

Co-pyrolysis of Coal and Biomass at Transport Gasifier Conditions

Nathan Weiland, Nick Means, and Ryan Soncini

NETL 2011 Workshop on Multiphase Flow Science Pittsburgh, PA, August 16-18, 2011

NETL's FY11 In-house Research: Advanced Gasification Program

- <u>Mission</u>: "Accelerate the development of advanced, affordable and efficient gasification-based technologies that promote coal-based fuel flexibility and reduce pollutants, trace elements, and the carbon footprint of existing and future coal fired applications."
- Tasks/Projects:

- 1. Biomass Processing
- 2. Refractory Development
- 3. Co-gasification Reactions and Kinetics
- 4. Device/System Modeling

Advanced Gasification Team Approach

ri -ri

(3)

NETL Modeling Approach

NETL's C3M program

- Carbonaceous Chemistry for Computational Modeling
- Interface between kinetics databases and high-fidelity computational models
- Kinetic databases need to be updated
 - Add biomass feedstocks
 - Account for coal/biomass co-feeding non-linearities
 - Pyrolysis, gasification, tar
 - Transport and entrained flow conditions

NETL-RUA

Project Objectives and Goals

- <u>Program Goal</u>: Successfully simulate the PSDF transport gasifier on co-fed coal/biomass
- <u>Project Goal</u>: Provide fundamental co-pyrolysis and co-gasification kinetic data for C3M platform
 - Determine root cause of nonlinear coal/biomass interactions, if present

C3M's co-feed data needs:

- Devolatilization kinetics and product distributions
- Gasification kinetics under CO_2 , H_2 , H_2O and O_2

NETL-RUA

5)

 Homogeneous & heterogeneous tar cracking kinetics

Transport Integrated Gasification (TRIG™)

- Non-slagging KBR gasifier at PSDF
- Operating conditions
 - 2 ton/hour combustor or gasifier
 - Air- or Oxygen-blown
 - Pressure: 11 17 atm
 - Temperature: 815 1040 C

Feedstocks

ETI-RI

6)

- Coarse, dry feed
- Works well on low rank, high moisture, high ash coals
 - PRB coal, Mississippi lignite
- Biomass: 20% blend typical, up to 100%
- Basis for 582 MW plant in construction at Kemper, Mississippi

Test Matrix

- 8 test points:
 - 600 & 800 °C at 1, 4 and 16 atm, 975 °C at 1 and 4 atm
- 4-5 dried fuel mixtures consistent with PSDF testing:
 - Pure PRB coal, lignite & pine wood biomass
 - 80% PRB/20% wood mixture
 - 80% lignite/20% wood mixture (time permitting)
- 5 reaction environments:
 - Inert argon for pyrolysis, CO_2 , H_2 , H_2O and O_2 for gasification
- 160-200 total data points
- Separate product distribution and kinetics tests
- Will also generate co-gasification model validation data with asreceived feedstocks
 - Must test the ability of C3M to capture nonlinear co-gasification behavior (coal-gas and coal-char interactions)

Sample Specifications

Feedstocks dried, ground, and sieved

- Powder River
 Basin (PRB) Sub bituminous Coal
- Mississippi
 Lignite (Red Hills)
- Southern Yellow
 Pine Pellets

• Products:

- 500 to 850 µm

• Kinetics:

8)

- 100 to 300 μm

		PRB Coal		Miss. Lignite		Wood Pellets		
		as rec'd	dry basis	as rec'd	dry basis	as rec'd	dry basis	
	Proximate Anal	ysis						
	% Moisture	20.43		19.06		4.00		
	% Ash	7.03	8.83	15.43	19.06	1.36	1.42	
	% Volatile	32.49	40.83	29.60	36.57	81.78	85.19	
	% Fixed Carbon	40.06	50.34	35.91	44.37	12.86	13.40	
Ultimate Analysis								
	% Carbon	53.50	67.24	45.62	56.36	51.07	53.20	
	%Hydrogen	3.37	4.23	3.42	4.23	5.99	6.24	
	%Nitrogen	1.22	1.53	0.86	1.06	0.12	0.12	
	%Sulfur	0.30	0.38	0.47	0.58	0.02	0.02	
	%Oxygen(diff)	14.16	17.79	15.14	18.71	37.44	39.00	
	Energy Analysis							
	Btu/lb	9102	11439	7786	9619	8485	8839	
	MAF BTU/lb		12547		11884		8966	

Product Distribution Tests

HPTR Tests at NETL Pittsburgh

- Isothermal pyrolysis of a ~1 gram sample, dropped onto a heated quartz frit
- Semi-batch operation (1 test/day)
- Ex-situ tar and water trapping
- Quantitative gas sampling by mass spec:

- CO₂, CO, CH₄, C₂H₄, H₂S, H₂, H₂O

 Tests with mass closures between 95 and 105% retained for product distribution analysis

N=TI -RU

9)

Filter

Copper Coil

Tar Trap

Mass Spec

PT & TC

Ice Bath

~0°C

Filter

Filter

Primary Products vs. Biomass Blend

- Linear primary pyrolysis product distributions with respect to wt. % biomass
- Distribution nonlinearities seen in literature at lower temperature not observed in these experiments

