Fine-Grid Simulations of Gas-Solids Flow in a Circulating Fluidized Bed

Sofiane Benyahia
US DOE, National Energy Technology Laboratory

Multiphase Flow Science Workshop August 16-18, 2011

Introduction

- Two-fluid or continuum model based simulations are commonly conducted on coarse computational mesh requiring subgrid model.
- Based on some publications¹, some doubts still remain if finely resolved two-fluid simulations can capture basic experimental observations of solids hold-up and pressure drop profiles in risers.
- We will first show some results² using subgrid models and then attempt to obtain similar results using grid-refined two-fluid simulations with no subgrid corrections.

¹ Lu, B.; Wang, W.; Li, J. Chem. Eng. Sci. 2009; 64; 3437-3447.

² Benyahia, S. *AIChE J.* doi: 10.1002/aic.12603

Purpose of this presentation

- First show that coarse two-fluid simulations can provide reasonable accuracy with the help of subgrid models (this is a continuation of my last year presentation.)
- Then, demonstrate that two fluid simulations without subgrid models will predict the correct experimental observations as the grid is refined
- Finally, show the necessity to invest more research in the development of subgrid models due to significant computer time requirements to conduct these fine grid simulations.

Two-fluid simulation conditions¹

Process temperature	297 K
Process pressure	1.01 x 10 ⁵ Pa
Air density	~1.2 kg/m³
Air viscosity	1.8 x 10 ⁻⁵ Pa⋅s
Gas-phase turbulence length-scale	0.01 m
Solids density	930 kg/m³
Particle diameter	54 micron
Single-particle terminal velocity	0.074 m/s
Particle-particle restitution coefficient	0.9
Particle-wall restitution coefficient	0.7
Specularity coefficient	0.0001
Particle-particle angle of internal	pi/6
friction	
Particle-wall angle of friction	pi/16
Void fraction at maximum packing	0.4
Void fraction at minimum fluidization	0.6

Coarse grid simulation results

Coarse-grid simulation results

- There is clearly a need to "correct" the drag force as coarse-grid simulations fail to predict the solids hold-up.
- There is a significant difference in the computed solids hold-up and the one deduced from pressure-gradient. Note that measurements are based on pressure*.
- So even with drag corrections, there is still disagreements between measurements and simulation data, which will be investigated in the next slides...

Effect of particle-particle friction

Effect of particle-wall friction

³ Li, T; Benyahia, S. *AIChE J*. doi: 10.1002/aic.12728

Effect of polydispersity

Coarse-grid simulation results

- There is clearly a need to correct the drag force for both mono- and poly-disperse systems with a coarse grid.
- Next we present results of refined two-fluid simulations using a standard homogeneous drag correlation.

Fine-grid simulation results

Grid resolution	Solids mass flux (kg/m²s)
60x450	205
60x4500	200
90x10500	140
EMMS	16.9
Experimental	14.3

Fine-grid simulation results

Summary

- This study shows that more accurate results are obtained as the grid is refined, but a gridconverged³ solution was not obtained even with 1 M cells!
- It is, therefore, necessary to include sub-grid corrections due to the large computational requirements and time needed to conduct fully-resolved simulations.

