇pi

+ αig +

N−1∑
j=0
j 6=i

Kij

ρi
(Uj − Ui)
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Introduction The fundamental set of multi-fluid equations

Some comment on the momentum equation

∂

∂t
(αiUi) +∇ · (αiUi ⊗ Ui) =

1
ρi
∇ · τ i −

αi

ρi
∇p− γi

ρi
∇pi

+ αig +

N−1∑
j=0
j 6=i

Kij

ρi
(Uj − Ui)

It contains the phase fraction αi in all its terms
Two pressures:

Shared pressure p
Phase pressure pi, only for dispersed phases (γi = αs,i/

∑
i αs,i)

Momentum exchange term: drag coefficient Kij
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Introduction The fundamental set of multi-fluid equations

Description of the particle phase

Kinetic theory model
Granular energy equation

3
2

[
∂

∂t
(αsρsΘs) +∇ · (αsρsUsΘs)

]
= (−psI + τ s) : ∇Us

+∇ · (κs∇Θs)− γs + Jvis + Jslip

Equation of state of the dispersed phase

ps = ρsαsΘs + 2ρsα
2
s g0Θs (1 + es)

Radial distribution function

g0 =
1

1−
(

αs
αs,max

) 1
3
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Introduction The fundamental set of multi-fluid equations

Nearly packed flows

Observation
Very dense particle flows are dominated by frictional phenomena:

The kinetic theory model is insufficient: binary collisions
Frictional models are used (for example: Syamlal, 1993), replacing the
kinetic theory closures for αs > αs,fr,min ≈ 0.61:

Particle frictional pressure

pf = 1025 (αs − αs,fr,min)
10

Frictional viscosity

Observation
This definition of the particle pressure is continuous: removes the
singularity

Other models keep a discontinuous form of the pressure: series
expansion
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Challenges in the solution of multi-fluid equations Singularity when the phase fraction tends to zero

Singularity when the phase fraction tends to zero

Problem
The phase momentum equation degenerates in an identity when αi = 0

Possible solutions proposed in the literature
Two solutions were proposed in the literature for segregated solvers:

Solve the equation in non-conservative form (Oliveira and Issa, 2003)
Time derivative and convective term are expanded to remove the phase
fraction

Solve the equation in semi-conservative form (Park et al., 2009)
Only the time derivative is expanded to remove the phase fraction

Almost no reference providing details on how to solve the momentum
equation in conservative form avoiding this problem
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Challenges in the solution of multi-fluid equations Singularity when the phase fraction tends to zero

Singularity when the phase fraction tends to zero

Observation
The non-conservative form of the momentum equation presents difficulties
when strong property transfer (Park et al., 2009) or strong particle pressure
gradients are present.

Adopted solution
Solve the momentum equation in conservative form
Define a cut-off value and stop solving the momentum equation if the
phase fraction falls below that value

Mass conservation is ensured, independently from this treatment
Momentum conservation errors are negligible if the cut-off is small (low
phase fraction)

Use appropriate numerical techniques to avoid numerical difficulties at
phase interfaces
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Challenges in the solution of multi-fluid equations Presence of strong coupling among the phases

Phase momentum coupling

Problem
The momentum exchange term can lead to numerical instabilities of the
iterative procedure, slowing down convergence or making it impossible

Proposed solutions
Use the partial elimination algorithm - PEA procedure (Spalding, 1983)

Solve the momentum equations in a coupled fashion (Karema and Lo,
1999; Vasquez and Ivanov, 2000)

Both the approaches aim at enlarging the stability region of the
numerical procedure

Adopted solution
PEA: we want/need to keep the algorithm purely iterative
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Challenges in the solution of multi-fluid equations Singularity at the particle packing limit

Packing limit enforcement

Problem
The particle packing limit is enforced by the particle pressure term, which
diverges when the phase fraction reaches the maximum value. This leads to
strong numerical difficulties.
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Proposed solutions
Recast the phase continuity
equation into an equation for the
particle pressure

