Co-pyrolysis of Coal and Biomass at Transport Gasifier Conditions

Nathan Weiland, Nick Means, and Ryan Soncini

NETL 2011 Workshop on Multiphase Flow Science
Pittsburgh, PA, August 16-18, 2011
NETL’s FY11 In-house Research: Advanced Gasification Program

- **Mission**: “Accelerate the development of advanced, affordable and efficient gasification-based technologies that promote coal-based fuel flexibility and reduce pollutants, trace elements, and the carbon footprint of existing and future coal fired applications.”

- **Tasks/Projects**:
 1. Biomass Processing
 2. Refractory Development
 3. Co-gasification Reactions and Kinetics
 4. Device/System Modeling
Advanced Gasification Team Approach

Objective #1
- Kinetic Data
- Product Properties

Objective #2
- Task 2: Gasifier Materials
- Task 4: Modeling

Task 1
- Prep/Feed

Task 3
- Transport Gasifiers
- Entrained Flow Gasifiers

Blend

COAL

Raw / Treated Biomass
NETL Modeling Approach

• NETL’s C3M program
 – Carbonaceous Chemistry for Computational Modeling
 – Interface between kinetics databases and high-fidelity computational models

• Kinetic databases need to be updated
 – Add biomass feedstocks
 – Account for coal/biomass co-feeding non-linearities
 – Pyrolysis, gasification, tar
 – Transport and entrained flow conditions
Project Objectives and Goals

• **Program Goal**: Successfully simulate the PSDF transport gasifier on co-fed coal/biomass

• **Project Goal**: Provide fundamental co-pyrolysis and co-gasification kinetic data for C3M platform
 – Determine root cause of nonlinear coal/biomass interactions, if present

• **C3M’s co-feed data needs:**
 – Devolatilization kinetics and product distributions
 – Gasification kinetics under CO$_2$, H$_2$, H$_2$O and O$_2$
 – Homogeneous & heterogeneous tar cracking kinetics
Transport Integrated Gasification (TRIG™)

- Non-slagging KBR gasifier at PSDF
- Operating conditions
 - 2 ton/hour combustor or gasifier
 - Air- or Oxygen-blown
 - Pressure: 11 – 17 atm
 - Temperature: 815 – 1040 °C
- Feedstocks
 - Coarse, dry feed
 - Works well on low rank, high moisture, high ash coals
 - PRB coal, Mississippi lignite
 - Biomass: 20% blend typical, up to 100%
- Basis for 582 MW plant in construction at Kemper, Mississippi
Test Matrix

- **8 test points:**
 - 600 & 800 °C at 1, 4 and 16 atm, 975 °C at 1 and 4 atm
- **4-5 dried fuel mixtures consistent with PSDF testing:**
 - Pure PRB coal, lignite & pine wood biomass
 - 80% PRB/20% wood mixture
 - 80% lignite/20% wood mixture (time permitting)
- **5 reaction environments:**
 - Inert argon for pyrolysis, CO₂, H₂, H₂O and O₂ for gasification
- **160-200 total data points**
- **Separate product distribution and kinetics tests**
- **Will also generate co-gasification model validation data with as-received feedstocks**
 - Must test the ability of C3M to capture nonlinear co-gasification behavior (coal-gas and coal-char interactions)
Sample Specifications

- **Feedstocks dried, ground, and sieved**
 - Powder River Basin (PRB) Sub-bituminous Coal
 - Mississippi Lignite (Red Hills)
 - Southern Yellow Pine Pellets
- **Products:**
 - 500 to 850 µm
- **Kinetics:**
 - 100 to 300 µm

