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NETL’s FY11 In-house Research:

Advanced Gasification Program

• Mission: “Accelerate the development of advanced, 

affordable and efficient gasification-based 

technologies that promote coal-based fuel flexibility 

and reduce pollutants, trace elements, and the 

carbon footprint of existing and future coal fired 

applications.”

• Tasks/Projects:

1. Biomass Processing

2. Refractory Development

3. Co-gasification Reactions

and Kinetics

4. Device/System Modeling
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NETL Modeling Approach

• NETL’s C3M program

– Carbonaceous Chemistry 

for Computational Modeling

– Interface between kinetics 

databases and high-fidelity 

computational models

• Kinetic databases need

to be updated

– Add biomass feedstocks

– Account for coal/biomass 

co-feeding non-linearities

– Pyrolysis, gasification, tar

– Transport and entrained 

flow conditions
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Project Objectives and Goals

• Program Goal:  Successfully simulate the PSDF 

transport gasifier on co-fed coal/biomass

• Project Goal:  Provide fundamental co-pyrolysis and 

co-gasification kinetic data for C3M platform

– Determine root cause of 

nonlinear coal/biomass 

interactions, if present

• C3M’s co-feed data needs:

– Devolatilization kinetics and 

product distributions

– Gasification kinetics under 

CO2, H2 , H2O and O2

– Homogeneous & heterogeneous

tar cracking kinetics
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Transport Integrated Gasification (TRIGTM)

• Non-slagging KBR gasifier at PSDF

• Operating conditions

– 2 ton/hour combustor or gasifier

– Air- or Oxygen-blown

– Pressure: 11 – 17 atm

– Temperature: 815 – 1040 C

• Feedstocks

– Coarse, dry feed

– Works well on low rank, high moisture, 

high ash coals 

• PRB coal, Mississippi lignite

– Biomass: 20% blend typical, up to 100% 

• Basis for 582 MW plant in construction 

at Kemper, Mississippi 
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Test Matrix

• 8 test points:  

– 600 & 800 °C at 1, 4 and 16 atm, 975 °C at 1 and 4 atm

• 4-5 dried fuel mixtures consistent with PSDF testing:

– Pure PRB coal, lignite & pine wood biomass

– 80% PRB/20% wood mixture

– 80% lignite/20% wood mixture (time permitting)

• 5 reaction environments:

– Inert argon for pyrolysis, CO2, H2 , H2O and O2 for gasification

• 160-200 total data points 

• Separate product distribution and kinetics tests

• Will also generate co-gasification model validation data with as-

received feedstocks

– Must test the ability of C3M to capture nonlinear co-gasification 

behavior (coal-gas and coal-char interactions)
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Sample Specifications

• Feedstocks dried, 

ground, and sieved

– Powder River 

Basin (PRB) Sub-

bituminous Coal

– Mississippi 

Lignite (Red Hills)

– Southern Yellow 

Pine Pellets

• Products: 

– 500 to 850 µm

• Kinetics: 

– 100 to 300 µm

PRB Coal Miss. Lignite Wood Pellets

as rec'd dry basis as rec'd dry basis as rec'd dry basis

Proximate Analysis

% Moisture 20.43 -- 19.06 -- 4.00 --

% Ash 7.03 8.83 15.43 19.06 1.36 1.42

% Volatile 32.49 40.83 29.60 36.57 81.78 85.19

% Fixed Carbon 40.06 50.34 35.91 44.37 12.86 13.40

Ultimate Analysis

% Carbon 53.50 67.24 45.62 56.36 51.07 53.20

%Hydrogen 3.37 4.23 3.42 4.23 5.99 6.24

%Nitrogen 1.22 1.53 0.86 1.06 0.12 0.12

%Sulfur 0.30 0.38 0.47 0.58 0.02 0.02

%Oxygen(diff) 14.16 17.79 15.14 18.71 37.44 39.00

Energy Analysis

Btu/lb 9102 11439 7786 9619 8485 8839

MAF BTU/lb 12547 11884 8966
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Product Distribution Tests

• HPTR Tests at NETL Pittsburgh

– Isothermal pyrolysis of a ~1 gram 

sample, dropped onto a heated 

quartz frit

– Semi-batch operation (1 test/day)

• Ex-situ tar and water trapping

• Quantitative gas sampling by mass 

spec:

– CO2, CO, CH4, C2H4, H2S, H2, H2O

• Tests with mass closures between 

95 and 105% retained for product 

distribution analysis
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Primary Products vs. Biomass Blend

• Linear primary pyrolysis 

product distributions with 

respect to wt. % biomass

• Distribution nonlinearities 

seen in literature at lower 

temperature not observed in 

these experiments
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Primary Products vs. Temperature

• Primary pyrolysis product 

distributions slightly 

nonlinear wrt temperature, as 

expected

• In general, condensable 

fractions and char converted 

to gas at high temperatures
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Gaseous Products vs. Biomass Blend

