CFD Modeling of Multi-scale Air- and Oxy- coal Combustion Experiments

REACTION ENGINEERING INTERNATIONAL

77 West 200 South, Suite 210 Salt Lake City, UT 84101 TEL: +1 (801) 364-6925 FAX: +1 (801) 364-6977 http://www.reaction-eng.com

NETL Workshop on Multi-phase Flow Science

Pittsburgh, PA

August 16-18, 2011

Program Overview

- Objective: Characterize and predict performance and operational impacts of oxy-combustion retrofit designs on existing coal-fired boilers
- Approach: Utilize multi-scale testing and theoretical investigations to develop:
 - Fundamental data that describe combustion characteristics, corrosion rates, and ash properties during oxy-coal firing
 - Validated mechanisms that describe oxy-combustion processes
 - Firing system principles that guide oxy-burner design and fluegas recycle implementation
- Incorporate validated mechanisms into CFD software to evaluate full-scale oxy-combustion retrofit designs

Program Overview

Team Member	Project Role			
REI	program management, testing oversight, mechanism development, simulations			
University of Utah	laboratory and pilot-scale testing, mechanism development			
Siemens/ABT	burner technology			
Praxair	oxygen supply			
Brigham Young Univ.	soot measurements			
Corrosion Management	corrosion tests, mechanism development			
Sandia National Labs	bench-scale testing, mechanism development			
Vattenfall AB	mechanism development, validation data			
PacifiCorp, Praxair, Southern Company, Vattenfall, DTE Energy	Advisory Panel provides industrial perspective on R&D needs, retrofit requirements and constraints, suggested assessment studies			

Program Overview

Program Schedule

- Year 1 Key Tasks (ending 9/30/09)
 - Initiate char oxidation and OFC experiments
 - Design and fabricate pilot-scale oxy-burner
 - Complete initial slagging and fouling mechanism development
- Year 2 Key Tasks (ending 9/30/10)
 - Complete OFC ash characterization measurements without FGR
 - Continue char oxidation experiments and mechanism development
 - Complete pilot-scale burner, slagging, fouling, corrosion testing
- Year 3 Key Tasks (ending 3/31/12)
 - Finish char oxidation experiments and validate mechanism
 - Complete OFC ash characterization measurements with FGR
 - Validate slagging, fouling, corrosion, sooting mechanisms
 - Implement validated mechanisms into CFD code
 - Complete boiler retrofit assessment

Multi-scale Experiments

- Bench-Scale Optical Entrained Flow Reactor
 - Char Oxidation Kinetics
- 100 kW Oxy-Fuel Combustor (OFC) Tests
 - Ash Deposition and Characterization
 - Soot Evolution
- 1.2 MW Pilot-Scale Furnace (L1500) Tests
 - Impacts of Burner Configuration
 - Heat Flux, Corrosion and Particle Deposition
 - Flue Gas Chemistry, Sooting

3.5 MBtu/hr Pilot-Scale Furnace (L1500)

Furnace Model Geometry

Operating Conditions

Coal Property	Utah Skyline		
Moisture (%)	3.18		
Ash (%)	8.83		
C (%)	70.60		
H (%)	5.06		
N (%)	1.42		
S (%)	0.53		
O (%)	10.38		
Volatile (%)	38.60		
Fixed C (%)	49.39		
HHV (Btu/lb)	12,606		

Parameter	Units	Air	Оху
Firing Rate	MBtu/hr	3.5	3.5
Excess O ₂	%, dry	3.14	3.07
BSR		0.9	0.9
Primary Gas/Fuel		1.8	1.8
Burner IS / OS		20/80	20/80
Overall O ₂	%, wet	21	27
Burner O ₂	%, wet	21	27
Primary O ₂	%, wet	21	21
IS O ₂	%, wet	21	28.7
OS O ₂	%, wet	21	28.7

Baseline CFD Model Results

(without newly developed sub-models)

	Skyline Air Model	Skyline Air Ave Measured	Skyline Oxy Model	Skyline Oxy Ave Measured
Exit Temp (°F)	1743		1872	
Exit O ₂ (%, dry)	3.14	3.18	3.03	3.07
Exit CO (ppmv, dry)	<1	16	126	90
Exit SO ₂ (ppmv, dry)	444	425	1,788	1754
Exit CO ₂ (%, dry)	15.9	15.9	89.9	89.9
Exit H ₂ O (%)	6.7		25.6	
Gas Sensible Heat (%)	39.7		41.1	
Wall Heat Loss (%)	59.6		58.5	
Rad. / Conv. (%)	41.4 / 18.2		46.5 / 12.0	