<table>
<thead>
<tr>
<th></th>
<th>PRB Coal as rec'd dry basis</th>
<th>Miss. Lignite as rec'd dry basis</th>
<th>Wood Pellets as rec'd dry basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proximate Analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Moisture</td>
<td>20.43</td>
<td>19.06</td>
<td>4.00</td>
</tr>
<tr>
<td>% Ash</td>
<td>7.03</td>
<td>15.43</td>
<td>19.06</td>
</tr>
<tr>
<td>% Volatile</td>
<td>32.49</td>
<td>29.60</td>
<td>81.78</td>
</tr>
<tr>
<td>% Fixed Carbon</td>
<td>40.06</td>
<td>35.91</td>
<td>12.86</td>
</tr>
<tr>
<td>Ultimate Analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Carbon</td>
<td>53.50</td>
<td>45.62</td>
<td>51.07</td>
</tr>
<tr>
<td>% Hydrogen</td>
<td>3.37</td>
<td>3.42</td>
<td>5.99</td>
</tr>
<tr>
<td>% Nitrogen</td>
<td>1.22</td>
<td>0.86</td>
<td>0.12</td>
</tr>
<tr>
<td>% Sulfur</td>
<td>0.30</td>
<td>0.47</td>
<td>0.02</td>
</tr>
<tr>
<td>% Oxygen(diff)</td>
<td>14.16</td>
<td>15.14</td>
<td>37.44</td>
</tr>
<tr>
<td>Energy Analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Btu/lb</td>
<td>9102</td>
<td>7786</td>
<td>8485</td>
</tr>
<tr>
<td>MAF BTU/lb</td>
<td>11439</td>
<td>9619</td>
<td>8839</td>
</tr>
<tr>
<td></td>
<td>12547</td>
<td>11884</td>
<td>8966</td>
</tr>
</tbody>
</table>
Product Distribution Tests

• HPTR Tests at NETL Pittsburgh
 – Isothermal pyrolysis of a ~1 gram sample, dropped onto a heated quartz frit
 – Semi-batch operation (1 test/day)
• Ex-situ tar and water trapping
• Quantitative gas sampling by mass spec:
 – CO$_2$, CO, CH$_4$, C$_2$H$_4$, H$_2$S, H$_2$, H$_2$O
• Tests with mass closures between 95 and 105% retained for product distribution analysis
Primary Products vs. Biomass Blend

- Linear primary pyrolysis product distributions with respect to wt. % biomass
- Distribution nonlinearities seen in literature at lower temperature not observed in these experiments
Primary Products vs. Temperature

- Primary pyrolysis product distributions slightly nonlinear wrt temperature, as expected
- In general, condensable fractions and char converted to gas at high temperatures
Gaseous Products vs. Biomass Blend

- Linear gaseous pyrolysis product distributions with respect to biomass wt. %
- Higher CO and lower CO2 release with biomass wt. % and temperature
 - Consistent with literature
Gaseous Products vs. Biomass Blend

- **More H\textsubscript{2} generated by coal than biomass on volume basis**
 - Biomass gas ~2x PRB gas
 - Biomass has 50% more H, released as hydrocarbons
- **H\textsubscript{2}/CO ratio decreases as biomass wt.% increases**
 - H\textsubscript{2}/CO ~ 2 for PRB, 0.1 for WB
Gaseous Products vs. Temperature

- Increases in total gas production with temperature mostly due to CO and hydrocarbons
 - ~40% of biomass weight converted to CO at 975 °C
GC-MS Gas Analysis

- Qualitative analysis of gas bag samples taken during pyrolysis at 800 °C
 - Trace sulfur species appear in PRB tests
 - Acetylene, acetaldehyde, toluene more prevalent with biomass
Current H PTR-1 Kinetics

- H PTR gas production data previously unsuitable for kinetics
- Procedure modifications yield more accurate and consistent kinetic data

<table>
<thead>
<tr>
<th>Test Type</th>
<th>Product Distribution</th>
<th>Kinetics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample quantity</td>
<td>1.0 g</td>
<td>0.1 g</td>
</tr>
<tr>
<td>Sample size</td>
<td>300-1000 μm</td>
<td>100-300 μm</td>
</tr>
<tr>
<td>Sweep gas flow rate</td>
<td>2.0 slm Ar</td>
<td>4.5 slm Ar</td>
</tr>
<tr>
<td>Reaction location</td>
<td>9” from bottom</td>
<td>4” from bottom</td>
</tr>
<tr>
<td>Residence time</td>
<td>4.4 s</td>
<td>0.13 s</td>
</tr>
</tbody>
</table>
Reactor Setup for Isothermal Kinetics

Temperature [°C]

Position from Top of Heater (inches)
Drop-Tube (Isothermal) Pyrolysis Kinetics

- **Total devolatilization**
 - Measure CO, CO\(_2\), CH\(_4\), C\(_2\)H\(_4\), H\(_2\) and H\(_2\)O via QMS
 - Total gas evolution: \(m_{\text{total}} = \sum(m_{\text{gas}})\)
 - Solid mass loss: \(m_{\text{solid}}(t) = m_{\text{feed}} - m_{\text{gas}}(t) - m_{\text{tar}}(t)\)
 - Assuming that the rate of \(m_{\text{tar}}(t)\) is proportional to \(m_{\text{gas}}(t)\):
 \[
 X = \frac{m_{\text{feed}} - m_{\text{solid}}(t)}{m_{\text{feed}} - m_{\text{solid}}(\infty)} = \frac{m_{\text{gas}}(t)}{m_{\text{gas}}(\infty)}
 \]

