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CE = max γ subject to constraints:




βi ≥ xi ≥ αi, for i = 1, ..., n
(1− γ)ue ≥ |ym(x)− ye| ≥ le(1− γ),

for each e ∈ E

5399:;34:&34<=)>"?4/069:5'()@"!:56:4A)B)CD)E/46/9/.
Tuesday, August 16, 2011



expensive data - simulation & experiment

• simulation
– HPC scaling

– 1600 cores - 3-5 days

• experiment
– demonstration scale

– $1M - 1 year / test
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Bayesian probability:
 probability as “a measure of a state of knowledge”
 enables reasoning with uncertain statements
 specifies some prior probability which is updated in light of new data

UQ - Predictive Validation (V/UQ)

u ≥ ym(x) ≥ l,
βi ≥ xi ≥ αi, for i = 1, ..., n
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Bayesian probability:
 probability as “a measure of a state of knowledge”
 enables reasoning with uncertain statements
 specifies some prior probability which is updated in light of new data

“theories are instruments of prediction. From one set of observable data, 
theories form a bridge over which the investigator can pass to another set of 
observable data.” (Ernst Mach)

• Validation:

UQ - Predictive Validation (V/UQ)

what does new data 

infer about model 
predictivity?

u ≥ [ym(x)− ye] ≥ l
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1. “All scientifically relevant data have an uncertainty.”

2. “Data without uncertainty cannot be relevant scientifically” Manfred Drosg

Predictivity = Validation = Uncertainty Quantification = Error Budget

Verification Error - Numerics (yv or xv +/- uv)

Model Form / Model Parameters (xm +/- um)

Experimental Uncertainty (ye +/- ue)

Scenario Parameters (xs +/- us)

ue ≥ [ym(x)− ye] ≥ le,
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V/UQ 
Objective

Consistency 
Analysis
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Modeling 
Activities

Experimental 
Activities

General Validation/Uncertainty 

Quantification Methodology

(Broad)

xs

– Ryan Feeley, Pete Seiler, Andrew Packard, 
and Michael Frenklach, J. Phys. Chem. A 
2004, 108, 9573-9583
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A Framework for Validation of Computer Models
M. J. Bayarri, J. O. Berger, R. Paulo, J. Sacks, J. A. Cafeo, J. Cavendish, C. H. Lin, J. Tu
Technical Report Number 162                 April 2005
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• create I/U map
• define intended use

• develop DoE
• create surrogate model
• perform consistency analysis

• iterate & predict

ue ≥ [ym(x)− ye] ≥ le,
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1. “All scientifically relevant data have an uncertainty.”

2. “Data without uncertainty cannot be relevant scientifically” Manfred Drosg

Predictivity = Validation = Uncertainty Quantification = Error Budget

CE = max γ subject to constraints:




βi ≥ xi ≥ αi, for i = 1, ..., n
(1− γ)ue ≥ |ym(x)− ye| ≥ le(1− γ),

for each e ∈ E

• deterministic solution procedure

• Bayesian  (w uniform distributions)
• Inferential (priors to posteriors)
• hierarchical

• iterative
• predictive

ue ≥ [ym(x)− ye] ≥ le,
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V/UQ:  heat flux from large pool fires

original experimental uncertainty
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V/UQ:  heat flux from large pool fires

V/UQ original experimental uncertainty
uncertainty after consistency analysis
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oxy-coal: effect of  primary [O2] on burner stability
PO2(primary) = 0% PO2(primary) = 21%

Stand-off distance (cm)

Stand-off distance (cm)

Case 1Case 1
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PO2(primary) = 0% PO2(primary) = 21%

Case 1Case 1
oxy-coal simulation:  LES & DQMoM                                            (7 internal coordinates)

Gas temperature
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PO2 primary Wall 
temperature 

(K)

Measured 
average stand-

off  distance

Predicted 
average stand-

off  distance

0% 1283K 30 cm 31 cm

20.9% 1283K 12 cm 31 cm

predicted flame stand-off  distance shows no 
sensitivity to PO2 in the primary

 

traditional validation:
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PO2 primary Wall 
temperature 

(K)

Measured 
mean stand-
off  distance

Predicted 
mean stand-
off  distance

0% +/- 1% 1283 +/- 150 K 
(bias error)

30 +/- 1.5 cm 31 +/- 2 cm

20.9% +/- 1% 1283 +/- 150 K 
(bias error)

12 +/- 1.5 cm 10 +/- 2 cm

predicted flame stand-off  distance shows high 
sensitivity to wall temperature 

V/UQ observations
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PO2,primary = 0%

simulation observations:      Gas Temperature

PO2,primary = 21%

Tuesday, August 16, 2011



Hierarchical V/UQ Overarching 
Problem

heat flux to container 
in 10-20m JP-8 fuel 

pool fire 

Buoyancy-
Driven 

Combustion

1m Methane 'Fire'

Buoyant 
Plumes

1 m Helium 
Plume

Radiation 
Models

gas & particle 
participating 

media

SGS Mixing & 
Reaction Models

droplet evaporation & 
gas-phase chemistry, 
unresolved turbulent 

mixing

Nonreacting LES 
Models & Algorithms

turbulent diffusion 
closure, solution 

algorithms

Kinetics & Thermophysical 
Properties of  JP-8 Fuel

chemical kinetics, transport 
properties, thermodynamic 

properties, and surrogate fuel 
formulation

Complete
System Case

Benchmark
Cases

Scale-
bridging 
models

Molecular-
scale
Models

u ≥ [ym(x)− ye] ≥ l
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UQ-Predictive Validation 
Framework for Combustion 
Applications

V/UQ provides:

- formal 
hierarchical 
consistency 

between 
experiment and 

simulation

- reduced 
uncertainty

- increased 
physics

_________________
information gain
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