Include the effect of the particle
pressure in the phase continuity
equation
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Challenges in the solution of multi-fluid equations Singularity at the particle packing limit

Equation for the particle pressure

Advantages
It is very efficient in the dense limit, since the pressure equation becomes a
simple force balance, independent from the particle pressure term

Disadvantages
It is problematic in the dilute limit, since it requires the compressibility
of the phase (∂αs/∂ps) to be finite
It requires to find the phase fraction in some way

Invert the equation of state
Solve the phase continuity equation explicitly again to find the phase
fraction
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Challenges in the solution of multi-fluid equations Singularity at the particle packing limit

Inclusion of the particle pressure in the continuity equation

Advantages
It is very efficient in moderately dense flows

It does not present difficulties in the dilute limit

Disadvantages
It might slow down the solution in the packed limit

Under-relaxation required
It requires a continuous function for the particle pressure

Discontinuous functions can be treated with a power series expansion or
similar approach in proximity of the maximum particle phase fraction

Adopted approach
Solve a phase continuity equation, modified to include the effect of the
particle pressure
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Interpolation practises
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Interpolation practises

Rhie-Chow interpolation

The Rhie-Chow interpolation in short
The Rhie and Chow (1983) interpolation is used on co-located grids to avoid
the checker-board solutions for the pressure. It consists in a correction to the
interpolated face velocity: subtract the difference between the pressure
gradient and the interpolated pressure gradient at face centroid (Ferziger and
Peric, 2002):

ui,f = ui,f −∆Vf

(
1
A

)
f

[(
δp
δxi

)
f
−
(
δp
δxi

)
f

]

In multiphase codes ...
Phase fraction gradients and strong transfer terms might lead this
approach to fail.

Strongly spatially-varying terms must be included in the interpolation
formula (Karema and Lo, 1999; Zhang and Zhao, 2004).

A. Passalacqua, R. O. Fox (Iowa State University) Multi-fluid models in OpenFOAM NETL 2011 Multiphase Flow 21 / 55



Interpolation practises

The Rhie-Chow interpolation in OpenFOAM [1]

Let us consider the single-phase
equation (Kärrholm, 2006)

∂U
∂t

+ (U · ∇) U

−∇ · (ν∇U) = −1
ρ
∇p

OpenFOAM implements it as:
f v V e c t o r M a t r i x UEqn
(

fvm : : d d t (U)
+ fvm : : d i v ( phi , U)
− fvm : : l a p l a c i a n ( nu , U)

) ;

s o l v e ( UEqn == −f v c : : g r ad ( p ) ) ;

phi is the old-time volumetric flux at
faces

OpenFOAM uses Gauss theorem
directly∫

V
∇ · (UΥ) dV =

∫
S

(UΥ)f · ndS

≈
∑

i

Uf,iΥf,i · Si =
∑

i

Uf,iφi

φ = Υf,i · S
Υ is the velocity held constant, U is the
unknown

A. Passalacqua, R. O. Fox (Iowa State University) Multi-fluid models in OpenFOAM NETL 2011 Multiphase Flow 22 / 55



Interpolation practises

The Rhie-Chow interpolation in OpenFOAM [2]
We now derive the pressure equation:

AU = H−∇p⇔ U =
H
A
− 1

A
∇p

Inserting in the continuity equation,
we find the pressure equation

∇ ·
(
H
A

)
= ∇ ·

(
1
A
∇p
)

OpenFOAM computes:

Predicted velocity (H is updated!)
U = UEqn .H ( ) / UEqn .A ( ) ;

Face volumetric flux
s u r f a c e S c a l a r F i e l d p h i =

f v c : : i n t e r p o l a t e (U) & mesh . Sf ( ) ;

Central coefficient
v o l S c a l a r F i e l d rUA = 1 . 0 / UEqn .A ( ) ;

Pressure equation
f v S c a l a r M a t r i x pEqn
(

fvm : : l a p l a c i a n ( rUA , p )
== f v c : : d i v ( p h i )

) ;
pEqn . s e t R e f e r e n c e ( pRefCe l l , pRefValue ) ;
pEqn . s o l v e ( ) ;

Corrected flux
p h i −= pEqn . f l u x ( ) ;

At this time conservation is
enforced!

