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Transported Probability Density 

Function (PDF) Methods

Accommodating realistic chemistry, detailed soot 

and particle models, spectral radiation heat 

transfer and complex nonlinear interactions.
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PDF methods offer compelling advantages for 

modeling chemically reacting turbulent flows.
• Model and solve an equation for the one-point, one-time joint PDF of 

quantities that determine the local thermochemical and/or 
hydrodynamic state of a reacting system

– Composition PDF: species mass fractions and enthalpy

• Advantages

– Resolves closure problems that arise from averaging or filtering highly 
nonlinear chemical source terms: 

– Realistic chemistry can be implemented with minimal further modeling

• Computational strategy

– Lagrangian particle Monte Carlo methods

• Physical models required (composition PDF)

– Turbulent velocity fluctuations (“turbulent diffusion”)

– Molecular transport (“mixing”)

• Origins

– Lundgren (1969) Phys. Fl. 12:485-497

– Pope (1985) PECS 11:119-192
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Hybrid Lagrangian particle/finite-volume PDF 

methods are the current mainstream approach.
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Radiation and turbulence-radiation interactions 

(TRI)

• Radiation is an Important Mode of Heat Transfer 
in Many (Most?) Turbulent Combustion Systems

• Radiation Often Has Been Ignored Altogether or 
Has Been Treated Using Simple Models
– e.g., optically thin approximation

• Difficulties
– Strong temperature dependence (T4)

– Spectral radiation properties

– Solution of the radiative transfer equation (RTE)

– Turbulence/radiation interactions (TRI) 
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Different levels of soot modeling are used in CFD.

• Correlation-Based
– Soot volume fraction specified as a function of 

local equivalence ratio and temperature

• Two-Equation Models
– Modeled equations solved for soot volume 

fraction and number density

• Detailed Models
– Account explicitly for each key physical process

– Require consideration of soot aerosol dynamics

• Soot Aerosol Dynamics
– Method of moments with interpolative closure 

(MOMIC)

– Discrete sectional method (DSM)

– Variants and hybrids

• Implementations in PDF Methods
– Correlation-based, two-equation and MOMIC

Bockhorn (Ed.)

Soot Formation in Combustion (1994)
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Comprehensive tools are being developed for 

simulating chemically reacting turbulent flows.
• Reynolds-Averaged and Large-Eddy Simulations

– PDF-based models for unresolved fluctuations

• Skeletal-Level Gas-Phase Chemistry

– 10-100 species

– ISAT for chemistry acceleration

• Detailed Soot Models

– Method of moments with interpolative closure

• Accurate and Efficient Radiative Transfer Equation 

Solvers/Spectral Radiation Treatments

– Photon Monte Carlo (PMC)/line-by-line

– High-order spherical harmonics/k-distribution methods

• Modular Approach

– Finite-volume CFD, stochastic Lagrangian particle PDF, ray-

tracing PMC, spectral radiation properties, soot models

• Parallelization

– Multiple strategies
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The C2H4-air flames of Kent & Honnery (1987) and 

Coppalle and Joyeux (1994) have been simulated.

R.S. Mehta, D.C. Haworth & M.F. Modest (2010) Combust. Flame 157:982.

K&H 1987C&J 1994
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The model captures 

variations in soot and 

radiant heat flux with 

O2 in oxygen-

enriched CH4/C2H4

flames, using the 

same models.

21% O2 30% O2 40% O2 55% O2

R.S. Mehta, D.C. Haworth & M.F. Modest (2010) 

Combust. Flame 157:982.
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21% O2 30% O2

40% O2
55% O2

ET00-21 ET00-30

ET00-40 ET00-55

R.S. Mehta, M.F. Modest & D.C. Haworth (2010) Combust. Theory Model.14:105.

Computed soot levels can decrease by more than 

a factor of three with consideration of TRI.
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PDF-Based Simulations of Turbulent 

Syngas Flames

A step toward thermochemical environments that 

are representative of those in oxy-coal 

combustion systems.