Predicted Gas Temperature

Radial Gas Temperature Comparison

Average Gas Temperature Comparison

Average CO Concentration Comparison

Particle Trajectories and CO Profiles

Extended Char Oxidation Model

- Model development previously presented (Geier, Shaddix, Davis, Shim, "On the Use of Single-Film Models to Describe the Oxy-fuel Combustion of Pulverized Coal Char", 2011 Clearwater Clean Coal Conference)
- Based on work by Shaddix and Geier at Sandia using measurements in EFR and SKIPPY modeling
- Start with heterogeneous surface reactions
- Add Extended Single Film model including:
 - Steam gasification
 - CO₂ gasification

Comparisons with Lab-scale Data

CO Concentration Profiles Skyline Coal

Air With Original Char Oxidation

Air With Extended Char Oxidation

Oxy With Original Char Oxidation

Oxy With Extended Char Oxidation

CO Concentration Comparison

Radiative Emissivity Model Impacts

- Evaluate impact of narrow band gas emissivity model
 - Original model is hybrid Hottel Chart weighted sum of gray gases model
 - Advanced model is narrow band model based on RADCAL code by NIST
 - Previous work has suggested:
 - Minimal emissivity impacts for short path lengths
 - Particle radiation dominates gas radiation in flame zone

Radiative Emissivity Model Comparison

Skyline Coal - Temperature

Emissivity Model Comparison

Gas at 1500 K

Incident Radiative Heat Flux Comparison

Skyline Coal - Incident Flux (one wall average)

Furnace Centerline Temperature

Conclusions

- Predicted gas temperature trends were correct, including temperature cross-over; oxy-fired predictions higher than measured data in staged zone
- Enhanced char oxidation model showed increased CO production in staged zone and better agreement with air data
- Refined gas emissivity model had negligible impact on results
- Model comparisons are on-going, and will also include soot and corrosion data
- Current activity includes oxy-combustion assessment in fullscale boilers (Hunter and River Rouge)

Steam Gen Expert (SGE) Process Modeling

Oxy-coal Retrofit Cost Analysis

	DOE/NETL*		CUECost	
	Ref	CO ₂ Capture	Ref	CO ₂ Capture
Gross MW	580	663	580	663
NetMW	550	550	547	555
Heat Rate (Btu/kWh)	8687	12002	8687	12002
Auxiliary power (MW)	30	113	33	108
Base plant load	26	42	26	42
FG Cleanup (SCR, baghouse, FGD, CO₂ capture)	4	26	7	12
CO ₂ compression		45	-	54
Total plant capital cost (\$/kWe)	1647	2913	1729	2904
% increase		77%		68%
Base Plant (including SCR)	1413	1763	1476	1595
PM & SO _x capture	234	297	253	303
CO ₂ capture	82	766	S	882
CO ₂ compression	(+	87		124
COE(\$/MWh) (levelized)	74.7	135.2	65.3	121.3
Capital	40.2	75.7	31.8	53.2
O&M	34.4	52.4	33.5	61.0
Fuel	18.0	24.9	18.9	29.4
Variable	6.3	11.0	6.4	16.9
Fixed	10.1	16.5	8.2	14.7
CO ₂ TS&M	57	7.1	2	7.1
Increase in COE (%)		81		86
\$/tonne CO ₂ avoided		69		79

Acknowledgments

- This material is based upon work supported by the Department of Energy under Award Number DE-NT0005288, Timothy Fout Program Manager
- University of Utah Industrial Combustion and Gasification Research Facility technical staff
- CFD results displayed with Fieldview by Intelligent Light (www.ilight.com)

Retrofit Assessment Capability

Evaluate impact of oxy-firing design and flue gas recycle (FGR) ratio and composition on:

- Combustion Characteristics
 - Heat transfer (temperature, emissivity, sooting)
 - Particle ignition, char burnout
 - NOx, SOx, fine particulates
- Surface Characteristics
 - Heat flux profiles
 - Slagging
 - Fouling
 - Corrosion