Corrected velocity
U −= rUA∗ f v c : : g r ad ( p ) ;
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Interpolation practises

The Rhie-Chow interpolation in OpenFOAM [3]

Comment
No second derivative of p is present explicitly: Gauss theorem. First
derivative at cell faces is computed used cell-centre values of p

Summary
phi does not include effects of∇p when used in the pressure equation

The central coefficient does not contain the effect of∇p

The Laplacian of p uses∇p on cell faces, which is computed used
cell-centre values of p

In the velocity correction, the pressure gradient is computed from the
face values of p (Gauss theorem)
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Interpolation practises

The Rhie-Chow interpolation in OpenFOAM [4]

In multiphase flows...
We have to include the strongly varying terms (gravity, drag, . . . ) as a
function of the phase fraction and the strong coupling terms in the momentum
interpolation formula.

Observation
OpenFOAM imposes the continuity constraint on the centroid of cell faces,
which is the location where the force balance must be exactly satisfied.

Approach
The involved terms are treated as source terms in the momentum
equation, using values reconstructed from the face centroids.

The actual solution of the exact force balance is performed with the
solution of the pressure equation

Cell-centred values of the velocity are corrected from face fluxes
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Semi-discretized equations
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Semi-discretized equations

Derivation of the momentum predictor

For simplicity, we consider two phases under the following hypotheses

Incompressible

The momentum exchange is dominated by the drag force
We derive

The velocity predictors, using the PEA algorithm
The flux predictors and correctors
The pressure equation based on the total continuity
The modified phase continuity equation
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Semi-discretized equations

Velocity predictors

The semi-discrete momentum equations are:

AsUs = Hs −
αs

ρs
∇p− 1

ρs
∇ps + αsg +

Ksg

ρs

(
Ug − Us

)
,

and
AgUg = Hg −

αg

ρg
∇p + αgg +

Ksg

ρg

(
Us − Ug

)
.

Collecting the terms containing the unknown velocity in each of these
equations, defining the quantities

λs =
1

As +
Ksg
ρs

, λg =
1

Ag +
Ksg
ρg

,

H∗s = Hs −
αs

ρs
∇p− 1

ρs
∇ps + αsg,

H∗g = Hg −
αg

ρg
∇p + αgg.

A. Passalacqua, R. O. Fox (Iowa State University) Multi-fluid models in OpenFOAM NETL 2011 Multiphase Flow 28 / 55



Semi-discretized equations

Velocity predictors

Us = λsH∗s + λs
Ksg

ρs
Ug, Ug = λgH∗g + λg

Ksg

ρg
Us.

If the quantities

ξs =
1

As − λg
K2

sg
ρsρg

+
Ksg
ρs

,

ξg =
1

Ag − λs
K2

sg
ρsρg

+
Ksg
ρg

are introduced, such intermediate velocities are given by

Us = ξsH∗s + ξs
Ksg

ρs
λgH∗g,

Ug = ξgH∗g + ξg
Ksg

ρg
λsH∗s .
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Semi-discretized equations

Velocity predictors

Substituting back and collecting the coefficients of the same terms, we obtain

Us = ξs

[
Hs +

KsgλgHg

ρs
−
(
αs

ρs
+

Ksgλgαg

ρsρg

)
∇p

− 1
ρs
∇ps +

(
αs +

Ksgλgαg

ρs

)
g
]
,

and

Ug = ξg

[
Hg +

KsgλsHs

ρg
−
(
αg

ρg
+

Ksgλsαs

ρsρg

)
∇p

−
Ksgλs

ρsρg
∇ps +

(
αg +

Ksgλsαs

ρg

)
g
]
,

which represent the velocity predictors, obtained following the partial
elimination algorithm.
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Semi-discretized equations