Xinyu Zhao, Penn State

Dave Huckaby, NETL
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Flame A Flame B

Nozzle diameter 4.58 mm 7.72 mm

Jet velocity 76 m/s 45 m/s

Coflow velocity 0.7 m/s 0.7 m/s

Jet Reynolds # 16700 16700

Jet mass fractions

CO/H2/N2

0.554/0.03/0.416 0.554/0.03/0.416

Coflow mass 

fractions

O2/N2

0.234/0.766 0.234/0.766

Jet and coflow

temperatures

292 K 292 K

Experimental data including mean and rms temperature, species mass and 

mole fractions, and velocity fields can be found on the TNF website: 

http://www.sandia.gov/TNF/DataArch/SANDchn.html

Two TNF Workshop 40% CO, 30% H2, 30% N2

flames have been simulated.
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A Hybrid Lagrangian particle/finite-volume PDF 

method has been implemented in OpenFOAM.
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Sensitivity studies have been performed with 

variations in physical and numerical parameters.
• Chemical Mechanism

– 10-species, 6-step syngas (including thermal NO)

– GRI-Mech 2.11 (including detailed NOx)

– Princeton C1 mechanism (courtesy of F.L. Dryer)

• PDF Mixing Model

– Modified Curl with C =1.5

– EMST with C =1.5 and variations (C =1.0, 2.0, 8.0)

• Radiation Model

– No radiation

– Optically thin radiation (CO2, H2O, CO)

– PMC spectral radiation with reabsorption (CO2, H2O)

• Flame Stabilization

– Resolve recirculation zone

– Local equilibrium in small zone close to nozzle

• Computational Acceleration

– Parallelization and direct integration

– Parallelization and ISAT

Blue font 

=

Baseline model
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Baseline model is in reasonable agreement with 

experiment and captures correct scaling.

x/d = 20
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Baseline model (cont.)

x/d = 40

x/d = 20
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Radiation effects are relatively small, but are 

discernable – especially for NO.

Flame B

x/d = 20 x/d = 40
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Chemistry effects are most pronounced in CO 

and NO predictions.

Flame A

x/d = 20 x/d = 40
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PDF-Based Simulations of a 0.8 MW 

Oxy-Methane Burner

Next step toward thermochemical environments 

that are representative of those in oxy-coal 

combustion systems.

Xinyu Zhao, Penn State

Dave Huckaby, NETL
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N. Lallemant, F. Breussin, R. Weber, T. Ekman, J. Dugue, J. M. Samaniego, O. Charon, A. J. Van Den Hoogen, J. Van Der Bemt, W. 

Fujisaki, T. Imanari, T. Nakamura and K. IINO. Flame Structure, heat transfer and pollutant emissions characteristics of oxy-natural 

gas flames in the 0.7-1 MW thermal input range. Journal of Institute of Energy, 73, pp. 169-182

Simulations are underway for OXYFLAM-2.
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Properties Jet Coflow

Velocity 105.4 m/s 109.7 m/s

Reynolds # 162600 128600

Composition 0.8869 CH4

0.0463 C2H6

0.00094 C3H8

0.0032 C4H10

0.0009 C5H12

0.0379 N2

0.0152 CO2

0.02 O2

99.5% O2

Temperature 298 K 298 K

K 627.9 J/kg 850.16 J/kg

Epsilon 4.617E6 2.9094E6

Wall 

Temperature

Specified as

Tw(y) = 1700.6 + 212.59y-

46.669y2

Nozzle dimensions

This is a pilot-scale burner with small fuel and 

oxidizer jets.

Burner schematic
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Initial non-PDF results are obtained using a 

steady-state solution algorithm.
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x = 0.82 m

T

x = 0.22 m

T U

U
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Concluding Remarks
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PDF methods offer compelling advantages for 

modeling chemically reacting turbulent flows.

• Realistic chemistry, soot and radiation models are required to predict 

temperatures, heat transfer rates and pollutants

• Turbulence-chemistry interactions (TCI) and other complex nonlinear 

interactions significantly change the global and local flame behavior
– Expected to become increasingly important in next-generation combustion 

systems for power generation and other applications

• Transported PDF methods are a particularly appealing approach for 

dealing with TCI and other complex nonlinear interactions
– Resolve key closure problems

– Accommodates realistic chemistry, multi-phase systems with radiation

– Rational approach that minimizes need for further modeling to account for effects 

of turbulent fluctuations

• Encouraging results have been obtained in environments approaching 

those of oxy-coal combustion
– Results are at least as good (if not better) than any reported to date for the TNF 

syngas flames
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Next steps

• Continue simulations of oxy-methane burners
– Initiate transported PDF method

– Enable radiation models

• Move to particle-fueled systems
– Use a separate stochastic Lagrangian formulation to 

model coal particles

– Couple with transported PDF and radiation models

– Follow approaches developed for liquid fuel/PDF 

coupling in turbulent spray flames