10

Primary Products vs. Temperature

- Primary pyrolysis product distributions slightly nonlinear wrt temperature, as expected
- In general, condensable fractions and char converted to gas at high temperatures

Gaseous Products vs. Biomass Blend

- Linear gaseous pyrolysis product distributions with respect to biomass wt. %
- Higher CO and lower CO2 release with biomass wt. % and temperature

12

Consistent with literature

Gaseous Products vs. Biomass Blend

- More H₂ generated by coal than biomass on volume basis
 - Biomass gas ~2x PRB gas
 - Biomass has 50% more H, released as hydrocarbons
- H₂/CO ratio decreases as biomass wt.% increases

 $H_2/CO \sim 2$ for PRB, 0.1 for WB

Gaseous Products vs. Temperature

- Increases in total gas production with temperature mostly due to CO and hydrocarbons
 - ~40% of biomass weight converted to CO at 975 °C

14

GC-MS Gas Analysis

- Qualitative analysis of gas bag samples taken during pyrolysis at 800 C
 - Trace sulfur species appear in PRB tests
 - Acetylene, acetaldehyde, toluene more prevalent with biomass

Current HPTR-1 Kinetics

- HPTR gas production data previously unsuitable for kinetics
- Procedure modifications yield more accurate and consistent kinetic data

Test Type	Product Distribution	Kinetics	
Sample quantity	1.0 g	0.1 g	
Sample size	300-1000 μm	100-300 µm	
Sweep gas flow rate	2.0 slm Ar	4.5 slm Ar	
Reaction location	9" from bottom	4" from bottom	
Residence time	4.4 s	0.13 s	
NETL-RUA	4		

16

Reactor Setup for Isothermal Kinetics

(17)

Drop-Tube (Isothermal) Pyrolysis Kinetics

- Total devolatilization
 - Measure CO, CO₂, CH₄, C₂H₄, H₂ and H₂O via QMS
 - Total gas evolution: $m_{total} = \sum (m_{gas})$
 - Solid mass loss: $m_{solid}(t) = m_{feed} m_{gas}(t) m_{tar}(t)$
 - Assuming that the rate of $m_{tar}(t)$ is proportional to $m_{gas}(t)$: $X = \frac{m_{feed} - m_{solid}(t)}{M_{gas}(t)} = \frac{m_{gas}(t)}{M_{gas}(t)}$

$$m_{feed} - m_{solid}(\infty) - m_{gas}(\infty)$$

• General Rate Equation: $\frac{dX}{dt} = k \langle -X \rangle^{n}$

$$k = A * \exp \left(\frac{1}{2} E_A / R * T \right)$$

• Integrate for n = 1: $\ln(1-X) = kt$

(18)

Preliminary Pyrolysis Kinetics Results

- Mass spec sample rate
 ~0.7 s/sample
- Reaction progress, X, characterized by dimensionless gas release
- Reaction rate, k, fit to initial slope of ln(1-X)
 - Best fit covers first 75-90% of reaction
- Multiple slopes may better fit a DAEM model

TI-RI

19)

Preliminary Pyrolysis Kinetics Results

- Fit of reaction rates on an Arrhenius plot
 - Considerable scatter in the reaction rate data
- Potential coal/biomass reaction rate synergy
 - Lower mixture activation energy and pre-exponential
 - Similar to literature results:
 - Seo, M. W., et al, *J. Anal. Appl. Pyrol.*, 88 (2010) 160-167
 - Brown, R. C., et al, *Biomass & Bioenergy*, **18** (2000) 499-506
- Requires further study
 and refinement

ETL-RU

	PRB	20% WB	WB
E _A (kJ/mol)	30.9	24.2	32.9
A (1/s)	16.3	6.5	24.6
R ²	0.934	0.967	0.912

Summary

Pyrolysis product distributions

- Linear primary and gaseous product distributions with respect to biomass weight %
- Elemental H in PRB coal more likely to evolve as H₂
- Elemental H in wood evolves as hydrocarbons, with more H₂ at high temperature
- Pyrolysis H₂/CO ratio decreases significantly with increasing biomass wt. %
- Preliminary pyrolysis kinetics

ri _rii/

- Potential nonlinear kinetic coal/biomass synergy
- Preliminary results suggest 2-stage process

Future Work

Refine pyrolysis kinetic analysis

(22)

- Modify reactor to increase testing rate
- Study pressurized pyrolysis product distributions and kinetics
- Gasification rate data for CO2, H2O, O2 and H2
- Generate C3M model validation data on as-received feedstocks in simulated syngas
- New lab being constructed for studying tar cracking kinetics
 - High speed TGA (100 °C/s), tube furnace, mass spec
 - Study tar generation rate, homogeneous and heterogeneous tar cracking kinetics

Tar Cracking Kinetics

(23)

Acknowledgments

U.S. DOE - NETL

Dr. Chris Guenther Dr. Ron Breault Dr. Bryan Morreale Dr. Charles Taylor

NETL Site Support Contractors

Nick Means, URS Ryan Soncini, URS/Pitt Kevin Resnik, URS

NETL-RUA Research Faculty

Dr. Goetz Veser University of Pittsburgh This technical effort was performed in support of the National Energy Technology Laboratory's on-going research in coal and biomass conversion technologies under URS contract DE-FE0004000.