Face volumetric flux

Interpolating the velocity predictors on cell faces we obtain the face
volumetric flux:

ϕs = ξs,f

(
Hs +

KsgλgHg

ρs

)
f
· S− ξs,f

(
αs

ρs
+

Ksgλgαg

ρsρg

)
f
|S|∇⊥p

− ξs,f

(
G(αs)

ρs

)
f
|S|∇⊥αs + ξs,f

(
αs +

Ksgλgαg

ρs

)
f
g · S,

ϕg = ξg,f

(
Hg +

KsgλsHs

ρg

)
f
· S− ξg,f

(
αg

ρg
+

Ksgλsαs

ρsρg

)
f
|S|∇⊥p

− ξg,f

(
KsgλsG(αs)

ρsρg

)
f
|S|∇⊥αs + ξg,f

(
αg +

Ksgλsαs

ρg

)
f
g · S.
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Semi-discretized equations

Pressure equation

The volumetric conservation is imposed by solving

∇ · ϕ = ∇ ·
(
αgϕg + αsϕs

)
= 0,

which gives

∇ ·
{[
αg,fξg,f

(
αg

ρg
+

Ksgλsαs

ρsρg

)
f

+ αs,fξs,f

(
αs

ρs
+

Ksgλgαg

ρsρg

)
f

]
|S|∇p

}
= ∇ · ϕo,

where ϕo is the total volumetric flux from which the contribution of the
pressure gradient is removed.
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Semi-discretized equations

Dispersed phase continuity equation

We write the phase continuity equation so that the particle pressure term
appears explicitly

∂αs

∂t
+∇ · (αs,fϕ

∗
s )−∇ ·

[
αs,fξs,f

(
G(αs)

ρs

)
f
|S|∇⊥αs

]
= 0,

where ϕ∗s is the s-phase flux, from which the contribution of the particle
pressure is removed

ϕ∗s = ξs,f

(
Hs +

KsgλgHg

ρs

)
f
· S− ξs,f

(
αs

ρs
+

Ksgλgαg

ρsρg

)
f
|S|∇⊥p

+ ξs,f

(
αs +

Ksgλgαg

ρs

)
f
g · S,

∇ps = G(αs)∇αs,

being

G(αs) =
∂ps

∂αs
.
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The iterative solution procedure

The iterative solution procedure

Following the experience on iterative compressible solvers, we implemented
the solution procedure as follows:

1 Solve the dispersed phase continuity equations
2 Compute the continuous phase fraction as 1−

∑
αs

3 Update momentum transfer coefficients
4 Solve the granular energy equation
5 Solve the phase momentum equations
6 Solve the pressure equation
7 Correct the phase fluxes
8 Correct the phase velocities (flux reconstruction)

These steps are repeated until a specified convergence criterion, based on total
and phase continuity is satisfied.

A. Passalacqua, R. O. Fox (Iowa State University) Multi-fluid models in OpenFOAM NETL 2011 Multiphase Flow 35 / 55



The iterative solution procedure

Some implementation details - Objects

Phase object

Drag model

Kinetic theory
 model

Phase material properties

Phase velocity, flux, pressure, ...