- **General Rate Equation:**
 \[
 \frac{dX}{dt} = k \bigtriangleup - X^n
 \]
 \[
 k = A * \exp \bigtriangleup \frac{E_A}{R * T} \]

- **Integrate for** \(n = 1\):
 \[
 \ln(1 - X) = k t
 \]
Preliminary Pyrolysis Kinetics Results

- Mass spec sample rate
 - ~0.7 s/sample
- Reaction progress, X, characterized by dimensionless gas release
- Reaction rate, k, fit to initial slope of $\ln(1-X)$
 - Best fit covers first 75-90% of reaction
- Multiple slopes may better fit a DAEM model
Preliminary Pyrolysis Kinetics Results

- **Fit of reaction rates on an Arrhenius plot**
 - Considerable scatter in the reaction rate data

- **Potential coal/biomass reaction rate synergy**
 - Lower mixture activation energy and pre-exponential
 - Similar to literature results:

- **Requires further study and refinement**

<table>
<thead>
<tr>
<th></th>
<th>PRB</th>
<th>20% WB</th>
<th>WB</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_A (kJ/mol)</td>
<td>30.9</td>
<td>24.2</td>
<td>32.9</td>
</tr>
<tr>
<td>A (1/s)</td>
<td>16.3</td>
<td>6.5</td>
<td>24.6</td>
</tr>
<tr>
<td>R^2</td>
<td>0.934</td>
<td>0.967</td>
<td>0.912</td>
</tr>
</tbody>
</table>
Summary

• Pyrolysis product distributions
 – Linear primary and gaseous product distributions with respect to biomass weight %
 – Elemental H in PRB coal more likely to evolve as H_2
 – Elemental H in wood evolves as hydrocarbons, with more H_2 at high temperature
 – Pyrolysis H_2/CO ratio decreases significantly with increasing biomass wt. %

• Preliminary pyrolysis kinetics
 – Potential nonlinear kinetic coal/biomass synergy
 – Preliminary results suggest 2-stage process
Future Work

• Refine pyrolysis kinetic analysis
• Modify reactor to increase testing rate
• Study pressurized pyrolysis product distributions and kinetics
• Gasification rate data for CO2, H2O, O2 and H2
• Generate C3M model validation data on as-received feedstocks in simulated syngas
• New lab being constructed for studying tar cracking kinetics
 – High speed TGA (100 °C/s), tube furnace, mass spec
 – Study tar generation rate, homogeneous and heterogeneous tar cracking kinetics
Tar Cracking Kinetics

TGA
Generate fresh vapor tar

Parameters
Temperature: 300-500°C

Poplar volatile generating rate (1/s)

![Graph showing Poplar volatile generating rate](image)

Coal volatile generating rate (1/s)

![Graph showing Coal volatile generating rate](image)

Coal/biomass

Tar cracking kinetics:
- Homogeneous without char
- Heterogeneous with char

Coal

Poplar

Lignite coal volatile generating rate (1/s)

![Graph showing Lignite coal volatile generating rate](image)

Tubular reactor
Tar cracking kinetics: homogeneous without char heterogeneous with char

Parameters
Temperature: 600-1200°C
Residence time: 2-6 s

On-line MS
Gas analysis
- \(H_2 \), \(CO \), \(CO_2 \),
- \(H_2O \), \(CH_4 \)

Off-line GC-MS
Tar compositions

Off-line BET
Char surface area
Acknowledgments

U.S. DOE - NETL
- Dr. Chris Guenther
- Dr. Ron Breault
- Dr. Bryan Morreale
- Dr. Charles Taylor

NETL Site Support Contractors
- Nick Means, URS
- Ryan Soncini, URS/Pitt
- Kevin Resnik, URS

This technical effort was performed in support of the National Energy Technology Laboratory’s on-going research in coal and biomass conversion technologies under URS contract DE-FE0004000.

NETL-RUA Research Faculty
- Dr. Goetz Veser
 University of Pittsburgh