• Linear gaseous pyrolysis 

product distributions with 

respect to biomass wt. %

• Higher CO and lower CO2 

release with biomass wt. % 

and temperature

– Consistent with literature
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Gaseous Products vs. Biomass Blend

• More H2 generated by coal than 

biomass on volume basis

– Biomass gas ~2x PRB gas

– Biomass has 50% more H, 

released as hydrocarbons

• H2/CO ratio decreases as 

biomass wt.% increases

– H2/CO ~ 2 for PRB, 0.1 for WB
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Gaseous Products vs. Temperature

• Increases in total gas 

production with temperature 

mostly due to CO and 

hydrocarbons

– ~40% of biomass weight 

converted to CO at 975 °C
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GC-MS Gas Analysis

• Qualitative analysis of gas bag samples taken during pyrolysis 

at 800 C

– Trace sulfur species appear in PRB tests

– Acetylene, acetaldehyde, toluene more prevalent with biomass
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Current HPTR-1 Kinetics

• HPTR gas production data 

previously unsuitable for 

kinetics

• Procedure modifications yield 

more accurate and consistent 

kinetic data

Test Type
Product

Distribution
Kinetics

Sample

quantity
1.0 g 0.1 g

Sample size
300-1000 

μm
100-300 μm

Sweep gas 

flow rate
2.0 slm Ar 4.5 slm Ar

Reaction 

location

9” from 

bottom

4” from 

bottom

Residence 

time
4.4 s 0.13 s
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Reactor Setup for Isothermal Kinetics
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Drop-Tube (Isothermal) Pyrolysis Kinetics

• Total devolatilization

– Measure CO, CO2, CH4, C2H4, H2 and H2O via QMS

– Total gas evolution:   mtotal = ∑(mgas)

– Solid mass loss:  msolid(t) = mfeed – mgas(t) – mtar(t)

– Assuming that the rate of mtar(t) is proportional to 

mgas(t):

• General Rate Equation:

• Integrate for n = 1: 

n
Xk

dt
dX 1

)(

)(

)(

)(

gas

gas

solidfeed

solidfeed

m

tm

mm

tmm
X

TREAk A *exp*

ktX )1ln(
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Preliminary Pyrolysis Kinetics Results

• Mass spec sample rate

– ~0.7 s/sample

• Reaction progress, X,

characterized by 

dimensionless gas 

release

• Reaction rate, k, fit to 

initial slope of ln(1-X)

– Best fit covers first 75-

90% of reaction

• Multiple slopes may 

better fit a DAEM model

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

R
ea

ct
io

n
 P

ro
gr

es
s,

 X

Time (seconds)

100% PRB

80% PRB/20% WB

100% WB

975 °C

y = -41.957x + 0.441
R² = 0.9866

y = -1.5268x - 3.0633
R² = 0.9993

-6

-5

-4

-3

-2

-1

0

0 0.4 0.8 1.2 1.6

ln
 (

1
-X

)

Time (min)

PRB @ 975 °C
PRB total

Initial

Intermediate



20

Preliminary Pyrolysis Kinetics Results

PRB 20% WB WB

EA (kJ/mol) 30.9 24.2 32.9

A (1/s) 16.3 6.5 24.6

R2 0.934 0.967 0.912

• Fit of reaction rates on 

an Arrhenius plot

– Considerable scatter in the 

reaction rate data

• Potential coal/biomass 

reaction rate synergy

– Lower mixture activation 

energy and pre-exponential

– Similar to literature results:

• Seo, M. W., et al, J. Anal. Appl. 

Pyrol., 88 (2010) 160-167

• Brown, R. C., et al, Biomass & 

Bioenergy, 18 (2000) 499-506

• Requires further study 

and refinement
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Summary

• Pyrolysis product distributions

– Linear primary and gaseous product distributions with 

respect to biomass weight %

– Elemental H in PRB coal more likely to evolve as H2

– Elemental H in wood evolves as hydrocarbons, with 

more H2 at high temperature

– Pyrolysis H2/CO ratio decreases significantly with 

increasing biomass wt. % 

• Preliminary pyrolysis kinetics

– Potential nonlinear kinetic coal/biomass synergy

– Preliminary results suggest 2-stage process
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Future Work

• Refine pyrolysis kinetic analysis

• Modify reactor to increase testing rate

• Study pressurized pyrolysis product distributions 

and kinetics

• Gasification rate data for CO2, H2O, O2 and H2

• Generate C3M model validation data on as-received 

feedstocks in simulated syngas

• New lab being constructed for studying tar cracking 

kinetics

– High speed TGA (100 °C/s), tube furnace, mass spec

– Study tar generation rate, homogeneous and 

heterogeneous tar cracking kinetics
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Tar Cracking Kinetics 
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