Abstract class
Model 1
Model 2
Model n

Main class

Viscosity
Model 1
Model n

Conductivity

Frictional 
models

Radial 
distribution

Model 1
Model n

Model 1
Model n

Model 1
Model n

General form
of the model

Solves submodel
equations

Comm. with 
main code
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Code verification

Single-phase flow

Configuration
Flow between parallel plates

Only fluid phase (air)

No external forces
Dimensions

D = 0.07 m
L = 1.0 m

|Ug|y = 0.01 m/s

40 x 400 computational cells

Observation
The algorithm correctly degenerates
into a single-phase solver when the
dispersed phase disappears
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Code verification

Single-phase flow

Residual convergence
Momentum residuals reduce:

Below 1.0 x 10−3 in 100
iterations

Below 1.0 x 10−5 in less than 450
iterations

Conservation error
Conservation errors are of the same
order of magnitude of machine
precision (< 1.0 x 10−15)
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Code verification

Settling suspension

Geometry
H = 0.05 m

D = 0.3 m

Properties

ρs = 2000 kg/m3

dp = 400 µm

αs,0 = 0.3

Numerics
Grid: 8 x 40 cells

Second order upwind

Adaptive ∆t
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Code verification

Bubbling fluidised bed with uniform gas feed

Geometry
H = 1 m, D = 0.138 m

Properties

ρs = 2000 kg/m3

dp = 350 µm, e = 0.8

αs,0 = 0.58

|Ug|y = 0.54 m/s

Numerics
Grid: 14 x 100 cells

Second order upwind

Adaptive ∆t

g

U
g

Parmentier et al. (2008)
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Code verification

Bubbling fluidized bed with uniform gas feed

Code verification
Comparison with the numerical results
of Parmentier et al. (2008)

Discussion
Radial phase fraction profile
match the numerical prediction
from the literature (Effect of BC)

Bed expansion predicted in
agreement with literature results

Radial particle phase fraction
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Code verification

Bubbling fluidized bed with uniform gas feed

Residual convergence
The initial residuals of the phase
fraction equation are always
below 1.0 x 10−6 at the end of
each time step: good conservation
of the dispersed phase

The residuals of all other
variables are required to converge
below 1.0 x 10−3

Conservation error
The total continuity error is of the
order of 1.0 x 10−11 at each time step
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Code verification

An example of real-life application: pilot plant reactor
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Parallel speedup
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Parallel speedup

Parallel speedup

Test cases
Settling suspension

Vertical cylindrical pipe

Uniform initial conditions

Meshes
Medium case: 650,000 cells

Large case: 2,000,000 cells

Fully hexahedral

Computational system
Lightningsmp

Multi-processor multi-core nodes
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Conclusions

Conclusions and future work

Conclusions
An interative procedure to solve the gas-particle multi-fluid equations on
unstructured grids has been implemented in OpenFOAM

The procedure was verified and provided results in agreement with
published results or analytical solutions

The simulation code was successfully used to model a pilot-plant reactor

Future work
Integration with QBMM

Description of a particle size distribution
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Conclusions

Thanks for your attention!

Questions?
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Ensuring volume fraction boundness

Ensuring volume fraction boundness

Problem
The particle phase volume fraction has to be physically bounded between zero
and one. However numerically small negative values or values slightly above
one might appear, and destabilize or destroy the numerical solution.

Proposed solutions
Use first order interpolation schemes to interpolate the phase fraction
when defining convective fluxes (Diffusive!)

Solve for all the phase fractions instead than computing the last one as
1−

∑
αd and re-scale each phase fraction until they are bounded

between zero and one and convergence is achieved

Re-formulate the phase continuity equation so that its solution is
bounded (non-linearity appears)
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Ensuring volume fraction boundness

Volume fraction boundness

We consider the total flux and the relative velocity flux:

ϕ = αg,fϕg + αs,fϕs,

ϕr,s = ϕs − ϕg.

The phase flux is then re-written as

ϕs = ϕ+ αg,fϕr,s,

which leads, after writing the term containing the particle pressure explicitly,
to the modified form of the phase continuity equation

∂αs

∂t
+∇ · (αsϕ

∗) +∇ ·
(
αgαsϕ

∗
r,s
)

−∇ ·
[
αs,fξs,f

(
G(αs)

ρs

)
f
|S|∇⊥αs

]
= 0.
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