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expensive data - simulation & experiment

e simulation

— HPC scaling
— 1600 cores - 3-5 days
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e experiment

— demonstration scale
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UQ - Predictive Validation (V/UQ)

ﬁi >33i > ;. f()rz': 1,...,TL

U > Ym(x) > 1,

Bayesian probability:
v probability as “a measure of a state of knowledge”
~ enables reasoning with uncertain statements
v §pecifies some prior probability which is updated in light of new data
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UQ - Predictive Validation (V/UQ)

“theories are instruments of prediction. From one set of observable data,
theories form a bridge over which the investigator can pass to another set of

observable data.” (Ernst Mach) What does new i

infer about model
predictivity?

* Validation: 1/, 2 [ym (X) — ye] 2 l

Bayesian probability:
v probability as “a measure of a state of knowledge”
v enables reasoning with uncertain statements
v §pecifies some prior probability which is updated in light of new data
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UQ - Predictive Validation (V/UQ)

“theories are instruments of prediction. From one set of observable data,
theories form a bridge over which the investigator can pass to another set of

observable data.” (Ernst Mach)

Bayesian probabillity:
> probabillity as “a measure of a state of knowledge”
v enables reasoning with uncertain statements
v specifies some prior probability which is updated in light of new data

* Validation: U, 2 [ym (X) - ye]
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e Prediction: U, 2 [ym (X) -\ ye]
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UQ - Predictive Validation (V/UQ)

“theories are instruments of prediction. From one set of observable data,
theories form a bridge over which the investigator can pass to another set of
observable data.” (Ernst Mach)

Bayesian probabillity:
> probabillity as “a measure of a state of knowledge”
v enables reasoning with uncertain statements
v specifies some prior probability which is updated in light of new data

e Validation: u@ 2 [ym (X) — ye] 2 l€7
+ Prediction: u/ 2 y;n (X) Z l/,

—




Predictivity = Validation = Uncertainty Quantification = Error Budget

1. “All scientifically relevant data have an uncertainty.”
2. “Data without uncertainty cannot be relevant scientifically” Manired Drosg

Ue > [Ym (X) — Ye| > L,

Experimental Uncertainty (ye +- ue)
Verification Error - Numerics (yv or Xy +- uy)

Model Form / Model Parameters (Xm +/- Um)

Scenario Parameters (Xs +- Us)
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Predictivity = Validation = Uncertainty Quantification = Error Budget

1. “All scientifically relevant data have an uncertainty.”
2. “Data without uncertainty cannot be relevant scientifically” Manired Drosg

e 2 [Ym(X) = Ye| = le; —( i, )

Modeling
Activities

Activities

tot
fy

Consistency
Analysis

_ Ryan Feeley, Pete Seiler, Andrew Packard,
and Michael Frenklach, J. Phys. Chem. A
2004, 108, 9573-9583
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Predictivity = Validation = Uncertainty Quantification = Error Budget

1. “All scientifically relevant data have an uncertainty.”

2. “Data without uncertainty cannot be relevant scientifically” Manired Drosg

Ue > [Ym (X) — Ye| > L,

¢ = max 7y subject to constraints:
Bi >x; > o, fori=1,...n

(1 =Y)tue = |ym(X) — ye| = le(1 =),
for each e € &

THE INSTITUTE FOR CLEAN AND SECURE ENERGY ”g



Predictivity = Validation = Uncertainty Quantification = Error Budget

1. “All scientifically relevant data have an uncertainty.”

2. “Data without uncertainty cannot be relevant scientifically” Manired Drosg

A Framework for Validation of Computer Models

M. J. Bayarri, J. O. Berger, R. Paulo, J. Sacks, J. A. Cafeo, J. Cavendish, C. H. Lin, J. Tu
Ue 2 Ym(X) — Ye| > le,  Technical Report Number 162 April 2005

National Institute of Statistical Sciences 19 T. W. Alexander Drive
PO Box 14006 Research Triangle Park, NC 27709-4006

e create /U map

 define intended use
 develop DoE

e create surrogate model

e perform consistency analysis
e jterate & predict

C'e = max ~ subject to constraints:
{ Gi>x;i>a; fori=1,..,n

(1 = )te = |Ym(X) — Ye| = le(1 — 1),
for each e € £
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Predictivity = Validation = Uncertainty Quantification = Error Budget

1. “All scientifically relevant data have an uncertainty.”

2. “Data without uncertainty cannot be relevant scientifically” Manired Drosg

> - > o o o o
te 2 lymx) —vel 2l o geterministic solution procedure

e Bayesian (w uniform distributions)
* |nferential (priors to posteriors)
* hierarchical

e (terative
e predictive

C'e = max ~ subject to constraints:
{ Gi>x;i>a; fori=1,..,n

(1 = )te = |Ym(X) — Ye| = le(1 — 1),
for each e € £
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V/IUQ: heat flux from large pool fires

< :z original experimental uncertainty
|
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V/IUQ: heat flux from large pool fires

190
T 170 V/UQ original experimental uncertainty
% ol U 2 [ym (X) _ ye] 2 [ uncertainty after consistency analysis
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oxy-coal: effect of primary [O2] on burner stability

P02(primary) = 0%

P02(primary) =21%

0.12
0.11F Preheat T=544 K, Primary PO2=(

0.1F
0.09r
0.08F
0.07F
0.06F
0.05F
0.041
0.03F
0.02F
0.01
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0.01

Preheat T=544 K, Primary PO2=20.7%

0 S 10 115 2|0 23 30 3
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oxy-coal simulation: LES & DQMoM

(7 internal coordinates) g
i

P02(primary) =0% Poz(primarY) =21%

Gas temperature




traditional validation:

Po, primary

0%

20.9%

Wall
temperature
(K)

1283K

1283K

Measured
average stand-
off distance

Predicted
average stand-
off distance

predicted flame stand-off distance shows no
sensitivity to Pg, in the primary




V/UQ observations

Po, primary Wall Measured Predicted
temperature | mean stand- | mean stand-
(K) off distance | off distance

0% +/- 1% 1283 +/-150 K 30 +/-1.5cm 31+/-2cm
(bias error)

20.9% +/-1% 1283 +/-150K 12 +/-1.5cm 10 +/- 2 cm
(bias error)

predicted flame stand-off distance shows high
sensitivity to wall temperature




simulation observations: Gas Temperature

POz,primary = 0%

Z-Axis V.

0.10 0.20 : 0.30 0.40
S

POz,primary =21%

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
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Hierarchical V/UQ

Overarching
Problem

heat flux to container
in 10-20m JP-8 fuel

pool fire
Benchmark (. ‘ [ |
Cases Buoyancy- Buoyant
Driven Plumes
Combustion
1 m Helium
1m Methane 'Fire’ Plume
Scale- 1 ™ 1 [
bridging Radiation Rgfc?iomr:xlillnc? d8e‘ls Nonreacting LES
models Models Models & Algorithms
gas & particle feplet evaporat!on < turbulent diffusion
M gas-phase chemistry, :
participating closure, solution
. unresolved turbulent :
media .y algorithms
mixing
N Y
Molecular- | Kinetics & Thermophysical \
scale Properties of JP-8 Fuel
Models
chemical kinetics, transport
properties, thermodynamic
properties, and surrogate fuel
formulation
FOR CLEAN AND SECURE ENERGY
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